Amortized NISC over $\mathbb{Z}_{2^{k}}$ from RMFE

Fuchun Lin, Chaoping Xing, Yizhou Yao, Chen Yuan
Shanghai Jiao Tong University

Dec 8, 2023 - Asiacrypt 2023

Reusable Non-Interactive Secure Computation

Reusable NISC: Two-round 2-PC for jointly computing a function $f(x, y)$, where it is safe to reuse the first message of Receiver.

Reusable Non-Interactive Secure Computation

Reusable NISC: Two-round 2-PC for jointly computing a function $f(x, y)$, where it is safe to reuse the first message of Receiver.

Sender: y

Receiver: x
f is a function defined over the ring $\mathbb{Z}_{2^{k}}\left(\right.$ i.e. $\left.\mathbb{Z} / 2^{k} \mathbb{Z}\right)$.

- data types and computations of real-life computer programs are defined over $\mathbb{Z}_{2^{32}}$ or $\mathbb{Z}_{2^{64}}$.
- protocols based on $\mathbb{Z}_{2^{k}}$ arithmetic are easier and faster to implement.

Paradigms for Constructing Reusable NISC

Paradigms for Constructing Reusable NISC

(1) Fully Homomorphic Encryption (FHE)

- small communication complexity, large computation complexity due to bootstrapping.
- existence of FHE over $\mathbb{Z}_{2^{k}}$?

Paradigms for Constructing Reusable NISC

(1) Fully Homomorphic Encryption (FHE)

- small communication complexity, large computation complexity due to bootstrapping.
- existence of FHE over $\mathbb{Z}_{2^{k}}$?
(2) Garble Circuit and Oblivious Transfer (OT)
- trade-off of communication and computation, achieve reusability incurs additional overhead.
- GC is a computational randomized encoding for Boolean circuits.

Paradigms for Constructing Reusable NISC

(1) Fully Homomorphic Encryption (FHE)

- small communication complexity, large computation complexity due to bootstrapping.
- existence of FHE over $\mathbb{Z}_{2^{k}}$?
(2) Garble Circuit and Oblivious Transfer (OT)
- trade-off of communication and computation, achieve reusability incurs additional overhead.
- GC is a computational randomized encoding for Boolean circuits.
(3) Decomposable Affine Randomized Encoding (DARE) and Vector Oblivious Linear Function Evaluation (VOLE)
- "free" reusability.
- [IK02] there exists a perfect DARE for arithmetic NC 1 circuits or arithmetic branching programs.
[IK02] Yuval Ishai, Eyal Kushilevitz. Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials. In ICALP 2002.

Challenges for working over $\mathbb{Z}_{2^{k}}$

Goal: Construct statistical reusable NISC/VOLE for NC ${ }^{1}$ circuits over $\mathbb{Z}_{2^{k}}$.

Challenges for working over $\mathbb{Z}_{2^{k}}$

Goal: Construct statistical reusable NISC/VOLE for NC 1 circuits over $\mathbb{Z}_{2^{k}}$.
Challenges:
The algebraic structure of $\mathbb{Z}_{2^{k}}$ is bad: half of $\mathbb{Z}_{2^{k}}$ are zero divisors.
This results in that, e.g.,

- polynomial interpolation.
- random linear combination makes no sense (constant soundness).
\Longrightarrow In most cases, naively instantiating protocols designed for a large field with $\mathbb{Z}_{2^{k}}$ leads to a constant soundness error.

Challenges for working over $\mathbb{Z}_{2^{k}}$

Goal: Construct statistical reusable NISC/VOLE for NC ${ }^{1}$ circuits over $\mathbb{Z}_{2^{k}}$.
Challenges:
The algebraic structure of $\mathbb{Z}_{2^{k}}$ is bad: half of $\mathbb{Z}_{2^{k}}$ are zero divisors.
This results in that, e.g.,

- polynomial interpolation.
- random linear combination makes no sense (constant soundness).
\Longrightarrow In most cases, naively instantiating protocols designed for a large field with $\mathbb{Z}_{2^{k}}$ leads to a constant soundness error.

Solutions:

There are two mainstream mechanisms in the context of MPC.

- the $S P D \mathbb{Z}_{2^{k}}$ idea: use a larger ring $\mathbb{Z}_{2^{k+s}}$. Does it work ?
- the Galois ring idea: use a large ring extension of $\mathbb{Z}_{2^{k}}$, that has a small fraction of zero divisors.

Construction Overview

Roadmap:

(1) Construct semi-honest NISC based on Galois ring arithmetic, which simulates the computation of arithmetic branching programs over $\mathbb{Z}_{2^{k}}$.

- Apply the Reverse Multiplicative Friendly Embedding (RMFE) technique for amortization.
(2) Lift semi-honest security to malicious security.
- Design a new technique, Non-Malleable RMFE, to deal with the issue of introducing RMFE.
- Adapt existing methods from Galois field to Galois ring.

Galois ring

Definition (Galois ring)

Let p be a prime, and $k, d \geq 1$ be integers. Let $f(X) \in \mathbb{Z}_{p^{k}}[X]$ be a monic polynomial of degree d such that $\overline{f(X)}:=f(X) \bmod p$ is irreducible over \mathbb{F}_{p}. A Galois ring over $\mathbb{Z}_{p^{k}}$ of degree d denoted by $\operatorname{GR}\left(p^{k}, d\right)$ is a ring extension $\mathbb{Z}_{p^{k}}[X] /(f(X))$ of $\mathbb{Z}_{p^{k}}$.

Galois ring

Definition (Galois ring)

Let p be a prime, and $k, d \geq 1$ be integers. Let $f(X) \in \mathbb{Z}_{p^{k}}[X]$ be a monic polynomial of degree d such that $\overline{f(X)}:=f(X) \bmod p$ is irreducible over \mathbb{F}_{p}. A Galois ring over $\mathbb{Z}_{p^{k}}$ of degree d denoted by $\operatorname{GR}\left(p^{k}, d\right)$ is a ring extension $\mathbb{Z}_{p^{k}}[X] /(f(X))$ of $\mathbb{Z}_{p^{k}}$.

- if $d=1, \operatorname{GR}\left(p^{k}, d\right)=\mathbb{Z}_{p^{k}}$; if $k=1, \operatorname{GR}\left(p^{k}, d\right)=\mathbb{F}_{p^{d}}$.
- $\operatorname{GR}\left(p^{k}, d\right) /(p) \cong \mathbb{F}_{p^{d}}$.
- "Schwatz-Zipple" Lemma for Galois ring:

For any nonzero degree- r polynomial $f(x)$ over $\operatorname{GR}\left(p^{k}, d\right)$,

$$
\operatorname{Pr}\left[f(\alpha)=0 \mid \alpha \stackrel{\$}{\leftarrow} \operatorname{GR}\left(p^{k}, d\right)\right] \leq r p^{-d}
$$

Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, $k, r, m, d, D \geq 1$ be integers. A pair (ϕ, ψ) is called an $(m, d ; D)$-RMFE over $\operatorname{GR}\left(p^{k}, r\right)$ if $\phi: \operatorname{GR}\left(p^{k}, r\right)^{m} \rightarrow \operatorname{GR}\left(p^{k}, r d\right)$ and $\psi: \operatorname{GR}\left(p^{k}, r d\right) \rightarrow \operatorname{GR}\left(p^{k}, r\right)^{m}$ are two $\operatorname{GR}\left(p^{k}, r\right)$-linear maps such that

$$
\begin{equation*}
\psi\left(\phi\left(x_{1}\right) \cdot \phi\left(x_{2}\right) \cdots \phi\left(x_{D}\right)\right)=x_{1} * x_{2} * \cdots * x_{D} \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{D} \in \operatorname{GR}\left(p^{k}, r\right)^{m}$, where $*$ denotes the entry-wise multiplication operation.

Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, $k, r, m, d, D \geq 1$ be integers. A pair (ϕ, ψ) is called an $(m, d ; D)$-RMFE over $\operatorname{GR}\left(p^{k}, r\right)$ if $\phi: \operatorname{GR}\left(p^{k}, r\right)^{m} \rightarrow \operatorname{GR}\left(p^{k}, r d\right)$ and $\psi: \operatorname{GR}\left(p^{k}, r d\right) \rightarrow \operatorname{GR}\left(p^{k}, r\right)^{m}$ are two $\operatorname{GR}\left(p^{k}, r\right)$-linear maps such that

$$
\begin{equation*}
\psi\left(\phi\left(x_{1}\right) \cdot \phi\left(x_{2}\right) \cdots \phi\left(x_{D}\right)\right)=x_{1} * x_{2} * \cdots * x_{D} \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{D} \in \operatorname{GR}\left(p^{k}, r\right)^{m}$, where $*$ denotes the entry-wise multiplication operation.

Intuitions:

- ϕ is a linear map with limited multiplication capacity.
- RMFE relates arithmetic operations of $\operatorname{GR}\left(p^{k}, r\right)^{m}$ and $\operatorname{GR}\left(p^{k}, r d\right)$.
- Above ϕ, ψ can be naturally extended to establish a matrix multiplication relation for matrices over $\operatorname{GR}\left(p^{k}, r\right)$ and $\operatorname{GR}\left(p^{k}, r d\right)$.

Properties of Degree-D RMFE [EHLXY23]

(1) There always exists an $(m, d ; D)$-RMFE (ϕ, ψ) over Galois ring $\operatorname{GR}\left(p^{k}, r\right)$ with $\phi(\mathbf{1})=1$.
(2) Let (ϕ, ψ) be an $(m, d ; D)$-RMFE over Galois ring $\operatorname{GR}\left(p^{k}, r\right)$, with $\phi(\mathbf{1})=1$. We have

$$
\operatorname{GR}\left(p^{k}, r d\right)=\operatorname{Ker}(\psi) \oplus \operatorname{Im}(\phi)
$$

Moreover, $\left.\psi\right|_{\operatorname{Im}(\phi)}$ is a bijection.
(3) There exists a family of $(m, d ; D)$-RMFEs over $\mathbb{Z}_{2^{k}}$ for all $k \geq 1$ with

$$
\lim _{m \rightarrow \infty} \frac{d}{m}=\frac{1+2 D}{3}\left(D+\frac{D\left(3+1 /\left(2^{D}-1\right)\right)}{2^{D+1}-1}\right)=\mathcal{O}\left(D^{2}\right)
$$

DARE of arithmetic branching programs

$$
\text { Example: } f(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\operatorname{det}\left(\begin{array}{ccc}
y_{1} & y_{2} & 0 \\
-1 & 0 & x_{1} \\
0 & -1 & x_{2}
\end{array}\right) \text {, }
$$

DARE of arithmetic branching programs

Example: $f(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\operatorname{det}\left(\begin{array}{ccc}y_{1} & y_{2} & 0 \\ -1 & 0 & x_{1} \\ 0 & -1 & x_{2}\end{array}\right)$,

$$
\begin{aligned}
& M:=\underbrace{\left(\begin{array}{ccc}
1 & a_{1} & a_{2} \\
0 & 1 & a_{3} \\
0 & 0 & 1
\end{array}\right)}_{A} \cdot \underbrace{\left(\begin{array}{ccc}
y_{1} & y_{2} & 0 \\
-1 & 0 & x_{1} \\
0 & -1 & x_{2}
\end{array}\right)}_{L(x, y)} \cdot \underbrace{\left(\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
0 & 0 & 1
\end{array}\right)}_{B} \\
& =\left(\begin{array}{cc}
y_{1}-a_{1} & y_{2}-a_{2} \\
-1 & -a_{3} x_{1}+a_{2} x_{2}+b_{1} y_{1}+b_{2} y_{2}-b_{2} a_{2} \\
x_{1}+a_{3} x_{2}-b_{1}-a_{3} b_{2} \\
0 & -1
\end{array}\right)
\end{aligned}
$$

DARE of arithmetic branching programs

Example: $f(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\operatorname{det}\left(\begin{array}{ccc}y_{1} & y_{2} & 0 \\ -1 & 0 & x_{1} \\ 0 & -1 & x_{2}\end{array}\right)$,

$$
\begin{aligned}
& M:=\underbrace{\left(\begin{array}{ccc}
1 & a_{1} & a_{2} \\
0 & 1 & a_{3} \\
0 & 0 & 1
\end{array}\right)}_{A} \cdot \underbrace{\left(\begin{array}{ccc}
y_{1} & y_{2} & 0 \\
-1 & 0 & x_{1} \\
0 & -1 & x_{2}
\end{array}\right)}_{L(x, y)} \cdot \underbrace{\left(\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
0 & 0 & 1
\end{array}\right)}_{B} \\
& =\left(\begin{array}{ccc}
y_{1}-a_{1} & y_{2}-a_{2} & a_{1} x_{1}+a_{2} x_{2}+b_{1} y_{1}+b_{2} y_{2}-b_{2} a_{2} \\
-1 & -a_{3} & x_{1}+a_{3} x_{2}-b_{1}-a_{3} b_{2} \\
0 & -1 & x_{2}-b_{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
y_{1}-a_{1} & y_{2}-a_{2} & a_{1} x_{1}+c_{1}+a_{2} x_{2}+b_{1} y_{1}+b_{2} y_{2}-b_{2} a_{2}-c_{1} \\
-1 & -a_{3} & x_{1}+c_{2}+a_{3} x_{2}-b_{1}-a_{3} b_{2}-c_{2} \\
0 & -1 & x_{2}-b_{2}
\end{array}\right)
\end{aligned}
$$

- $\operatorname{det}(M)=\operatorname{det}(A L(\boldsymbol{x}, \boldsymbol{y}) B)=\operatorname{det}(L(\boldsymbol{x}, \boldsymbol{y}))=f(\boldsymbol{x}, \boldsymbol{y})$.
- M decomposes into linear functions of x_{1}, x_{2}.

Combine DARE with RMFE

Goal: Jointly compute $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$, where f is an arithmetic branching program over $\mathbb{Z}_{2^{k}}$.
$\Longrightarrow m$ DAREs, $M_{i}:=A_{i} L\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) B_{i}, i \in[m]$, where $L(\cdot, \cdot)$ is defined over $\mathbb{Z}_{2^{k}}$.

Combine DARE with RMFE

Goal: Jointly compute $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$, where f is an arithmetic branching program over $\mathbb{Z}_{2^{k}}$.
$\Longrightarrow m$ DAREs, $M_{i}:=A_{i} L\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) B_{i}, i \in[m]$, where $L(\cdot, \cdot)$ is defined over $\mathbb{Z}_{2^{k}}$.
Let (ϕ, ψ) be an ($m, d ; 3$)-RMFE over $\mathbb{Z}_{2^{k}}$.
i) Receiver computes $\boldsymbol{X}:=\phi\left(x_{1}, \ldots, x_{m}\right)$.
ii) Sender computes $A:=\phi\left(A_{1}, \ldots, A_{m}\right), B:=\phi\left(B_{1}, \ldots, B_{m}\right), \boldsymbol{Y}:=\phi\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right)$.

Combine DARE with RMFE

Goal: Jointly compute $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$, where f is an arithmetic branching program over $\mathbb{Z}_{2^{k}}$.
$\Longrightarrow m$ DAREs, $M_{i}:=A_{i} L\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) B_{i}, i \in[m]$, where $L(\cdot, \cdot)$ is defined over $\mathbb{Z}_{2^{k}}$.
Let (ϕ, ψ) be an $(m, d ; 3)$-RMFE over $\mathbb{Z}_{2^{k}}$.
i) Receiver computes $\boldsymbol{X}:=\phi\left(x_{1}, \ldots, x_{m}\right)$.
ii) Sender computes $A:=\phi\left(A_{1}, \ldots, A_{m}\right), B:=\phi\left(B_{1}, \ldots, B_{m}\right), \boldsymbol{Y}:=\phi\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right)$.

- ϕ, ψ are $\mathbb{Z}_{2^{k}}$-linear,

$$
\psi(L(\boldsymbol{X}, \boldsymbol{Y}))=\left(L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)\right)
$$

Combine DARE with RMFE

Goal: Jointly compute $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$, where f is an arithmetic branching program over $\mathbb{Z}_{2^{k}}$. $\Longrightarrow m$ DAREs, $M_{i}:=A_{i} L\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) B_{i}, i \in[m]$, where $L(\cdot, \cdot)$ is defined over $\mathbb{Z}_{2^{k}}$. Let (ϕ, ψ) be an ($m, d ; 3$)-RMFE over $\mathbb{Z}_{2^{k}}$.
i) Receiver computes $\boldsymbol{X}:=\phi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)$.
ii) Sender computes $A:=\phi\left(A_{1}, \ldots, A_{m}\right), B:=\phi\left(B_{1}, \ldots, B_{m}\right), \boldsymbol{Y}:=\phi\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right)$.

- ϕ, ψ are $\mathbb{Z}_{2^{k}}$-linear,

$$
\psi(L(\boldsymbol{X}, \boldsymbol{Y}))=\left(L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)\right)
$$

- Let $M:=A \cdot L(\boldsymbol{X}, \boldsymbol{Y}) \cdot B$,

$$
\begin{aligned}
\psi(M) & =\psi(A \cdot L(\boldsymbol{X}, \boldsymbol{Y}) \cdot B) \\
& =\psi\left(\phi\left(A_{1}, \ldots, A_{m}\right) \cdot L\left(\phi\left(x_{1}, \ldots, \boldsymbol{x}_{m}\right), \phi\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right)\right) \cdot \phi\left(B_{1}, \ldots, B_{m}\right)\right) \\
& =(\underbrace{A_{1} \cdot L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \cdot B_{1}}_{M_{1}}, \ldots, \underbrace{A_{m} \cdot L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right) \cdot B_{m}}_{M_{m}}) .
\end{aligned}
$$

Combine DARE with RMFE (continue)

$$
\psi(M)=(\underbrace{A_{1} \cdot L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \cdot B_{1}}_{M_{1}}, \ldots, \underbrace{A_{m} \cdot L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right) \cdot B_{m}}_{M_{m}})
$$

iii) Receiver learns M by calling an ideal functionality of VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
iv) Receiver then computes $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$ from $\psi(M)$.

Combine DARE with RMFE (continue)

$$
\psi(M)=(\underbrace{A_{1} \cdot L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \cdot B_{1}}_{M_{1}}, \ldots, \underbrace{A_{m} \cdot L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right) \cdot B_{m}}_{M_{m}})
$$

iii) Receiver learns M by calling an ideal functionality of VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
iv) Receiver then computes $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$ from $\psi(M)$.

- But M contains more information than $\psi(M)$.

Essentially, the leakage is M's projection on $\operatorname{Ker}(\psi)$.

- Recall that $\operatorname{GR}\left(2^{k}, d\right)=\operatorname{Im}(\phi) \oplus \operatorname{Ker}(\psi)$, and $\left.\psi\right|_{\operatorname{Im}(\phi)}$ is a bijection.

Combine DARE with RMFE (continue)

$$
\psi(M)=(\underbrace{A_{1} \cdot L\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \cdot B_{1}}_{M_{1}}, \ldots, \underbrace{A_{m} \cdot L\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right) \cdot B_{m}}_{M_{m}})
$$

iii) Receiver learns M by calling an ideal functionality of VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
iv) Receiver then computes $f\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \ldots, f\left(\boldsymbol{x}_{m}, \boldsymbol{y}_{m}\right)$ from $\psi(M)$.

- But M contains more information than $\psi(M)$.

Essentially, the leakage is M's projection on $\operatorname{Ker}(\psi)$.

- Recall that $\operatorname{GR}\left(2^{k}, d\right)=\operatorname{Im}(\phi) \oplus \operatorname{Ker}(\psi)$, and $\left.\psi\right|_{\operatorname{Im}(\phi)}$ is a bijection.
iii) Receiver learns $M^{\prime}=M+C$ by calling an ideal functionality of VOLE over $\operatorname{GR}\left(2^{k}, d\right)$, where C is a upper triangle matrix with each entry sampled uniformly at random from $\operatorname{Ker}(\psi)$.

$$
\psi(M+C)=\psi(M)+\psi(C)=\psi(M)
$$

Achieve Malicious Security

Malicious Adversary has following two kinds of cheating behaviors.
(1) Deviating from DARE

- Only Sender computes DARE.
- Adapt methods from [DIO21] (details omitted in this talk).
(2) Deviating from RMFE
- Both Sender and Receiver compute RMFE.
- How to force both parties to follow RMFE in a statistical way, without increase of round complexity?
[DIO21] Samuel Dittmer, Yuval Ishai, Rafail Ostrovsky. Line-Point Zero Knowledge and Its Applications. In ITC 2021.

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$\stackrel{\text { Sender }}{\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell}}$

$\mathcal{F}_{\text {VOLE }}$

> Receiver $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}}$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\boldsymbol{b}:=\phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\$}{\leftarrow} \operatorname{Ker}(\psi)^{\ell}
\end{gathered}
$$

$\mathcal{F}_{\text {VOLE }}$

Receiver $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}}$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi \phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\left.\boldsymbol{b}:=\phi \phi \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\operatorname{Ker}(\psi)^{\ell}}{ }
\end{gathered}
$$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\boldsymbol{b}:=\phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\$}{\leftarrow} \operatorname{Ker}(\psi)^{\ell}
\end{gathered}
$$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

Receiver
$\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}}$

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\boldsymbol{b}:=\phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\$}{\leftarrow} \operatorname{Ker}(\psi)^{\ell}
\end{gathered}
$$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi \phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\left.\boldsymbol{b}:=\phi \phi \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\operatorname{Ker}(\psi)^{\ell}}{ }
\end{gathered}
$$

$$
\begin{gathered}
\text { Receiver } \\
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}} \\
\alpha:=\phi\left(\alpha_{1}, \ldots, \alpha_{m}\right) \\
\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right):=\psi(\boldsymbol{v})
\end{gathered}
$$

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\boldsymbol{b}:=\phi \phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\operatorname{Ker}(\psi)^{\ell}}{\leftarrow}
\end{gathered}
$$

$$
\begin{gathered}
\text { Receiver } \\
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}} \\
\alpha:=\phi\left(\alpha_{1}, \ldots, \alpha_{m}\right) \\
\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right):=\psi(\boldsymbol{v})
\end{gathered}
$$

- Correctness: easy to verify that $\boldsymbol{v}_{i}=\boldsymbol{a}_{i} \cdot \alpha_{i}+\boldsymbol{b}_{i}$, for $i \in[m]$.

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \\
\boldsymbol{b}:=\phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r} \stackrel{\operatorname{Ker}(\psi)^{\ell}}{\leftarrow}
\end{gathered}
$$

Receiver

$$
\begin{gathered}
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}} \\
\alpha:=\phi\left(\alpha_{1}, \ldots, \alpha_{m}\right) \\
\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right):=\psi(\boldsymbol{v})
\end{gathered}
$$

- Correctness: easy to verify that $\boldsymbol{v}_{i}=\boldsymbol{a}_{i} \cdot \alpha_{i}+\boldsymbol{b}_{i}$, for $i \in[m]$.
- Security: semi-honest \checkmark, malicious X.

A simple case for illustration

Goal: Construct VOLE over $\mathbb{Z}_{2^{k}}$ from VOLE over $\operatorname{GR}\left(2^{k}, d\right)$.
Let (ϕ, ψ) be an $(m, d ; 2)$ RMFE over $\mathbb{Z}_{2^{k}}$.

$$
\begin{gathered}
\text { Sender } \\
\boldsymbol{a}_{1}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{b}_{m} \in \mathbb{Z}_{2^{k}}^{\ell} \\
\boldsymbol{a}:=\phi\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right)^{\prime} \\
\boldsymbol{b}:=\phi\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right) \\
\boldsymbol{r}
\end{gathered}
$$

Receiver

$$
\begin{gathered}
\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}_{2^{k}} \\
\alpha:=\phi\left(\alpha_{1}, \ldots, \alpha_{m}\right) \\
\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right):=\psi(\boldsymbol{v})
\end{gathered}
$$

- Correctness: easy to verify that $\boldsymbol{v}_{i}=\boldsymbol{a}_{i} \cdot \alpha_{i}+\boldsymbol{b}_{i}$, for $i \in[m]$.
- Security: semi-honest $\sqrt{ }$, malicious X.

When Sender (Receiver) is corrupted, the simulator can extract $\boldsymbol{a}_{i}\left(\alpha_{i}\right)$ for $i \in[m]$, if and only if $\boldsymbol{a} \in \operatorname{Im}(\phi)^{\ell}(\alpha \in \operatorname{Im}(\phi))$.

Non-Malleable RMFE

Definition (Degree-D Non-Malleable RMFE)

Let $\operatorname{GR}\left(p^{k}, r\right)$ be a Galois ring and κ be the statistical security parameter. A pair of maps (ϕ, ψ) is called an ($m, d ; D$)-NM-RMFE over $\operatorname{GR}\left(p^{k}, r\right)$, if it has the following properties:
(1) $\phi: \operatorname{GR}\left(p^{k}, r\right)^{m} \times\{0,1\}^{O(\kappa)} \rightarrow \mathrm{GR}\left(p^{k}, r d\right)$,
$\psi: \operatorname{GR}\left(p^{k}, r d\right) \rightarrow \operatorname{GR}\left(p^{k}, r\right)^{m} \cup\{\perp\}$ are $\operatorname{GR}\left(p^{k}, r\right)$-linear maps, satisfying

$$
\psi\left(\phi\left(x_{1}, r_{1}\right) \cdot \phi\left(x_{2}, r_{2}\right) \cdots \phi\left(x_{D}, r_{D}\right)\right)=x_{1} * x_{2} * \cdots * x_{D}
$$

for any $x_{1}, \ldots, x_{D} \in \operatorname{GR}\left(p^{k}, r\right)^{m}$ and $r_{1}, \ldots, r_{D} \stackrel{\$}{\leftarrow}\{0,1\}^{\kappa}$.
(2) if $Y \notin \operatorname{Im}(\phi)$, there exists a constant $\boldsymbol{y} \in \operatorname{GR}\left(p^{k}, r\right)^{m}$, such that for any $x_{1}, \ldots, x_{D-1} \in \operatorname{GR}\left(p^{k}, r\right)^{m}$, we have

$$
\psi\left(\phi\left(x_{1}\right) \cdots \phi\left(x_{D-1}\right) \cdot Y\right)=x_{1} * \cdots * x_{D-1} * \boldsymbol{y}+\boldsymbol{\delta}
$$

where $\boldsymbol{\delta} \sim \mathcal{D}_{x, Y} \stackrel{s}{\approx} \mathcal{D}_{Y}$ and \mathcal{D}_{Y} is a PPT-sampleable distribution over $\operatorname{GR}\left(p^{k}, r\right)^{m} \cup\{\perp\}$ determined only by Y. We use the convention that for any $\boldsymbol{z} \in \operatorname{GR}\left(p^{k}, r\right)^{m}, \boldsymbol{z}+\perp=\perp$ to make ψ well-defined.

Construction of NM-RMFE: 1

High-level idea: "structured and randomized" RMFE for Non-Malleability.
In more detail, our construction consists of 2 layers of RMFEs: a degree- D RMFE and a degree- D extended RMFE.

Definition (Degree- D extended RMFE)

Let $\mathbb{Z}_{p^{k}}=\mathbb{Z} / p^{k} \mathbb{Z}$ be a modulo ring, $d>n>m \geq 1$ and $D \geq 1$ be integers. A pair of maps (ϕ, ψ) is called an $(m, n, d ; D)$-extended RMFE over $\mathbb{Z}_{p^{k}}$ if $\phi: \mathbb{Z}_{p^{k}}^{m} \times \operatorname{GR}\left(p^{k}, n\right) \rightarrow \operatorname{GR}\left(p^{k}, d\right)$ and $\psi: \operatorname{GR}\left(p^{k}, d\right) \rightarrow \mathbb{Z}_{p^{k}}^{m} \times \operatorname{GR}\left(p^{k}, n\right)$ are two $\mathbb{Z}_{p^{k}}$-linear maps satisfying

$$
\psi\left(\phi\left(x_{1}, y_{1}\right) \cdot \phi\left(x_{2}, y_{2}\right) \cdots \phi\left(x_{D}, y_{D}\right)\right)=\left(x_{1} * x_{2} * \cdots * x_{D}, y_{1} y_{2} \cdots y_{D}\right)
$$

for any $\boldsymbol{x}_{i} \in \mathbb{Z}_{p^{k}}^{m}, y_{i} \in \operatorname{GR}\left(p^{k}, n\right), i \in[D]$.

Construction of NM-RMFE: 2

- Let $\left(\phi_{1}, \psi_{1}\right)$ be an $(m+\ell, n ; D)$-RMFE over $\mathbb{Z}_{p^{k}}$.
- Let $\left(\phi_{2}, \psi_{2}\right)$ be an $(m+\ell, n, d ; D)$-extended RMFE over $\mathbb{Z}_{p^{k}}$.

Construction of NM-RMFE: 2

- Let $\left(\phi_{1}, \psi_{1}\right)$ be an $(m+\ell, n ; D)$-RMFE over $\mathbb{Z}_{p^{k}}$.
- Let $\left(\phi_{2}, \psi_{2}\right)$ be an $(m+\ell, n, d ; D)$-extended RMFE over $\mathbb{Z}_{p^{k}}$.

We construct an ($m, d ; D$)-NM-RMFE (ϕ, ψ) over $\mathbb{Z}_{p^{k}}$ as follows.

- $\phi: \mathbb{Z}_{p^{k}}^{m} \rightarrow \operatorname{GR}\left(p^{k}, d\right)$ is an $\mathbb{Z}_{p^{k}}$-linear map, such that

$$
\phi: \boldsymbol{x} \mapsto \phi_{2}\left(\boldsymbol{x} \| \boldsymbol{r}, \phi_{1}(\boldsymbol{x} \| \boldsymbol{r})\right), \text { where } \boldsymbol{r} \stackrel{\mathbb{\$}}{\leftarrow} \mathbb{Z}_{p^{k}}^{\ell}
$$

Construction of NM-RMFE: 2

- Let $\left(\phi_{1}, \psi_{1}\right)$ be an $(m+\ell, n ; D)$-RMFE over $\mathbb{Z}_{p^{k}}$.
- Let $\left(\phi_{2}, \psi_{2}\right)$ be an $(m+\ell, n, d ; D)$-extended RMFE over $\mathbb{Z}_{p^{k}}$.

We construct an ($m, d ; D$)-NM-RMFE (ϕ, ψ) over $\mathbb{Z}_{p^{k}}$ as follows.

- $\phi: \mathbb{Z}_{p^{k}}^{m} \rightarrow \operatorname{GR}\left(p^{k}, d\right)$ is an $\mathbb{Z}_{p^{k}}$-linear map, such that

$$
\phi: \boldsymbol{x} \mapsto \phi_{2}\left(\boldsymbol{x} \| \boldsymbol{r}, \phi_{1}(\boldsymbol{x} \| \boldsymbol{r})\right), \text { where } \boldsymbol{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p^{k}}^{\ell}
$$

- For a $Y \in \operatorname{GR}\left(p^{k}, d\right)$, compute $(\boldsymbol{y} \| \boldsymbol{s}, e):=\psi_{2}(Y)$, where $\boldsymbol{y} \in \mathbb{Z}_{p^{k}}^{m}$, $\boldsymbol{s} \in \mathbb{Z}_{p^{k}}^{\ell}$ and $e \in \operatorname{GR}\left(p^{k}, n\right)$.
Then $\psi: \operatorname{GR}\left(p^{k}, d\right) \rightarrow \mathbb{Z}_{p^{k}}^{m}$ is defined as follows:

$$
\psi(Y)=\left\{\begin{array}{l}
\boldsymbol{y}, \text { if } \psi_{1}(e)=(\boldsymbol{y} \| \boldsymbol{s}) \\
\perp, \text { otherwise }
\end{array}\right.
$$

Summary

Semi-honest NISC over $\mathbb{Z}_{2^{k}}$

- A NISC/VOLE for branching programs over $\mathbb{Z}_{2^{k}}$ from combining DARE with RMFE.

Non-Malleable RMFE

- Put forward the notion of Non-Malleable RMFE.
- Show a Non-Malleable RMFE construction, which allows for constructing reusable NISC/VOLE over $\mathbb{Z}_{2^{k}}$.

Summary

Semi-honest NISC over $\mathbb{Z}_{2^{k}}$

- A NISC/VOLE for branching programs over $\mathbb{Z}_{2^{k}}$ from combining DARE with RMFE.

Non-Malleable RMFE

- Put forward the notion of Non-Malleable RMFE.
- Show a Non-Malleable RMFE construction, which allows for constructing reusable NISC/VOLE over $\mathbb{Z}_{2^{k}}$.

Open questions

- When $m \rightarrow \infty$, there exist ($m, d ; 2$)-NM-RMFEs over $\mathbb{Z}_{2^{k}}$ with $\frac{d}{m} \rightarrow 29.13 ;$ there exist $(m, d ; 3)$-NM-RMFEs over $\mathbb{Z}_{2^{k}}$ with $\frac{d}{m} \rightarrow 80.15$.
\Longrightarrow Can we construct NM-RMFE with better asymptotic efficiency?
- Our NISC/VOLE is for branching programs over $\mathbb{Z}_{2^{k}}$.
\Longrightarrow Can we construct NISC for any circuit over $\mathbb{Z}_{2^{k}}$?
Full version on ePrint: https://eprint.iacr.org/2023/1363.

