
Verified NTT Multiplications
for NISTPQC KEM Lattice
Finalists: KYBER, SABER, NTRU

Vincent Hwang, Jiaxiang Liu, Gregor Seiler, Xiaomu Shi,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang

CHES2022

Institute of Information Science, Academia Sinica

Postquantum Cryptography (PQC)

• A large-scale quantum computer breaks RSA and ECC by Shor’s algorithm
• New cryptosystems that withstand quantum computing are required

• Postquantum Cryptography (PQC)
• PQC standardization process (NISTPQC) initiated by NIST

• 7 finalists (KYBER, SABER, NTRU, …) and 8 alternate candidates in the 3rd round

CHES2022 Friends + B.-Y. Yang 2/23

Institute of Information Science, Academia Sinica

Implementation Issues

• Cryptography is always under a lot of pressure to be efficient
• Every round-3 submission in NISTPQC includes hand-optimized software
• PQC tends to be also more complex than pre-quantum public-key
cryptography

• Bugs in PQC implementations?

CHES2022 Friends + B.-Y. Yang 3/23

Institute of Information Science, Academia Sinica

Formal Verification

• Consider the field multiplication over 𝔽𝑝 with 𝑝 = 2255 − 19.
• There are roughly 2510(= 2255 × 2255) different inputs.
• How many of them can be tested?

• What about those inputs which are never tested?
• “Testing shows the presence, not the absence of bugs.”

E. W. Dijkstra (1969)
• Formal verification aims to prove the absence of bugs through logical or
mathematical reasoning.

• That is, the field multiplication is computed correctly for all inputs.

CHES2022 Friends + B.-Y. Yang 4/23

Institute of Information Science, Academia Sinica

Functional Correctness

• Testing only checks that an implementation is correct on a fixed set of
selected inputs

• Formal verification can reach a conclusion that the implementation
computes the correct outputs for all possible inputs

• CRYPTOLINE1 was developed to help programmers write correct cryptographic
assembly programs

• A domain-specific language for modeling cryptographic assembly programs
and their specifications

• A tool for verifying programs in the domain-specific language
• Support two kinds of predicates

• Algebraic predicates: non-linear (modular) equations over integers
• Range predicates: bit-accurate comparisons, equations, or modular equations

1https://github.com/fmlab-iis/cryptoline
CHES2022 Friends + B.-Y. Yang 5/23

https://github.com/fmlab-iis/cryptoline

Institute of Information Science, Academia Sinica

Our Contributions

• First verification of highly complex polynomial multiplications based on the
Number Theoretic Transform (NTT)

Intel AVX2 ARM Cortex-M4
NTRU ntt-polymul2 build 3e42ffa pqm43 build d26fee0
KYBER PQClean4 build 688ff2f pqm43 build 688ff2f
SABER ntt-polymul2 build 3e42ffa Strategy A by [ACC+22]5

• Extension of the CRYPTOLINE tool
• Verification either much slower or impossible without these extensions

2https://github.com/ntt-polymul/ntt-polymul
3https://github.com/mupq/pqm4
4https://github.com/PQClean/PQClean
5https://github.com/multi-moduli-ntt-saber/multi-moduli-ntt-saber

CHES2022 Friends + B.-Y. Yang 6/23

Institute of Information Science, Academia Sinica

AVX2 KYBER768 NTT

• The incomplete NTT in the Intel AVX2 implementation from PQClean does
the following map:

ℤ𝑞[𝑋]/⟨𝑋256 + 1⟩
→ ℤ𝑞[𝑋]/⟨𝑋128 − 𝜔4⟩ × ℤ𝑞[𝑋]/⟨𝑋128 + 𝜔4⟩ (level 0)
→ ⋯ ⋮
→ ℤ𝑞[𝑋]/⟨𝑋2 − 𝜁6,0⟩ × ⋯ × ℤ𝑞[𝑋]/⟨𝑋2 − 𝜁6,127⟩ (level 6)

where 𝜁𝑖,𝑗 is the roots of unity used at the end of level 𝑖 (counting up)
• Cut at each level to decompose the verification problem

CHES2022 Friends + B.-Y. Yang 7/23

Institute of Information Science, Academia Sinica

Workflow of Verifying AVX2 KYBER768 NTT

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

⋮ ⋮

⋮ ⋮

𝐹 ≡ 𝐺0,0 mod [𝑞, 𝑋128 − 𝜔4] 𝐹 ≡ 𝐺0,1 mod [𝑞, 𝑋128 + 𝜔4]

𝐹 ≡ 𝐺𝑖,𝑗 mod [𝑞, 𝑋
256
2𝑖+1 − 𝜁𝑖,𝑗], 0 ≤ 𝑗 < 2𝑖 𝐹 ≡ 𝐺𝑖,𝑗 mod [𝑞, 𝑋

256
2𝑖+1 − 𝜁𝑖,𝑗], 2𝑖 ≤ 𝑗 < 2𝑖+1

𝐹 ≡ 𝐺6,𝑗 mod [𝑞, 𝑋2 − 𝜁6,𝑗], 0 ≤ 𝑗 < 64 𝐹 ≡ 𝐺6,𝑗 mod [𝑞, 𝑋2 − 𝜁6,𝑗], 64 ≤ 𝑗 < 128

• All 256 coefficients used in level 0; at most 128 needed at level 1 onwards
CHES2022 Friends + B.-Y. Yang 8/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT i

Step 1: running trace (in assembly)
Extract from an executable by our script itrace.py

$ itrace.py test ntt PQCLEAN_KYBER768_AVX2_polyvec_ntt.gas
$ more PQCLEAN_KYBER768_AVX2_polyvec_ntt.gas
#PQCLEAN_KYBER768_AVX2_polyvec_ntt:
:
[some bookkeeping information]
:

vmovdqa (%rsi),%ymm0 #! EA = L0x5555556395e0; Value = ...
vpbroadcastq 0x140(%rsi),%ymm15 #! EA = L0x555555639720; Value = ...
vmovdqa 0x100(%rdi),%ymm8 #! EA = L0x7fffffffb080; Value = ...

:
vpbroadcastq 0x148(%rsi),%ymm2 #! EA = L0x555555639728; Value = ...
vpmullw %ymm15,%ymm8,%ymm12 #! PC = 0x55555556eb85

:
vpmulhw %ymm2,%ymm8,%ymm8 #! PC = 0x55555556eb99

:

CHES2022 Friends + B.-Y. Yang 9/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT ii
Step 2: Define translation between assembly and CRYPTOLINE instructions
Translation rules (usually standard and reusable)

#! $1c(%rsi) = %%EA
#! (%rsi) = %%EA
#! $1c(%rdi) = %%EA
#! (%rdi) = %%EA
#! %ymm$1c = %%ymm$1c
#! vpbroadcastq $1ea, $2v -> mov $2v_0 $1ea;\nmov $2v_1 $1ea[+2];\n

mov $2v_2 $1ea[+4];\nmov $2v_3 $1ea[+6];\nmov $2v_4 $1ea;\n
mov $2v_5 $1ea[+2];\nmov $2v_6 $1ea[+4];\nmov $2v_7 $1ea[+6]; ...

#! vmovdqa $1ea, $2v -> mov $2v_0 $1ea;\nmov $2v_1 $1ea[+2];\n
mov $2v_2 $1ea[+4];\nmov $2v_3 $1ea[+6]; ...

#! vmovdqa $1v, $2ea -> mov $2ea $1v_0;\nmov $2ea[+2] $1v_1;\n
mov $2ea[+4] $1v_2;\nmov $2ea[+6] $1v_3; ...

CHES2022 Friends + B.-Y. Yang 10/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT iii
Step 3: to_zdsl.py translates running trace to CRYPTOLINE program

proc main([inputs]) =
{ [precondition to be defined] }
(* vmovdqa (%rsi),%ymm0 #! EA = L0x5555556395e0; ... *)
mov ymm0_0 L0x5555556395e0;
:
mov ymm0_f L0x5555556395fe;
(* vpbroadcastq 0x140(%rsi),%ymm15 #! EA = L0x555555639720; ... *)
mov ymm15_0 L0x555555639720;
:
mov ymm15_f L0x555555639726;
(* vmovdqa 0x100(%rdi),%ymm8 #! EA = L0x7fffffffb080; ... *)
:
{ [postcondition to be defined] }

CHES2022 Friends + B.-Y. Yang 11/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT iv

Step 4: Initialize constants used in the subroutine

(*********** constants ***********)
mov L0x5555556395e0 (3329)@sint16; mov L0x5555556395e2 (3329)@sint16;
...
mov L0x555555639600 (-3327)@sint16; mov L0x555555639602 (-3327)@sint16;
...
mov L0x555555639620 (20159)@sint16; mov L0x555555639622 (20159)@sint16;
...
mov L0x555555639adc (32)@sint16; mov L0x555555639ade (32)@sint16;
...

CHES2022 Friends + B.-Y. Yang 12/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT v

Step 5: pre-condition, the post-condition, and mid-conditions
(mid-conditions not required for AVX2 KYBER768 NTT, easy to generate using a
script, result in less verification time)

Precondition
−𝑞 < 𝑓𝑖 < 𝑞 for all 0 ≤ 𝑖 < 256 where 𝑓𝑖’s are the inputs and 𝑞 = 3329

Midconditions and postcondition
𝐹 ≡ 𝐺𝑖,𝑗 mod [𝑞, 𝑋256/2𝑖+1 − 𝜁𝑖,𝑗] for all 0 ≤ 𝑗 < 2𝑖+1

and
−(2 + 𝑖)𝑞 < 𝑔𝑖,𝑗,𝑘 < (2 + 𝑖)𝑞 for all 0 ≤ 𝑗 < 2𝑖+1, 0 ≤ 𝑘 < 256/2𝑖+1.

where 𝑖 is the NTT level (from 0 to 6)

CHES2022 Friends + B.-Y. Yang 13/23

Institute of Information Science, Academia Sinica

Verification of AVX2 KYBER768 NTT vi
Step 6: Run CRYPTOLINE, wait (human interaction no longer needed)

$ cv -v -isafety -jobs 24 -slicing -no_carry_constraint \
PQCLEAN_KYBER768_AVX2_polyvec_ntt.cl

Parsing Cryptoline file: [OK] 0.089273 seconds
Checking well-formedness: [OK] 0.031599 seconds
Transforming to SSA form: [OK] 0.019121 seconds
Rewriting assignments: [OK] 0.020577 seconds
Verifying program safety: [OK] 183.994889 seconds
Verifying range assertions: [OK] 42.385435 seconds
Verifying range specification: [OK] 200.594131 seconds
Rewriting value-preserved casting: [OK] 0.001421 seconds
Verifying algebraic assertions: [OK] 0.007455 seconds
Verifying algebraic specification: [OK] 26.648724 seconds
Verification result: [OK] 453.802915 seconds

CHES2022 Friends + B.-Y. Yang 14/23

Institute of Information Science, Academia Sinica

Classical Compositional Reasoning

• Consider the following program snippet:

cut ∶ 𝑃0 ∧ 𝑃1 ∧ ⋯ ∧ 𝑃127
[code]

cut ∶ 𝑄0 ∧ 𝑄1 ∧ ⋯ ∧ 𝑄127
[code]
⋯

• It happens in inverse NTT that 𝑄𝑖 only depends on 𝑃𝑖 but 𝑄𝑖, 𝑃𝑖, and many
other 𝑃𝑗’s involve common variables

• Those 𝑃𝑗’s cannot be excluded systematically when verifying 𝑄𝑖
• Verification is quite inefficient or even impossible in such cases

• Proposed solution: nonlocal compositional reasoning

CHES2022 Friends + B.-Y. Yang 15/23

Institute of Information Science, Academia Sinica

In Nonlocal Compositional Reasoning

• Each cut instruction is assigned to a number for reference
• Verifiers can add relevant premises by cut numbers

cut 0 ∶ 𝑃0 ∧ 𝑃1 ∧ ⋯ ∧ 𝑃127
cut 1 ∶ 𝑃0 prove with 0
cut 2 ∶ 𝑃1 prove with 0

…
cut 128 ∶ 𝑃127 prove with 0
cut 129 ∶ true

[code]
…

cut 130 ∶ 𝑄0 prove with 1 ∧ 𝑄1 prove with 2 ∧ ⋯
[code]
⋯CHES2022 Friends + B.-Y. Yang 16/23

Institute of Information Science, Academia Sinica

Twisted NTT

• Mapping 𝑋 = 𝑎𝑌 from 𝔽[𝑋]/⟨𝑋𝑛 − 𝑐⟩ to 𝔽[𝑌]/⟨𝑌𝑛 − 1⟩ is called twisting

𝔽[𝑋]
⟨𝑋2𝑛 − 1⟩ ≅

𝔽[𝑋]
⟨𝑋𝑛 − 1⟩ ×

𝔽[𝑋]
⟨𝑋𝑛 + 1⟩

𝑋=𝑎𝑌≅ 𝔽[𝑋]
⟨𝑋𝑛 − 1⟩ ×

𝔽[𝑌]
⟨𝑌𝑛 − 1⟩

• Two approaches of specifying twisted NTT
• With fresh variables 𝑌𝑖,𝑗 (ARM Cortex-M4 SABER)
• Without fresh variables (Intel AVX2 SABER)

CHES2022 Friends + B.-Y. Yang 17/23

Institute of Information Science, Academia Sinica

Verification Results (in Seconds)
KEM architecture direction algebra overflow range total

Kyber768
AVX2 normal 26.6 183.9 242.8 453.8

inverse 761.7 781.0 6050.0 7593.5

Cortex M4 normal 134.3 173.7 191.0 499.4
inverse 1481.0 348.6 184.1 2014.3

ntru2048509
AVX2 normal 478.4 1229.8 1738.6 3447.8

inverse 3868.6 1545.3 12170.3 17585.7

Cortex M4 normal 1353.0 5970.7 4810.2 12135.2
inverse 11315.1 3019.6 7813.7 22150.9

Saber
AVX2 normal 60.1 207.7 271.7 539.9

inverse 436.2 443.8 859.4 1741.0

Cortex M4 normal 110.2 2731.9 2196.7 5039.3
inverse 3250.5 2754.0 853.4 6858.8

min: 453.8 seconds (≈ 8 minutes)
max: 22150.9 seconds (≈ 6 hours)

CHES2022 Friends + B.-Y. Yang 18/23

Institute of Information Science, Academia Sinica

Effectiveness of Cuts in Intel AVX2 KYBER768 NTT

number of cuts

time

1 3 4 6 8 10 14

200

400

600

800

1000

1200

1400

1600

1800 algebra
overflow
range

CHES2022 Friends + B.-Y. Yang 19/23

Institute of Information Science, Academia Sinica

Human Time

• Each of our verifications took less than a week of calendar time
• The majority of it was really communication with the programmer of the
code, and secondly reading and gaining a basic understanding of the
program at hand

CHES2022 Friends + B.-Y. Yang 20/23

Institute of Information Science, Academia Sinica

Conclusion

• We demonstrate the feasibility for a programmer to verify his or her
high-speed assembly code for PQC

• We demonstrate the feasibility for a verification specialist to verify
someone else’s high-speed PQC software in assembly code, with some
cooperation from the programmer

• Enhanced compositional reasoning techniques take full advantage of
clearly demarcated stages in many cryptographic algorithms

• We did find a few bugs in high-speed software

CHES2022 Friends + B.-Y. Yang 21/23

Institute of Information Science, Academia Sinica

Future Work

• The same technique applies to also
• any implementation of small ideal-lattice-based cryptosystems that also has
NTT-based arithmetic, e.g., the KEMs NTRU Prime, LAC, or NewHope and the
signatures Dilithium and Falcon

• a myriad of other architectures and other parameter sets

• Extend CRYPTOLINE to other PQCs such as Rainbow/UOV and Classic McEliece
• Watch out, we can do symmetric cryptography soon!

CHES2022 Friends + B.-Y. Yang 22/23

Institute of Information Science, Academia Sinica

Thank you for listening

CHES2022 Friends + B.-Y. Yang 23/23

