Quantum Attacks on Hash Constructions with Low Quantum Random Access Memory

Xiaoyang Dong^{1,2,6,7} Shun Li³ Phuong Pham³ Guoyan Zhang^{4,5,7}

¹Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

²State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China

³School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,

⁴School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China,

⁵Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China

⁶Zhongguancun Laboratory, Beijing, China

⁷Shandong Institute of Blockchain, Jinan, China

ASIACRYPT 2023, Dec 6

Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

For a hash function $\mathcal{H}: \{0,1\}^\star \to \{0,1\}^n$,

Pre-image resistance

Given a hash value y, it is difficult to find a message x such that $\mathcal{H}(x) = y$.

For a hash function $\mathcal{H}: \{0,1\}^\star \to \{0,1\}^n$,

Pre-image resistance

Given a hash value y, it is difficult to find a message x such that $\mathcal{H}(x) = y$.

Second pre-image resistance

Given a hash value $\mathcal{H}(x')$, it is difficult to find a message $x \ (x \neq x')$ such that $\mathcal{H}(x) = \mathcal{H}(x')$.

For a hash function $\mathcal{H}: \{0,1\}^\star
ightarrow \{0,1\}^n$,

Pre-image resistance

Given a hash value y, it is difficult to find a message x such that $\mathcal{H}(x) = y$.

Second pre-image resistance

Given a hash value $\mathcal{H}(x')$, it is difficult to find a message $x \ (x \neq x')$ such that $\mathcal{H}(x) = \mathcal{H}(x')$.

Collision resistance

It is difficult to find two messages x and x' such that $\mathcal{H}(x) = \mathcal{H}(x')$.

Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

For a hash function $\mathcal{H}: \{0,1\}^\star \to \{0,1\}^n$, the generic time complexity is:

Pre-image resistance

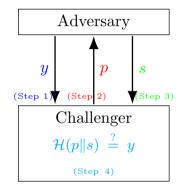
Given a hash value y, it requires $O(2^n)$ to find a message x such that $\mathcal{H}(x) = y$.

Second pre-image resistance

Given a hash value $\mathcal{H}(x')$, it requires $O(2^n)$ to find a message $x \ (x \neq x')$ such that $\mathcal{H}(x) = \mathcal{H}(x')$.

Collision resistance

It requires $O(2^{n/2})$ to find two messages x and x' such that $\mathcal{H}(x) = \mathcal{H}(x')$.


Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

For a hash function $\mathcal{H}: \{0,1\}^\star \to \{0,1\}^n$,

Chosen Target Forced Prefix preimage resistance[KK06]

The adversary has the liberty to choose any hash value y, and in response, the challenger selects a message prefix p. It is difficult for the adversary to find a suitable message suffix s such that $\mathcal{H}(p||s) = y$.

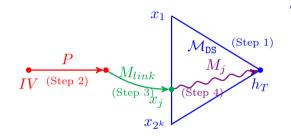
For **iterated** hash functions, [KK06] proposed a generic algorithm requiring time complexity of $O(2^{2n/3})$, known as **Herding Attack**.

[KK06] Kelsey and Kohno. Herding Hash Functions and the Nostradamus Attack. Advances in Cryptology - EUROCRYPT 2006.

Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

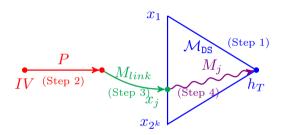
Quantum Speedup

Summary of our results. QRACM: quantum accessible classical memory, QRAQM: quantum accessible quantum memory, cRAM: classical random access memory

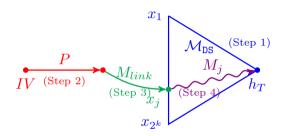

Target	Attacks	Settings	Time	Qubits	QRACM	QRAQM	cRAM	Generic	Ref.
н	Herding	Classical Quantum Quantum	2 ^{0.67n} 2 ^{0.43n} 2 ^{0.46n}	$\mathcal{O}(n)$ $\mathcal{O}(n)$	- 2 ^{0.43n}	-	2 ^{0.67n} - 2 ^{0.23n}	-	[KK06] [BFH22] Ours
$\mathcal{H}_1\oplus\mathcal{H}_2$	Preimage	Classical Classical Quantum Quantum Quantum Quantum Quantum	20.83 <i>n</i> 20.67 <i>n</i> 20.612 <i>n</i> 20.476 <i>n</i> 20.495 <i>n</i> 20.485 <i>n</i> 20.485 <i>n</i>	$\mathcal{O}(n)$ $2^{0.143n}$ $2^{0.013n}$ $\mathcal{O}(n)$ $\mathcal{O}(n)$	- - 20.033 <i>n</i> 20.047 <i>n</i> 20.057 <i>n</i> 2 ^{0.043<i>n</i>}	- 20.333 <i>n</i> - 20.0285 <i>n</i> 2 ^{0.0285<i>n</i>}	$2^{0.33n}$ - 2 ^{0.61n} - 2 ^{0.2n} 2 ^{0.2n} 2 ^{0.2n} 2 ^{0.2n}	2 ⁿ 2 ⁿ 2 ^{0.5n} 2 ^{0.5n} 2 ^{0.5n} 2 ^{0.5n}	[LW15] [Din16] [BDG ⁺ 20] [BGLP22] [BGLP22] Ours Ours Ours Ours
$\mathcal{H}_1 \ \mathcal{H}_2$	Collision	Classical Quantum Quantum Quantum	2 ^{0.5n} 2 ^{0.333n} 2 ^{0.43n} 2 ^{0.4n}	$\mathcal{O}(n) \\ 2^{0.143n} \\ \mathcal{O}(n)$	- - -	- 2 ^{0.333n} -	- 2 ^{0.2n} 2 ^{0.2n}	2 ⁿ 2 ^{0.67n} 2 ^{0.67n} 2 ^{0.67n}	[J04] [BGLP22] [BGLP22] Ours
	Herding	Classical Quantum Quantum Quantum	2 ^{0.67n} 2 ^{0.444n} 2 ^{0.49n} 2 ^{0.467n}	$\mathcal{O}(n)$ $2^{0.143n}$ $\mathcal{O}(n)$	- - -	- 2 ^{0.333n} -	2 ^{0.33n} - 2 ^{0.2n} 2 ^{0.2n}	- - -	[ABDK09] [BGLP22] [BGLP22] Ours
Hash-Twice	Herding	Classical Quantum	$2^{0.667n}$ $2^{0.467n}$	- O(n)	-	-	$2^{0.33n}$ $2^{0.2n}$	-	[ABDK09] Ours
Zipper	Herding	Classical Quantum	2 ^{0.667n} 2 ^{0.467n}	- O(n)	-	-	2 ^{0.33n} 2 ^{0.2n}	-	[ABDK09] Ours

Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

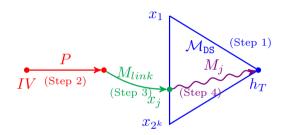
Quantum Attacks on Hash Constructions


ASIACRYPT 2023, Dec 6 Guangzhou, China 5/20

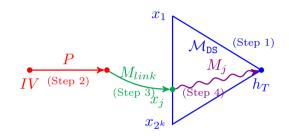
Quantum Herding Attack on $\mathcal H$ without qRAM


• Step 1: build a 2^k-diamond structure. The r most significant bits (MSB) of x_i are zeros. Store the diamond in D with classical memory.

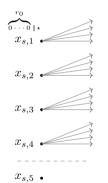
Quantum Herding Attack on $\mathcal H$ without qRAM


- Step 1: build a 2^k-diamond structure. The r most significant bits (MSB) of x_i are zeros. Store the diamond in D with classical memory.
- Step 2: calculate the chaining hash value *x* from given prefix.

Quantum Herding Attack on $\mathcal H$ without qRAM

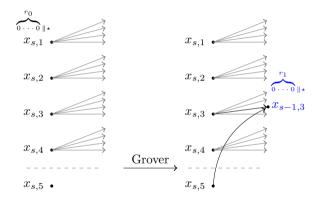

- Step 1: build a 2^k-diamond structure. The r most significant bits (MSB) of x_i are zeros. Store the diamond in D with classical memory.
- Step 2: calculate the chaining hash value *x* from given prefix.
- Step 3: find a single block message M_{link} to connect x with some value x_j ∈ D.

Quantum Herding Attack on ${\mathcal H}$ without qRAM

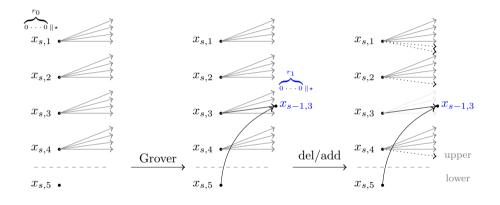

- Step 1: build a 2^k-diamond structure. The r most significant bits (MSB) of x_i are zeros. Store the diamond in D with classical memory.
- Step 2: calculate the chaining hash value *x* from given prefix.
- Step 3: find a single block message M_{link} to connect x with some value $x_j \in D$.
- Step 4: check *D* for the message blocks *M_j* linking *x_j* to *h_T* and output the message *M* = *P*||*M_{link}*||*M_j*.

Quantum Herding Attack on ${\mathcal H}$ without qRAM

Step 1 and Step 3 have been adaptively modified in compared to [BFH22], incorporating quantum algorithms as outlined in [CNS17].


- Step 1: build a 2^k-diamond structure. The r most significant bits (MSB) of x_i are zeros. Store the diamond in D with classical memory.
- Step 2: calculate the chaining hash value *x* from given prefix.
- Step 3: find a single block message M_{link} to connect x with some value $x_j \in D$.
- Step 4: check *D* for the message blocks *M_j* linking *x_j* to *h_T* and output the message *M* = *P*||*M_{link}*||*M_j*.

Start with 2^s leave nodes whose r_0 -bit suffix are zeros.


Leaf nodes with r_0 0s suffix are not relevant to this diamond building algorithm. After a diamond is built whose leaves are suffixed with r_0 0s, we can apply the CNS algorithm to find a linking message whose digest collides to one of those leaves.

1. Choose first layer with restriction on r₀ MSB

- For each node $x_{s,i}$ in the upper half, run Grover's algorithm to find m_j so that the r_1 MSBs of $h(m_j, x_{s,i})$ are zeros.
- ii Repeat above step $\frac{2^l}{2^{s-1}}$ times to obtain a list Y of 2^l hash values $h(m_j, x_{s,i})$ whose r_1 MSBs are zeros.

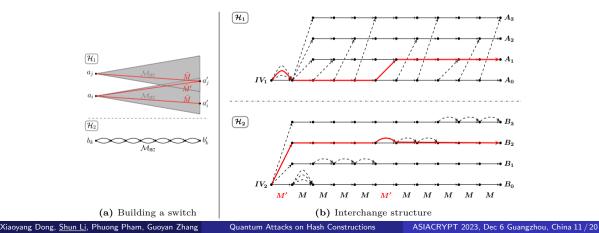
2. Compute the hash values of upper half with restriction on r_1 MSB

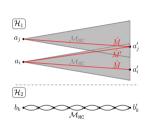
3. Repeat the procedure

- /* Finding the linking message M_{link} by applying variant of CNS collision-finding algorithm: */
 Store D = {x₁, x₂, ..., x_{2^k}} in a classical memory L.
 Define S^h_r := {(m, h(x̄, m)) : ∃z ∈ {0,1}^{n-r}, h(x̄, m) = 0...0 ||z, z ∈ {0,1}^{n-r}}, where h is the compression function with n-bit chaining value x̄. Let f^h_L(m) := 1 if ∃x' ∈ L, h(x̄, m) = x', and f^h_L(m) := 0 otherwise.
- 4 Apply quantum amplification algorithm:

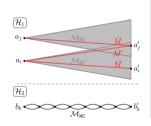
5 begin

The setup
$$\mathcal{A}$$
 is the construction of $|\phi\rangle := \frac{1}{\sqrt{|S_r^h|}} \sum_{m \in S_r^h} |m, h(\bar{x}, m)\rangle.$

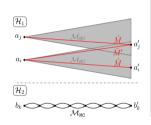

7 The projector is a quantum oracle query to $O_{f_l^h}$ meaning that


$$O_{f^h_L}(|m,h(ar{x},m)
angle|b
angle)=|m,h(ar{x},m)
angle|b\oplus O_{f^h_L}(m)
angle$$

- 8 end
- 9 Let $M_{link} = m$


Preimage Attack on XOR Combiners

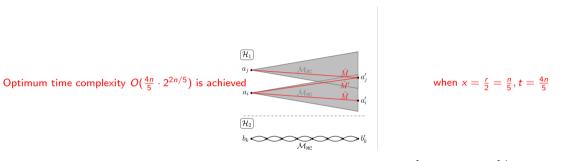
Given XOR Combiner $\mathcal{H}_1 \oplus \mathcal{H}_2 : \{0,1\}^* \to \{0,1\}^n$ and the target value of V, Leurent and Wang [LW15] invented the **Interchange Structure (IS)** to implement a classical attack with time complexity of $2^{0.83n}$ combining with the Meet-in-the-Middle approach.



Step 1: Build a switch from (a_i, b_k) to (a_j, b_k) such that $\mathcal{H}_1(a_j, \hat{M}) = \mathcal{H}_1(a_i, \hat{M}')$ and $\mathcal{H}_2(b_k, \hat{M}) = \mathcal{H}_2(b_k, \hat{M}')$; (i) Apply CNS algorithm to search for $2^t - \mathcal{M}_{MC}$, requiring time $t \cdot 2^{2n/5}$, cRAM $2^{n/5}$, QRACM $O(t \cdot n)$;

Step 1: Build a switch from (a_i, b_k) to (a_j, b_k) such that $\mathcal{H}_1(a_j, \hat{M}) = \mathcal{H}_1(a_i, \hat{M}')$ and $\mathcal{H}_2(b_k, \hat{M}) = \mathcal{H}_2(b_k, \hat{M}');$ (i) Apply CNS algorithm to search for $2^t - \mathcal{M}_{MC}$, requiring time $t \cdot 2^{2n/5}$, cRAM $2^{n/5}$, QRACM $O(t \cdot n);$ (ii) Apply CNS algorithm to find 2^t measures M from M is such that $t \in MSP$ of $2^t (a, M)$ are requiring time.

(ii) Apply Grover algorithm to find 2^x messages M_i from \mathcal{M}_{MC} such that r MSBs of $\mathcal{H}_1(a_j, M_i)$ are zero, requiring time $2^x \cdot 2^{r/2} = 2^{x+r/2}$, cRAM 2^x ;

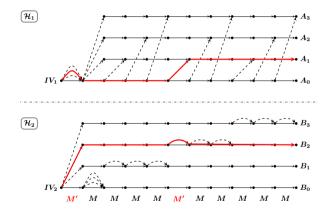

Step 1: Build a switch from (a_i, b_k) to (a_j, b_k) such that $\mathcal{H}_1(a_j, \hat{M}) = \mathcal{H}_1(a_i, \hat{M}')$ and $\mathcal{H}_2(b_k, \hat{M}) = \mathcal{H}_2(b_k, \hat{M}');$

(i) Apply CNS algorithm to search for $2^t - \mathcal{M}_{MC}$, requiring time $t \cdot 2^{2n/5}$, cRAM $2^{n/5}$, QRACM $O(t \cdot n)$;

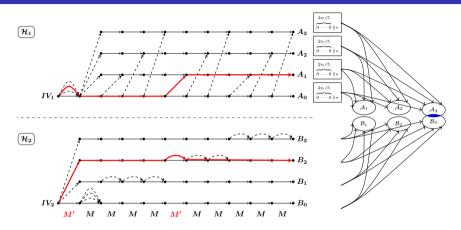
(ii) Apply Grover algorithm to find 2^x messages M_i from \mathcal{M}_{MC} such that r MSBs of $\mathcal{H}_1(a_j, M_i)$ are zero, requiring time $2^x \cdot 2^{r/2} = 2^{x+r/2}$, cRAM 2^x ;

(iii) Apply CNS algorithm to find \hat{M}' whose hash value at a_i collides with one of 2^x hash values above, requiring time $2^{\frac{n-r-x}{2}} \cdot (2^{r/2} + 2^x)$.

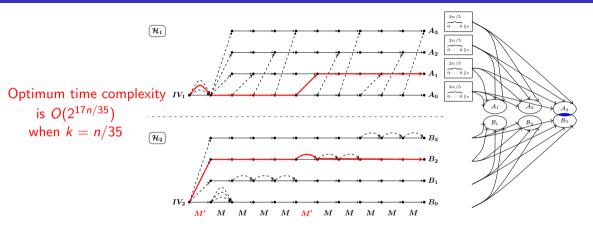
Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang


Step 1: Build a switch from (a_i, b_k) to (a_j, b_k) such that $\mathcal{H}_1(a_j, \hat{M}) = \mathcal{H}_1(a_i, \hat{M}')$ and $\mathcal{H}_2(b_k, \hat{M}) = \mathcal{H}_2(b_k, \hat{M}');$

(i) Apply CNS algorithm to search for $2^t - M_{MC}$, requiring time $t \cdot 2^{2n/5}$, cRAM $2^{n/5}$, QRACM $O(t \cdot n)$;


(ii) Apply Grover algorithm to find 2^x messages M_i from \mathcal{M}_{MC} such that r MSBs of $\mathcal{H}_1(a_j, M_i)$ are zero, requiring time $2^x \cdot 2^{r/2} = 2^{x+r/2}$, cRAM 2^x ;

(iii) Apply CNS algorithm to find \hat{M}' whose hash value at a_i collides with one of 2^x hash values above, requiring time $2^{\frac{n-r-x}{2}} \cdot (2^{r/2} + 2^x)$.


Xiaoyang Dong, <u>Shun Li</u>, Phuong Pham, Guoyan Zhang

Step 2: Cascade $2^{3k} - 1$ quantum single switches to build $(2^{2k}, 2^k)$ -interchange structure, requiring time $O(\frac{4n}{5} \cdot 2^{3k+2n/5})$, cRAM $2^{n/5}$;

Step 3: Launch a MitM procedure between the two sets $A_0, \ldots, A_{2^{2k}-1}$ and B_0, \ldots, B_{2^k-1} to find a message block m such that $\mathcal{H}_1(A_j, m) = V \oplus \mathcal{H}_2(B_i, m)$, requiring time $2^{\frac{n-3k}{2}} \cdot 2^k = 2^{\frac{n-k}{2}}$. The overall complexity is $O(2^{3k+\frac{2n}{5}} + 2^{\frac{n-k}{2}})$.

Step 3: Launch a MitM procedure between the two sets $A_0, \ldots, A_{2^{2k}-1}$ and B_0, \ldots, B_{2^k-1} to find a message block m such that $\mathcal{H}_1(A_j, m) = V \oplus \mathcal{H}_2(B_i, m)$, requiring time $2^{\frac{n-3k}{2}} \cdot 2^k = 2^{\frac{n-k}{2}}$. The overall complexity is $O(2^{3k+\frac{2n}{5}} + 2^{\frac{n-k}{2}})$.

II Attack based on Ambainis' element distinctness algorithm

- Prepare a (2^k, 2^k)-interchange structure and store it with 2^k QRACM, time complexity is 2^{2k} · 2^{2n/5}.
- Utilize Grover's algorithm, incorporating Ambainis' algorithm, to assess whether a given message *m* results in a collision. This determination necessitates a time complexity of $2^{(n-2k)/2} \cdot 2^{2(k+1)/3} = 2^{n/2-k/3}$, along with $2^{2(k+1)/3}$ QRAQM, 2^k QRACM, and 2^k cRAM.
- The overall optimum time complexity for both step 1 and step 2, $O(2^{17n/35})$, is achieved when k = 3n/70.

III Attack based on Jaques-Schrottenloher's golden collision finding algorithm

- Create a (2^k, 2^k)-interchange structure and allocate it using 2^k QRACM, necessitating a time complexity of 2^{2k} · 2^{2n/5}.
- Utilize Grover's algorithm, coupled with Jaques-Schrottenloher's algorithm integration, to identify a colliding message within the lists L_1 and L_2 . This variant costs a time complexity of $2^{(n-2k)/2} \cdot 2^{6(k+1)/7} = 2^{n/2-k/7}$, with corresponding 2^k QRACM and $2^{n/5}$ classical memory.
- The overall optimum time complexity for both step 1 and step 2, $O(2^{37n/75})$, is achieved when k = 7n/150.

Thanks

Xiaoyang Dong, Shun Li, Phuong Pham, Guoyan Zhang Quantum Attacks on Hash Constructions ASIACRYPT 2023, Dec 6 Guangzhou, China 17/20

Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and John Kelsey.

In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, *Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers*, volume 5867 of *Lecture Notes in Computer Science*, pages 393–414. Springer, 2009.

Zhenzhen Bao, Itai Dinur, Jian Guo, Gaëtan Leurent, and Lei Wang. J. Cryptol., 33(3):742–823, 2020.

Barbara Jiabao Benedikt, Marc Fischlin, and Moritz Huppert.InShweta Agrawal and Dongdai Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28thInternational Conference on the Theory and Application of Cryptology and Information Security,Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III, volume 13793 of Lecture Notes inComputer Science, pages 583–613. Springer, 2022.

Zhenzhen Bao, Jian Guo, Shun Li, and Phuong Pham.

In Xingliang Yuan, Guangdong Bai, Cristina Alcaraz, and Suryadipta Majumdar, editors, *Network and System Security - 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9-12, 2022, Proceedings*, volume 13787 of *Lecture Notes in Computer Science*, pages 687–711. Springer, 2022.

Itai Dinur.

In Marc Fischlin and

Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer Science, pages 484–508. Springer, 2016.

John Kelsey and Tadayoshi Kohno.

In Serge

Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer, 2006.

Gaëtan Leurent and Lei Wang.In Elisabeth Oswald andMarc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual InternationalConference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages345–367. Springer, 2015.