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Motivation www.tugraz.at

Power analysis attacks pose a threat to real-world crypto

implementations.

• Masking is a countermeasure where secret data is split into

shares and processed separately*

• A masked implementation is considered d th-order secure if

an attacker needs (at least) d + 1 probes to recover secrets.

• Glitches from combinatorial circuits can reveal cryptographic

secrets.
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Motivation cont. www.tugraz.at

However, masking is expensive!

� Requires more circuit area, an RNG, and more clock cycles

to compute.

• For performance-critical applications, such as memory

encryption, the extra computation time is a non-starter.

Low Latency Masking

Can we implement masked circuits which compute (securely) in a single clock cycle?
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Self-Synchronized Masking



Self-Synchronized Masking (SESYM) www.tugraz.at

SESYM is a design technique applied over any masking scheme to achieve single-cycle

d th-order probing security without requiring additional randomness.

4

DOM, TI, HPC

Ô

SESYM

Single Cycle

d th-Order Secure

Circuit
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Dual-Rail Logic www.tugraz.at

• Use two wires to encode a bit

• Dual-rail logic is evaluated in two
steps:

1. Precharge - Drive all wires from

DATA to NULL

2. Evaluate - Compute NULL to DATA

NULL
(0, 0)

DATA0
(0, 1)

DATA1
(1, 0)
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WDDL Logic [TV04] www.tugraz.at

Wave Dynamic Differential Logic (WDDL) is a dual-rail logic

style based on standard cells.

Features:

• WDDL gates do not compute intermediate results.

Ex. NULL ⊕ DATA = NULL

• WDDL gates are positive and monotonic.

$ WDDL gates do not glitch [TV04].

a

b

ā

b̄

c

c̄

WDDL AND gate - ⊙
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Asynchronous Primitive – Muller C-element [Mul56] www.tugraz.at

• The C-element is a logic gate which can determine if a set of signals are

synchronized.

C
A
B

Q

(a) Symbol

A B Q

0 0 0

0 1 -

1 0 -

1 1 1

(b) Truth Table
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Designing with SESYM



Applying SESYM on a 1st-order DOM AND gate www.tugraz.at

The 1st-order DOM AND gate requires two

clock cycles to compute due to the

registers. Can we remove them?

1. Convert inputs and gates to dual-rail.

2. Insert C-elements to latch the

computed result and convert back to

single-rail.

 R
y0

y1

x1

z0

z1

x0
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Applying SESYM to the Ascon Permutation www.tugraz.at

Ascon State Registers

Precharger

Masked 
S-box

Completion Detector

Round
Constant 

Linear Layer

C

C-Elements
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Implementations



Ascon Implementation Results www.tugraz.at

Protection Order
Area

[kGE]

Cycle/round

[cycle]

Randomness

[bits/cycle]

Max Clock Freq.

MHz

This Work, UMC65nm

1 50.40 1 320 408.3

2 102.39 1 960 377.1

3 172.05 1 1 920 358.4

4 257.13 1 3 200 334.2

5 357.65 1 4 800 312.9

GLM, UMC90nm [GIB18]

1 42.59 1 2 048 260.0

2 90.78 1 4 608 -

3 153.76 1 8 192 -

4 238.15 1 12 800 -

5 339.67 1 18 432 -
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AES 1st-order S-box Implementations www.tugraz.at

Implementation Method
Area

[kGE]

Latency

[cycles]

Randomness

[bits/cycle]

[Sas+20] LMDPL 3.48 1 36

This work SESYM-BP 3.98 1 34

This work SESYM-Canright 7.59 1 18

[GIB18] GLM 60.73 1 2 048
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AES 2nd-order S-box Implementations www.tugraz.at

Implementation Method
Area

[kGE]

Latency

[cycles]

Randomness

[bits/cycle]

This work SESYM-BP 9.34 1 102

This work SESYM-Canright 14.78 1 51

[GIB18] GLM 57.11 2 4 446

[Cnu+16] (d + 1)-share TI 3.66 6 54

[GMK17] DOM 4.50 8 54
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AES-128 Implementations www.tugraz.at

Impl.
Protection

Order

Area

[kGE]

Cycle/round

[cycle]

Randomness

[bits/cycle]

Max Clock Freq.

[MHz]

This work 1 104.86 1 680 192.3

This work 2 203.90 1 2040 169.2

[Sas+20] 1 157.50 1 976 400
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Security Evaluations



Formal Verification with Coco www.tugraz.at

Coco [Gig+21] formally verifies the security of a circuit against power analysis attacks

while taking glitches and transitions into account.

$ We modeled the WDDL gates based on the glitch-free assumption given

in [TV04].

Coco successfully verified:

✓ 1st-order & 2nd -order Ascon S-box.

✓ 1st-order & 2nd -order AES-BP S-box.
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Physical Side-Channel Evaluations www.tugraz.at

We implemented our designs onto a CW305 (Artix-7 FPGA) and performed physical

side-channel evaluations.

1st-order Ascon Impl. – 10 Million traces.

1st -order t-test 2nd -order t-test
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2nd-order AES-Canright – 100 Million traces i www.tugraz.at

Average Power trace. 1st order t-test
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2nd-order AES-Canright – 100 Million traces ii www.tugraz.at

2nd order t-test 3rd order t-test
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2nd-order AES-Canright – Bivariate, 10 Million traces www.tugraz.at
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Main Contributions www.tugraz.at

✓ Introduced Self-Synchronized Masking - a design technique for implementing
d th-order masked circuits which evaluate in a single clock cycle.

$ SESYM combines ordinary masking with asynchronous circuit design (Dual-Rail +

C-elements). The overall design is still mostly synchronous.

$ No balancing requirements for the dual-rail encoding!

✓ SESYM enables designers to focus on performance goals, rather than on security

requirements. For example, a designer can easily unroll SESYM designs.

✓ Implemented and verified the first practical higher-order masked single-cycle

implementation of AES in the literature.

Thank You!
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