▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Amortized NISC over \mathbb{Z}_{2^k} from RMFE

Fuchun Lin, Chaoping Xing, Yizhou Yao, Chen Yuan

Shanghai Jiao Tong University

Dec 8, 2023 - Asiacrypt 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reusable Non-Interactive Secure Computation

Reusable NISC: Two-round 2-PC for jointly computing a function f(x, y), where it is safe to reuse the first message of Receiver.

Reusable Non-Interactive Secure Computation

Reusable NISC: Two-round 2-PC for jointly computing a function f(x, y), where it is safe to reuse the first message of Receiver.

- f is a function defined over the ring \mathbb{Z}_{2^k} (i.e. $\mathbb{Z}/2^k\mathbb{Z}$).
- $\bullet\,$ data types and computations of real-life computer programs are defined over $\mathbb{Z}_{2^{32}}$ or $\mathbb{Z}_{2^{64}}.$
- protocols based on \mathbb{Z}_{2^k} arithmetic are easier and faster to implement.

Construction 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Paradigms for Constructing Reusable NISC

Paradigms for Constructing Reusable NISC

- Fully Homomorphic Encryption (FHE)
 - small communication complexity, large computation complexity due to bootstrapping.
 - existence of FHE over \mathbb{Z}_{2^k} ?

Paradigms for Constructing Reusable NISC

- Fully Homomorphic Encryption (FHE)
 - small communication complexity, large computation complexity due to bootstrapping.
 - existence of FHE over \mathbb{Z}_{2^k} ?
- ② Garble Circuit and Oblivious Transfer (OT)
 - trade-off of communication and computation, achieve reusability incurs additional overhead.
 - GC is a computational randomized encoding for Boolean circuits.

Paradigms for Constructing Reusable NISC

- Fully Homomorphic Encryption (FHE)
 - small communication complexity, large computation complexity due to bootstrapping.
 - existence of FHE over \mathbb{Z}_{2^k} ?
- ② Garble Circuit and Oblivious Transfer (OT)
 - trade-off of communication and computation, achieve reusability incurs additional overhead.
 - GC is a computational randomized encoding for Boolean circuits.
- Oecomposable Affine Randomized Encoding (DARE) and Vector Oblivious Linear Function Evaluation (VOLE)
 - "free" reusability.
 - [IK02] there exists a perfect DARE for arithmetic NC¹ circuits or arithmetic branching programs. ✓

Introduction

0000

[IK02] Yuval Ishai, Eyal Kushilevitz. Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials. In ICALP 2002.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Challenges for working over \mathbb{Z}_{2^k}

 $\textbf{Goal:} \text{ Construct statistical reusable NISC/VOLE for } \textbf{NC}^1 \text{ circuits over } \mathbb{Z}_{2^k}.$

Challenges for working over \mathbb{Z}_{2^k}

Goal: Construct statistical reusable NISC/VOLE for \mathbf{NC}^1 circuits over $\mathbb{Z}_{2^k}.$

Challenges:

The algebraic structure of \mathbb{Z}_{2^k} is bad: half of \mathbb{Z}_{2^k} are zero divisors. This results in that, e.g.,

- polynomial interpolation. X
- random linear combination makes no sense (constant soundness).

 \Longrightarrow In most cases, naively instantiating protocols designed for a large field with \mathbb{Z}_{2^k} leads to a constant soundness error.

Challenges for working over \mathbb{Z}_{2^k}

Goal: Construct statistical reusable NISC/VOLE for \mathbf{NC}^1 circuits over $\mathbb{Z}_{2^k}.$

Challenges:

The algebraic structure of \mathbb{Z}_{2^k} is bad: half of \mathbb{Z}_{2^k} are zero divisors. This results in that, e.g.,

- polynomial interpolation. X
- random linear combination makes no sense (constant soundness).

 \Longrightarrow In most cases, naively instantiating protocols designed for a large field with \mathbb{Z}_{2^k} leads to a constant soundness error.

Solutions:

There are two mainstream mechanisms in the context of MPC.

- the SPD \mathbb{Z}_{2^k} idea: use a larger ring $\mathbb{Z}_{2^{k+s}}$. Does it work ?
- the Galois ring idea: use a large ring extension of Z_{2^k}, that has a small fraction of zero divisors. ✓

Construction Overview

Roadmap:

- Construct semi-honest NISC based on Galois ring arithmetic, which simulates the computation of arithmetic branching programs over Z_{2k}.
 - Apply the Reverse Multiplicative Friendly Embedding (RMFE) technique for amortization.
- 2 Lift semi-honest security to malicious security.
 - Design a new technique, Non-Malleable RMFE, to deal with the issue of introducing RMFE.
 - Adapt existing methods from Galois field to Galois ring.

Galois ring

Definition (Galois ring)

Let p be a prime, and $k, d \ge 1$ be integers. Let $f(X) \in \mathbb{Z}_{p^k}[X]$ be a monic polynomial of degree d such that $\overline{f(X)} := f(X) \mod p$ is irreducible over \mathbb{F}_p . A Galois ring over \mathbb{Z}_{p^k} of degree d denoted by $\operatorname{GR}(p^k, d)$ is a ring extension $\mathbb{Z}_{p^k}[X]/(f(X))$ of \mathbb{Z}_{p^k} .

Galois ring

Definition (Galois ring)

Let p be a prime, and $k, d \ge 1$ be integers. Let $f(X) \in \mathbb{Z}_{p^k}[X]$ be a monic polynomial of degree d such that $\overline{f(X)} := f(X) \mod p$ is irreducible over \mathbb{F}_p . A Galois ring over \mathbb{Z}_{p^k} of degree d denoted by $\operatorname{GR}(p^k, d)$ is a ring extension $\mathbb{Z}_{p^k}[X]/(f(X))$ of \mathbb{Z}_{p^k} .

- if d = 1, $\operatorname{GR}(p^k, d) = \mathbb{Z}_{p^k}$; if k = 1, $\operatorname{GR}(p^k, d) = \mathbb{F}_{p^d}$.
- $\operatorname{GR}(p^k,d)/(p) \cong \mathbb{F}_{p^d}.$
- "Schwatz-Zipple" Lemma for Galois ring:
 For any nonzero degree-r polynomial f(x) over GR(p^k, d),

$$\Pr[f(\alpha) = 0 \mid \alpha \stackrel{\$}{\leftarrow} \operatorname{GR}(p^k, d)] \leq rp^{-d}.$$

Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, $k, r, m, d, D \ge 1$ be integers. A pair (ϕ, ψ) is called an (m, d; D)-RMFE over $GR(p^k, r)$ if $\phi : GR(p^k, r)^m \to GR(p^k, rd)$ and $\psi : GR(p^k, rd) \to GR(p^k, r)^m$ are two $GR(p^k, r)$ -linear maps such that

$$\psi(\phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2) \cdots \phi(\mathbf{x}_D)) = \mathbf{x}_1 * \mathbf{x}_2 * \cdots * \mathbf{x}_D$$
(1)

for all $x_1, x_2, ..., x_D \in GR(p^k, r)^m$, where * denotes the entry-wise multiplication operation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reverse Multiplicative Friendly Embedding

Definition (Degree-D RMFE)

Let p be a prime, $k, r, m, d, D \ge 1$ be integers. A pair (ϕ, ψ) is called an (m, d; D)-RMFE over $\operatorname{GR}(p^k, r)$ if $\phi : \operatorname{GR}(p^k, r)^m \to \operatorname{GR}(p^k, rd)$ and $\psi : \operatorname{GR}(p^k, rd) \to \operatorname{GR}(p^k, r)^m$ are two $\operatorname{GR}(p^k, r)$ -linear maps such that

$$\psi(\phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2) \cdots \phi(\mathbf{x}_D)) = \mathbf{x}_1 * \mathbf{x}_2 * \cdots * \mathbf{x}_D$$
(1)

for all $x_1, x_2, ..., x_D \in GR(p^k, r)^m$, where * denotes the entry-wise multiplication operation.

Intuitions:

- $\bullet~\phi$ is a linear map with limited multiplication capacity.
- RMFE relates arithmetic operations of GR(p^k, r)^m and GR(p^k, rd).
- Above φ, ψ can be naturally extended to establish a matrix multiplication relation for matrices over GR(p^k, r) and GR(p^k, rd).

Properties of Degree-D RMFE [EHLXY23]

- There always exists an (m, d; D)-RMFE (φ, ψ) over Galois ring GR(p^k, r) with φ(1) = 1.
- **2** Let (ϕ, ψ) be an (m, d; D)-RMFE over Galois ring $GR(p^k, r)$, with $\phi(\mathbf{1}) = 1$. We have

$$\operatorname{GR}(p^k, rd) = \operatorname{Ker}(\psi) \oplus \operatorname{Im}(\phi).$$

Moreover, $\psi|_{Im(\phi)}$ is a bijection.

③ There exists a family of (m, d; D)-RMFEs over \mathbb{Z}_{2^k} for all $k \ge 1$ with

$$\lim_{m\to\infty}\frac{d}{m}=\frac{1+2D}{3}(D+\frac{D(3+1/(2^D-1))}{2^{D+1}-1})=\mathcal{O}\Big(D^2\Big).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DARE of arithmetic branching programs

Example:
$$f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle = det \begin{pmatrix} y_1 & y_2 & 0 \\ -1 & 0 & x_1 \\ 0 & -1 & x_2 \end{pmatrix}$$
,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DARE of arithmetic branching programs

Example:
$$f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle = det \begin{pmatrix} y_1 & y_2 & 0 \\ -1 & 0 & x_1 \\ 0 & -1 & x_2 \end{pmatrix}$$
,

$$M := \underbrace{\begin{pmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} y_1 & y_2 & 0 \\ -1 & 0 & x_1 \\ 0 & -1 & x_2 \end{pmatrix}}_{L(\mathbf{x}, \mathbf{y})} \cdot \underbrace{\begin{pmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{pmatrix}}_{B}$$

$$= \begin{pmatrix} y_1 - a_1 & y_2 - a_2 & a_1x_1 + a_2x_2 + b_1y_1 + b_2y_2 - b_2a_2 \\ -1 & -a_3 & x_1 + a_3x_2 - b_1 - a_3b_2 \\ 0 & -1 & x_2 - b_2 \end{pmatrix}$$

DARE of arithmetic branching programs

Example:
$$f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle = det \begin{pmatrix} y_1 & y_2 & 0 \\ -1 & 0 & x_1 \\ 0 & -1 & x_2 \end{pmatrix}$$
,

$$M := \underbrace{\begin{pmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} y_1 & y_2 & 0 \\ -1 & 0 & x_1 \\ 0 & -1 & x_2 \end{pmatrix}}_{L(\mathbf{x}, \mathbf{y})} \cdot \underbrace{\begin{pmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{pmatrix}}_{B}$$

$$= \begin{pmatrix} y_1 - a_1 & y_2 - a_2 & a_1x_1 + a_2x_2 + b_1y_1 + b_2y_2 - b_2a_2 \\ -1 & -a_3 & x_1 + a_3x_2 - b_1 - a_3b_2 \\ 0 & -1 & x_2 - b_2 \end{pmatrix}$$

$$= \begin{pmatrix} y_1 - a_1 & y_2 - a_2 & a_1x_1 + c_1 + a_2x_2 + b_1y_1 + b_2y_2 - b_2a_2 - c_1 \\ -1 & -a_3 & x_1 + c_2 + a_3x_2 - b_1 - a_3b_2 - c_2 \\ 0 & -1 & x_2 - b_2 \end{pmatrix}$$

• det(M) = det(AL(x, y)B) = det(L(x, y)) = f(x, y).

• *M* decomposes into linear functions of *x*₁, *x*₂.

Combine DARE with RMFE

Goal: Jointly compute $f(\mathbf{x}_1, \mathbf{y}_1), ..., f(\mathbf{x}_m, \mathbf{y}_m)$, where f is an arithmetic branching program over \mathbb{Z}_{2^k} .

 $\implies m \text{ DAREs}, M_i := A_i L(\mathbf{x}_i, \mathbf{y}_i) B_i, i \in [m]$, where $L(\cdot, \cdot)$ is defined over \mathbb{Z}_{2^k} .

Combine DARE with RMFE

Goal: Jointly compute $f(x_1, y_1), ..., f(x_m, y_m)$, where f is an arithmetic branching program over \mathbb{Z}_{2^k} .

 $\implies m \text{ DAREs}, M_i := A_i L(\mathbf{x}_i, \mathbf{y}_i) B_i, i \in [m], \text{ where } L(\cdot, \cdot) \text{ is defined over } \mathbb{Z}_{2^k}.$

Let (ϕ, ψ) be an (m, d; 3)-RMFE over \mathbb{Z}_{2^k} .

i) Receiver computes $\boldsymbol{X} := \phi(\boldsymbol{x}_1, ..., \boldsymbol{x}_m)$.

ii) Sender computes $A := \phi(A_1, ..., A_m), B := \phi(B_1, ..., B_m), \mathbf{Y} := \phi(\mathbf{y}_1, ..., \mathbf{y}_m).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Combine DARE with RMFE

Goal: Jointly compute $f(\mathbf{x}_1, \mathbf{y}_1), ..., f(\mathbf{x}_m, \mathbf{y}_m)$, where f is an arithmetic branching program over \mathbb{Z}_{2^k} . $\implies m$ DAREs, $M_i := A_i L(\mathbf{x}_i, \mathbf{y}_i) B_i$, $i \in [m]$, where $L(\cdot, \cdot)$ is defined over \mathbb{Z}_{2^k} . Let (ϕ, ψ) be an (m, d; 3)-RMFE over \mathbb{Z}_{2^k} . i) Receiver computes $\mathbf{X} := \phi(\mathbf{x}_1, ..., \mathbf{x}_m)$. ii) Sender computes $A := \phi(A_1, ..., A_m), B := \phi(B_1, ..., B_m), \mathbf{Y} := \phi(\mathbf{y}_1, ..., \mathbf{y}_m)$. • ϕ, ψ are \mathbb{Z}_{2^k} -linear,

$$\psi(L(\boldsymbol{X},\boldsymbol{Y})) = (L(\boldsymbol{x}_1,\boldsymbol{y}_1),...,L(\boldsymbol{x}_m,\boldsymbol{y}_m)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Combine DARE with RMFE

Goal: Jointly compute $f(x_1, y_1), ..., f(x_m, y_m)$, where f is an arithmetic branching program over \mathbb{Z}_{2^k} . $\implies m$ DAREs, $M_i := A_i L(\mathbf{x}_i, \mathbf{y}_i) B_i$, $i \in [m]$, where $L(\cdot, \cdot)$ is defined over \mathbb{Z}_{2^k} . Let (ϕ, ψ) be an (m, d; 3)-RMFE over \mathbb{Z}_{2^k} . i) Receiver computes $\boldsymbol{X} := \phi(\boldsymbol{x}_1, ..., \boldsymbol{x}_m)$. ii) Sender computes $A := \phi(A_1, ..., A_m), B := \phi(B_1, ..., B_m), \mathbf{Y} := \phi(\mathbf{y}_1, ..., \mathbf{y}_m).$ • ϕ, ψ are \mathbb{Z}_{2k} -linear, $\psi(L(\boldsymbol{X},\boldsymbol{Y})) = (L(\boldsymbol{x}_1,\boldsymbol{y}_1),...,L(\boldsymbol{x}_m,\boldsymbol{y}_m)).$ • Let $M := A \cdot L(\mathbf{X}, \mathbf{Y}) \cdot B$, $\psi(M) = \psi(A \cdot L(X, Y) \cdot B)$ $=\psi(\phi(A_1,...,A_m) \cdot L(\phi(x_1,...,x_m),\phi(y_1,...,y_m)) \cdot \phi(B_1,...,B_m))$ $= (A_1 \cdot L(x_1, y_1) \cdot B_1, \ldots, A_m \cdot L(x_m, y_m) \cdot B_m).$ М_т $\dot{M_1}$

Combine DARE with RMFE (continue)

$$\psi(M) = (\underbrace{A_1 \cdot L(\mathbf{x}_1, \mathbf{y}_1) \cdot B_1}_{M_1}, \dots, \underbrace{A_m \cdot L(\mathbf{x}_m, \mathbf{y}_m) \cdot B_m}_{M_m})$$

iii) Receiver learns *M* by calling an ideal functionality of VOLE over GR(2^k, d).
iv) Receiver then computes f(x₁, y₁), ..., f(x_m, y_m) from ψ(M).

Combine DARE with RMFE (continue)

$$\psi(M) = (\underbrace{A_1 \cdot L(\mathbf{x}_1, \mathbf{y}_1) \cdot B_1}_{M_1}, \dots, \underbrace{A_m \cdot L(\mathbf{x}_m, \mathbf{y}_m) \cdot B_m}_{M_m})$$

iii)

Receiver learns M by calling an ideal functionality of VOLE over $GR(2^k, d)$.

- iv) Receiver then computes $f(x_1, y_1), ..., f(x_m, y_m)$ from $\psi(M)$.
 - But *M* contains more information than ψ(*M*).
 Essentially, the leakage is M's projection on Ker(ψ).
 - Recall that GR(2^k, d) = Im(φ) ⊕ Ker(ψ), and ψ|_{Im(φ)} is a bijection.

A D N A 目 N A E N A E N A B N A C N

Combine DARE with RMFE (continue)

$$\psi(M) = (\underbrace{A_1 \cdot L(\mathbf{x}_1, \mathbf{y}_1) \cdot B_1}_{M_1}, \dots, \underbrace{A_m \cdot L(\mathbf{x}_m, \mathbf{y}_m) \cdot B_m}_{M_m})$$

Receiver learns M by calling an ideal functionality of VOLE over $GR(2^k, d)$. iv) Receiver then computes $f(\mathbf{x}_1, \mathbf{y}_1), \dots, f(\mathbf{x}_m, \mathbf{y}_m)$ from $\psi(M)$.

- But *M* contains more information than $\psi(M)$. Essentially, the leakage is M's projection on $\text{Ker}(\psi)$.
- Recall that $GR(2^k, d) = Im(\phi) \oplus Ker(\psi)$, and $\psi|_{Im(\phi)}$ is a bijection.

iii) Receiver learns M' = M + C by calling an ideal functionality of VOLE over $GR(2^k, d)$, where C is a upper triangle matrix with each entry sampled uniformly at random from $\text{Ker}(\psi)$.

$$\psi(M+C)=\psi(M)+\psi(C)=\psi(M).$$

Achieve Malicious Security

Malicious Adversary has following two kinds of cheating behaviors.

- Deviating from DARE
 - Only Sender computes DARE.
 - Adapt methods from [DIO21] (details omitted in this talk).
- 2 Deviating from RMFE
 - Both Sender and Receiver compute RMFE.
 - How to force both parties to follow RMFE in a statistical way, without increase of round complexity?

[DIO21] Samuel Dittmer, Yuval Ishai, Rafail Ostrovsky. Line-Point Zero Knowledge and Its Applications. In ITC 2021.

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $\text{GR}(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $\text{GR}(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

Construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

• Correctness: easy to verify that $v_i = a_i \cdot \alpha_i + b_i$, for $i \in [m]$.

Construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

- Correctness: easy to verify that $\mathbf{v}_i = \mathbf{a}_i \cdot \alpha_i + \mathbf{b}_i$, for $i \in [m]$.
- Security: semi-honest \checkmark , malicious \nearrow .

Construction 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple case for illustration

Goal: Construct VOLE over \mathbb{Z}_{2^k} from VOLE over $GR(2^k, d)$. Let (ϕ, ψ) be an (m, d; 2) RMFE over \mathbb{Z}_{2^k} .

- Correctness: easy to verify that $v_i = a_i \cdot \alpha_i + b_i$, for $i \in [m]$.
- Security: semi-honest ✓, malicious X.

When Sender (Receiver) is corrupted, the simulator can extract \mathbf{a}_i (α_i) for $i \in [m]$, if and only if $\mathbf{a} \in \text{Im}(\phi)^{\ell}$ ($\alpha \in \text{Im}(\phi)$).

Non-Malleable RMFE

Definition (Degree-D Non-Malleable RMFE)

Let $GR(p^k, r)$ be a Galois ring and κ be the statistical security parameter. A pair of maps (ϕ, ψ) is called an (m, d; D)-NM-RMFE over $GR(p^k, r)$, if it has the following properties:

•
$$\phi : \operatorname{GR}(p^k, r)^m \times \{0, 1\}^{O(\kappa)} \to \operatorname{GR}(p^k, rd),$$

 $\psi : \operatorname{GR}(p^k, rd) \to \operatorname{GR}(p^k, r)^m \cup \{\bot\}$ are $\operatorname{GR}(p^k, r)$ -linear maps, satisfying

$$\psi(\phi(\mathbf{x}_1,\mathbf{r}_1)\cdot\phi(\mathbf{x}_2,\mathbf{r}_2)\cdots\phi(\mathbf{x}_D,\mathbf{r}_D))=\mathbf{x}_1*\mathbf{x}_2*\cdots*\mathbf{x}_D,$$

for any $x_1, ..., x_D \in \operatorname{GR}(p^k, r)^m$ and $r_1, ..., r_D \stackrel{\$}{\leftarrow} \{0, 1\}^{\kappa}$.

② if $Y \notin Im(\phi)$, there exists a constant $y \in GR(p^k, r)^m$, such that for any $x_1, ..., x_{D-1} \in GR(p^k, r)^m$, we have

$$\psi(\phi(\mathbf{x}_1)\cdots\phi(\mathbf{x}_{D-1})\cdot \mathbf{Y})=\mathbf{x}_1*\cdots*\mathbf{x}_{D-1}*\mathbf{y}+\boldsymbol{\delta},$$

where $\delta \sim \mathcal{D}_{x,Y} \stackrel{s}{\approx} \mathcal{D}_Y$ and \mathcal{D}_Y is a PPT-sampleable distribution over $\operatorname{GR}(p^k, r)^m \cup \{\bot\}$ determined only by Y. We use the convention that for any $z \in \operatorname{GR}(p^k, r)^m$, $z + \bot = \bot$ to make ψ well-defined.

Construction of NM-RMFE: 1

High-level idea: "structured and randomized" RMFE for Non-Malleability. In more detail, our construction consists of 2 layers of RMFEs: a degree-*D* RMFE and a degree-*D* extended RMFE.

Definition (Degree-D extended RMFE)

Let $\mathbb{Z}_{p^k} = \mathbb{Z}/p^k\mathbb{Z}$ be a modulo ring, $d > n > m \ge 1$ and $D \ge 1$ be integers. A pair of maps (ϕ, ψ) is called an (m, n, d; D)-extended RMFE over \mathbb{Z}_{p^k} if $\phi : \mathbb{Z}_{p^k}^m \times \operatorname{GR}(p^k, n) \to \operatorname{GR}(p^k, d)$ and $\psi : \operatorname{GR}(p^k, d) \to \mathbb{Z}_{p^k}^m \times \operatorname{GR}(p^k, n)$ are two \mathbb{Z}_{p^k} -linear maps satisfying

 $\psi(\phi(\mathbf{x}_1, \mathbf{y}_1) \cdot \phi(\mathbf{x}_2, \mathbf{y}_2) \cdots \phi(\mathbf{x}_D, \mathbf{y}_D)) = (\mathbf{x}_1 * \mathbf{x}_2 * \cdots * \mathbf{x}_D, \mathbf{y}_1 \mathbf{y}_2 \cdots \mathbf{y}_D),$

for any $\mathbf{x}_i \in \mathbb{Z}_{p^k}^m$, $y_i \in \text{GR}(p^k, n)$, $i \in [D]$.

Construction of NM-RMFE: 2

- Let (ϕ_1,ψ_1) be an $(m+\ell,n;D)$ -RMFE over \mathbb{Z}_{p^k} .
- Let (ϕ_2, ψ_2) be an $(m + \ell, n, d; D)$ -extended RMFE over \mathbb{Z}_{p^k} .

Construction of NM-RMFE: 2

- Let (ϕ_1,ψ_1) be an $(m+\ell,n;D)$ -RMFE over \mathbb{Z}_{p^k} .
- Let (ϕ_2, ψ_2) be an $(m + \ell, n, d; D)$ -extended RMFE over \mathbb{Z}_{p^k} .

We construct an (m, d; D)-NM-RMFE (ϕ, ψ) over \mathbb{Z}_{p^k} as follows.

• $\phi : \mathbb{Z}_{p^k}^m \to \operatorname{GR}(p^k, d)$ is an \mathbb{Z}_{p^k} -linear map, such that $\phi : \mathbf{x} \mapsto \phi_2(\mathbf{x} || \mathbf{r}, \phi_1(\mathbf{x} || \mathbf{r}))$, where $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p^k}^\ell$.

Construction of NM-RMFE: 2

- Let (ϕ_1,ψ_1) be an $(m+\ell,n;D)$ -RMFE over $\mathbb{Z}_{p^k}.$
- Let (ϕ_2, ψ_2) be an $(m + \ell, n, d; D)$ -extended RMFE over \mathbb{Z}_{p^k} .

We construct an (m, d; D)-NM-RMFE (ϕ, ψ) over \mathbb{Z}_{p^k} as follows.

• $\phi : \mathbb{Z}_{p^k}^m \to \operatorname{GR}(p^k, d)$ is an \mathbb{Z}_{p^k} -linear map, such that $\phi : \mathbf{x} \mapsto \phi_2(\mathbf{x} || \mathbf{r}, \phi_1(\mathbf{x} || \mathbf{r}))$, where $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p^k}^{\ell}$.

• For a $Y \in GR(p^k, d)$, compute $(y || s, e) := \psi_2(Y)$, where $y \in \mathbb{Z}_{p^k}^m$, $s \in \mathbb{Z}_{p^k}^\ell$ and $e \in GR(p^k, n)$.

Then $\psi : \operatorname{GR}(p^k, d) \to \mathbb{Z}_{p^k}^m$ is defined as follows:

$$\psi(\mathbf{Y}) = \begin{cases} \mathbf{y}, & \text{if } |\psi_1(\mathbf{e}) = (\mathbf{y} || \mathbf{s}) \\ \bot, & \text{otherwise.} \end{cases}$$

・ロト・四ト・モート ヨー うへの

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

Semi-honest NISC over \mathbb{Z}_{2^k}

 \bullet A NISC/VOLE for branching programs over \mathbb{Z}_{2^k} from combining DARE with RMFE.

Non-Malleable RMFE

- Put forward the notion of Non-Malleable RMFE.
- Show a Non-Malleable RMFE construction, which allows for constructing reusable NISC/VOLE over \mathbb{Z}_{2^k} .

Summary

Semi-honest NISC over \mathbb{Z}_{2^k}

• A NISC/VOLE for branching programs over \mathbb{Z}_{2^k} from combining DARE with RMFE.

Non-Malleable RMFE

- Put forward the notion of Non-Malleable RMFE.
- Show a Non-Malleable RMFE construction, which allows for constructing reusable NISC/VOLE over \mathbb{Z}_{2^k} .

Open questions

- When $m \to \infty$, there exist (m, d; 2)-NM-RMFEs over \mathbb{Z}_{2^k} with $\frac{d}{m} \to 29.13$; there exist (m, d; 3)-NM-RMFEs over \mathbb{Z}_{2^k} with $\frac{d}{m} \to 80.15$. \implies Can we construct NM-RMFE with better asymptotic efficiency?
- Our NISC/VOLE is for branching programs over $\mathbb{Z}_{2^k}.$

 \implies Can we construct NISC for any circuit over \mathbb{Z}_{2^k} ?

Full version on ePrint: https://eprint.iacr.org/2023/1363.