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f is a function defined over the ring Z,«(i.e. Z/2*Z).

@ data types and computations of real-life computer programs are defined
over Zys2 or Zioes.

@ protocols based on Z,« arithmetic are easier and faster to implement.
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Paradigms for Constructing Reusable NISC

@ Fully Homomorphic Encryption (FHE)

@ small communication complexity,
large computation complexity due to bootstrapping.
o existence of FHE over Z« ?

@ Garble Circuit and Oblivious Transfer (OT)

o trade-off of communication and computation,
achieve reusability incurs additional overhead.
@ GC is a computational randomized encoding for Boolean circuits.

© Decomposable Affine Randomized Encoding ( ) and Vector
Oblivious Linear Function Evaluation ( )

o “free” reusability.
o [IK02] there exists a perfect DARE for arithmetic NC' circuits or
arithmetic branching programs. v

Q [IKO2] Yuval Ishai, Eyal Kushilevitz. Perfect Constant-Round Secure Computation via Perfect Randomizing
Polynomials. In ICALP 2002.
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Challenges for working over Z«

Goal: Construct statistical reusable NISC/VOLE for NC* circuits over Z.
Challenges:

The algebraic structure of Z,« is bad: half of Z,« are zero divisors.
This results in that, e.g.,

@ polynomial interpolation. X
@ random linear combination makes no sense (constant soundness).

—> In most cases, naively instantiating protocols designed for a large field with
Zyx leads to a constant soundness error.

Solutions:
There are two mainstream mechanisms in the context of MPC.

@ the SPDZ,« idea: use a larger ring Zyi+s. Does it work 7

@ the idea: use a large ring extension of Z,«, that has a small
fraction of zero divisors. v/
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Construction Overview

Roadmap:
@ Construct NISC based on Galois ring arithmetic, which
simulates the computation of arithmetic branching programs over Zx.

o Apply the Reverse Multiplicative Friendly Embedding (RMFE)
technique for amortization.

@ Lift semi-honest security to

@ Design a new technique, Non-Malleable RMFE, to deal with the
issue of introducing RMFE.
o Adapt existing methods from Galois field to Galois ring.
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Definition (Galois ring)

Let p be a prime, and k,d > 1 be integers. Let f(X) € Z,[X] be a monic
polynomial of degree d such that f(X) := f(X) mod p is irreducible over FF,.
A Galois ring over Z,« of degree d denoted by GR(p", d) is a ring extension
L [X]/(f(X)) of Z k.
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Galois ring

Definition (Galois ring)

Let p be a prime, and k,d > 1 be integers. Let f(X) € Z,[X] be a monic
polynomial of degree d such that f(X) := f(X) mod p is irreducible over FF,.
A Galois ring over Z,« of degree d denoted by GR(p", d) is a ring extension
L [X]/(f(X)) of Z k.

@ if d =1, GR(p*,d) = Z; if k =1, GR(p*,d) =F 0.

o GR(p", d)/(p) = Fyu.
@ “Schwatz-Zipple" Lemma for Galois ring:
For any nonzero degree-r polynomial f(x) over GR(p, d),

Pr[f(a) -0 ‘ a & Gr(p", d)} <



Preliminaries
[e] Tele]

Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, k,r,m,d,D > 1 be integers A pair (¢, ) is called an
(m, d; D) RMFE over GR(p r)if ¢: GR(p r)™ — GR(p*, rd) and
1 1 GR(p*, rd) — GR(p*, r)™ are two GR(p", r)-linear maps such that

U(p(x1) - d(x2) - - G(xp)) = X1 x X2 % - - % Xp (1)

for all xi, Xa, ..., xp € GR(p”, r)™, where * denotes the entry-wise multiplication
operation.
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Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, k,r,m,d, D > 1 be integers. A pair (¢,) is called an
(m, d; D)-RMFE over GR(p, r) if ¢ : GR(p", r)" — GR(p", rd) and

1 1 GR(p*, rd) — GR(p*, r)™ are two GR(p", r)-linear maps such that

Y(e(x) - d(x2) - - - p(xp)) = X1k x2 % - - % XD (1)
for all xi, Xa, ..., xp € GR(p”, r)™, where * denotes the entry-wise multiplication
operation.

Intuitions:

@ ¢ is a linear map with limited multiplication capacity.
@ RMFE relates arithmetic operations of GR(p*, r)™ and GR(p*, rd).

@ Above ¢, can be naturally extended to establish a matrix multiplication
relation for matrices over GR(p*, r) and GR(p*, rd).
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Properties of Degree-D RMFE [EHLXY23|

@ There always exists an (m, d; D)-RMFE (&, ) over Galois ring GR(p*, r)
with ¢(1) = 1.

@ Let (¢,%) be an (m, d; D)-RMFE over Galois ring GR(p*, r), with
¢(1) = 1. We have

GR(p", rd) = Ker() @ Im(¢).

Moreover, 1|im(q) is a bijection.
© There exists a family of (m, d; D)-RMFEs over Z,« for all k > 1 with

D(3+1/(2° - 1))) _ 0(92).

d 1+2D
B 2D+1 1

lim — (D+

m—oco m 3

& [EHLXY23] Daniel Escudero, Cheng Hong, Honggqing Liu, Chaoping Xing, Chen Yuan. Degree-D Reverse
Multiplication-Friendly Embeddings: Constructions and Applications. In Asiacrypt 2023.
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DARE of arithmetic branching programs

i y2 O
Example: f(x,y) = (x,y)=det | -1 0 x|,
0 -1 X2
1 dp az 1 0 bl
M= 10 1 a3 01 b
0 0 1 0 0 1
A L(x,y) B
yi—a yo—ax arxi+axe+ biyi+ by — bray
= -1 —a3 X1+ azxo — by — a3by
0 -1 Xo — by
yi—ar ya—a aixata + axo+ biyi + boys — bray —
= -1 —as X1+ + asxo — by —azb, — &
0 -1 xa — by

@ det(M) = det(AL(x,y)B) = det(L(x,y)) = f(x,y).

@ M decomposes into linear functions of xi, x2.
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= m DAREs, M; := A;L(x;, yi)Bi, i € [m], where L(-,") is defined over Z«.
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Combine DARE with RMFE

Goal: Jointly compute f(x1,y1), ..., f(Xm, ¥m), where f is an arithmetic
branching program over Z«.

= m DAREs, M; := A;L(x;, yi)Bi, i € [m], where L(-,") is defined over Z«.
Let (¢, %) be an (m, d; 3)-RMFE over Z.

i) Receiver computes X = ¢(x1, ..., Xm).
ii) Sender computes A := ¢(A1,...,Am), B = ¢(B1,...; Bm), Y = d(¥1, ..., ¥m)-
@ ¢, are Zyk-linear,
'IZ)(L(Xv Y)) = (L(X17y1)7 (AAs] L(x"'??ym))'
o Let M:=A-L(X,Y)-B,

w(M) = v( A - [EEY) - B)
= ol ) - RG] (5:....5.))
= (A [ 5 A SR )

M Mm
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Combine DARE with RMFE (continue)

iii) Receiver learns M by calling an ideal functionality of VOLE over GR(2*, d).
iv) Receiver then computes f(x1,y1), ..., f(Xm, ym) from (M).
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Combine DARE with RMFE (continue)

iii) Receiver learns M by calling an ideal functionality of VOLE over GR(2*, d).
iv) Receiver then computes f(x1,y1), ..., f(Xm, ym) from (M).

@ But M contains more information than (M).
Essentially, the leakage is M's projection on Ker(v)).

@ Recall that GR(2¥, d) = Im(¢) ® Ker(t)), and |im(¢) is a bijection.
. Receiver learns M = M + C by calling an ideal functionality of VOLE

over GR(Q"7 d), where C is a upper triangle matrix with each entry sampled
uniformly at random from Ker(2)). v

Y(M + C) = (M) +¢(C) = p(M).
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Achieve Malicious Security

Malicious Adversary has following two kinds of cheating behaviors.
@ Deviating from DARE

@ Only Sender computes DARE.
o Adapt methods from [DIO21] (details omitted in this talk).

@ Deviating from RMFE

o Both Sender and Receiver compute RMFE.
@ How to force both parties to follow RMFE in a way,
without increase of ?

Q [DIO21] Samuel Dittmer, Yuval Ishai, Rafail Ostrovsky. Line-Point Zero Knowledge and Its Applications. In
ITC 2021.
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A simple case for illustration

Goal: Construct VOLE over Z,« from VOLE over GR(2¥, d).
Let (¢, %) be an (m, d; 2) RMFE over Z.

Zpi JFVOLE

Sender p Receiver
317b17---7am7bm6Z2k a1,~~~,am€ZQk
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A simple case for illustration

Goal: Construct VOLE over Z,« from VOLE over GR(2¥, d).
Let (¢, %) be an (m, d; 2) RMFE over Z.

CP ab =b+r e
% %
i i FVOLE
Sender p Receiver
317b17---7am7bm6Z2k 0l1,~.~,am€Z2k
a:=¢(a,...,am) a=¢(a1,...,am)

b:= (bl""vbm)
r & Ker(v)*
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A simple case for illustration

Goal: Construct VOLE over Z,« from VOLE over GR(2¥, d).
Let (¢, %) be an (m, d; 2) RMFE over Z.

p a,b’:b—i-r (6%
C) FVOLE vi—a-a+b

X=aoxa,
Sender

Receiver
317b17---7am7bmezgk 0l1,~.~,am€Z2k
a:=¢(a,...,am) o= ¢(a1, ..., am)
b:= (bl""vbm) (Vl"'
r & Ker(v)*

L, Vm) =

(v)
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A simple case for illustration
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@ Correctness: easy to verify that v; = a; - aj + b;, for i € [m]. v
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A simple case for illustration

Goal: Construct VOLE over Z,« from VOLE over GR(2*, d).
Let (¢, %) be an (m, d; 2) RMFE over Z«.

ép ab =b+r e
N -FVOLE vi=a-a+b
L=daro {
Sender Receiver
a1,b1,...,am,bm€Z§k a1y vy Om € Lok
a:=¢(a,...,am) a:=¢(aq,...,am)
b= ¢(b1,...,bm) (viy ..., vm) = (v)

rd Ker ()¢

@ Correctness: easy to verify that v; = a; - o + by, for i € [m]. v/
@ Security: semi-honest v, malicious X

When Sender (Receiver) is corrupted, the simulator can extract a; () for
i € [m], if and only if a € Tm(¢))" (a € Tm(¢)).
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Non-Malleable RMFE

Definition (Degree-D Non-Malleable RMFE)

Let GR(p¥, r) be a Galois ring and x be the statistical security parameter A
pair of maps (¢,) is called an (m, d; D)-NM-RMFE over GR(p*, r), if it has
the following properties:
Q ¢ :GR(p", r)™ x {0,1}°09) — GR(p*, rd),
¥ : GR(p*, rd) — GR(p*, r)™ U { L} are GR(p*, r)-linear maps, satisfying

Y(P(x1, 1) - (X2, r2) - - - $(xp, D)) = X1 * X2 % - - - % Xp,

for any xi,...,xp € GR(p*,r)™ and 1, ..., rp & {0,1}".

@ if Y ¢ Im(¢), there exists a constant y € GR(p¥, r)™, such that for any
X1,...,Xp—1 € GR(p*, r)™, we have

Y(d(x1) - - p(xp-1) - Y) =x1 %k xp_1 %y + 6,

where § ~ D, y = Dy and Dy is a PPT-sampleable distribution over
GR(p*, r)™ U { L} determined only by Y. We use the convention that for
any z € GR(p*, r)™, z+ L = L to make ¢ well-defined.
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Construction of NM-RMFE: 1

High-level idea: “structured and randomized” RMFE for Non-Malleability.

In more detail, our construction consists of 2 layers of RMFEs:
a degree-D RMFE and a degree-D extended RMFE.

Definition (Degree-D extended RMFE)

Let Z« = 7./p*7Z be a modulo ring, d > n> m > 1 and D > 1 be integers. A
pair of maps (¢,v) is called an (m, n, d; D)-extended RMFE over Z  if

¢:Zg x GR(p¥, n) — GR(p*, d) and ¥ : GR(p*, d) — Zy x GR(p*, n) are two
Zyk-linear maps satisfying

Y(d(x, y1)-p(x2, y2 ) - d(xp, yp )) = (x1 ¥ X2 %---*Xp, y1y2---yp ),

for any xi € Z7, yi € GR(p*, n), i € [D].
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- Let (¢1,%1) be an (m + ¢, n; D)-RMFE over Z .
- Let (¢2,12) be an (m + £, n, d; D)-extended RMFE over Z .
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- Let (¢1,%1) be an (m + ¢, n; D)-RMFE over Z .
- Let (¢2,12) be an (m + £, n, d; D)-extended RMFE over Z .

We construct an (m, d; D)-NM-RMFE (¢, 1) over Z as follows.

® ¢: L% — GR(p*, d) is an Z-linear map, such that

¢ x v do(x|r, u(x||r)) , where r & Z°,.
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Construction of NM-RMFE: 2

- Let (¢1,%1) be an (m + ¢, n; D)-RMFE over Z .
- Let (¢2,12) be an (m + £, n, d; D)-extended RMFE over Z .

We construct an (m, d; D)-NM-RMFE (¢, 1) over Z as follows.
® ¢: L% — GR(p*, d) is an Z-linear map, such that
¢ x v do(x|r, u(x||r)) , where r & Z°,.
@ For a Y € GR(p*, d), compute (y|s,e) :=(Y) , where y € Z%,
s € Zf;k and e € GR(p¥, n).
Then ¢ : GR(p*, d) — L7 is defined as follows:

oY) = { y, if ta(e) = (vlls) .

1, otherwise.
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@ A NISC/VOLE for branching programs over Z,« from combining DARE
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Non-Malleable RMFE
@ Put forward the notion of Non-Malleable RMFE.

@ Show a Non-Malleable RMFE construction, which allows for constructing
reusable NISC/VOLE over Z.
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Summary

Semi-honest NISC over Z,«

@ A NISC/VOLE for branching programs over Z,« from combining DARE
with RMFE.

Non-Malleable RMFE
@ Put forward the notion of Non-Malleable RMFE.

@ Show a Non-Malleable RMFE construction, which allows for constructing
reusable NISC/VOLE over Z.

Open questions

@ When m — oo, there exist (m, d; 2)-NM-RMFEs over Z,« with
4 — 29.13; there exist (m, d; 3)-NM-RMFEs over Z with < — 80.15.

— Can we construct NM-RMFE with better asymptotic efficiency?
@ Our NISC/VOLE is for branching programs over Z«.
= Can we construct NISC for any circuit over Z«?

Full version on ePrint: https://eprint.iacr.org/2023/1363.
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