LUND

SCA-LDPC: A Code-Based Framework for v
Key-Recovery Side-Channel Attacks on
Post-Quantum Encryption Schemes

Qian Guo' Denis Nabokov' Alexander Nilsson™ Thomas Johansson'
December 6, 2023

"Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{gian.guo,denis.nabokov,alexander.nilsson,thomas.johansson}@eit.lth.se

2Advenica AB, Malmo, Sweden

Table of contents

1. Introduction
2. Coefficient-wise Key-Recovery
3. Another approach to oracles

4. SCA-LDPC framework

5. Applications

Introduction

Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces = more powerful attack

Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces = more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces = more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Apply a framework for Kyber and HQC

- Kyber — lattice-based primary KEM algorithm for standardization
- HQC — perspective code-based candidate in round 4

Algorithm 1 KEM based on FO transform
Input: ¢, sk = (s1,...,5k),pk, 2

- In (code-based and

lattice-based) KEM 1: Function DECAPS(c, sk, pk, z)
decapsulation involves 2: n//" — PKE.Dec(sk.<'>
38 . 3: r’ +— G(m/[, pk
obtaining a message e P&E-E:’cf\]gk o
- m’ is connected to sk 5. if ¢ = ¢ then
for the special 6: return H(m', ¢)
. 7 else
ciphertext 8: return Hy(z,c)

Algorithm 1 KEM based on FO transform
Input: ¢, sk = (s1,...,5k),pk, 2

- In (code-based and

lattice-based) KEM 1: Function DECAPS(c, sk, pk, z)
decapsulation involves 2: nl»" — PKE.Dec(sk.w
38 3: r’ +— G(m/[, pk
obtaining a message e P&E.Lfa]gk. .
- m’ is connected to sk 5. if ¢ = ¢ then
for the special 6: return H(m', ¢)
. 7 else
ciphertext 8: return Hy(z,c)

Side-channel-assisted CCA using Side-Channel Oracle’ that leaks
information about m’

TSuch as plaintext-checking, decryption-failure, full-domain, etc.

Oracles (cont.)

(imprecise)
knowledge

chosen
; Side-Channel Oracle
ciphertext

An oracle hides timing, cache-timing, power, electromagnetic, etc.
leakages

Oracles (cont.)

The oracle is inherently inaccurate

Typically, oracle with accuracy p behaves similarly to Binary
Symmetric Channel?

2padvanced oracle may return a bit with probability/confidence to be correct

Coefficient-wise Key-Recovery

Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent s; € {-2,-1,0,1,2}

Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent s; € {—2,-1,0,1,2}

A ciphertext (together with an
oracle) specifies a condition

Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent s; € {—2,-1,0,1,2}

Can encode with a binary se-
quence

is s; even?
10101

is s; even?
10101

Imperfect oracle

Problem
The probability to recover secret key with a real-world oracle is very
low

Common solution
the same ciphertext several times
Majority voting gives more accurate oracle

This approach requires to achieve adequate
probability of key recovery

Another approach to oracles

Working on (empirical) distributions

Each oracle call updates the (known) distribution of s;

An oracle (BSC) with accuracy p = 0.95

Prior Posterior
Pris; = 0] = 0.9 % Pr[s; = 0] = 0.32
re
Pris; =1 = 0.1 Pris; = 1] = 0.68

Framework works with empirical distributions

Our approach: do NOT try to focus all probability mass on a single
value,

Check variables

. . "
Can construct a ciphertext connecting to s; =————=
modifications

Can construct a ciphertext connectingto ¢; = ;.7 S;

(imprecise)
knowledge

chosen
e
ciphertext

Side-Channel Oracle

Similarly, can use a few traces to update distribution of ¢;

Benefits of check variables

Source coding

HQC case (binary secret)

HQC has a sparse secret key, each coefficient s; can be

approximated to be from the . With the

perfect oracle, the obtained information for a bit s; is bounded by
bit for hqc-128. Obtaining a bit for check variable as a XOR of

50 coefficients gives bit of information.

Error correction — use checks to correct the distributions of secret
coefficients

SCA-LDPC framework

LDPC code

Low-density parity-check (LDPC) code — linear code with a sparse
parity-check matrix

Why LDPC?

- close to optimal error correction performance

- efficient decoding

1

LDPC code

Low-density parity-check (LDPC) code — linear code with a sparse
parity-check matrix

Why LDPC?

- close to optimal error correction performance

- efficient decoding
H= {erh| - |r><r} ’

- k secret positions to recover

- r parity checks (variables)

3H, % Is a sub-matrix of a matrix consisting of blocks of circulant (or negacyclic)
matrices

1

LDPC code (cont.)

Each row of H,., defines a check variable Cryq, ..., Chor
T
[H,m\ — Im} . {51...5R|ch+1...ck+, =0
We compute empirical distributions for sq, ...,k and Cryq, - - -, Copre

Send them to LDPC decoder

Decoder = iterative decoding via Belief Propagation using soft
information

Output: updated distributions for ss, ..., s (i.e. error-corrected)

Attack steps

1. Choose r, create a “good” matrix H

2. (Adaptively) call an oracle a few (could be 0) times to get
empirical distribution for s;

3. Similarly for ¢;*
4. Call LDPC decoder with empirical distributions for

S1y.+ySky Chats - - - » Crar, Obtain updated distributions for
SpooogSk
5. Output hard values for sq,..., s,

“Number of oracle calls for s; and ¢; is usually different

Applications

Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M4°

We use ChipWhisperer toolkit to run power analysis

Shttps://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4

Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M4°
We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the
attacked device

Shttps://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4

Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M4°
We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the
attacked device

A non-adaptive power attack with a full-domain oracle (returns the
whole decrypted message)

- 1 power trace = information about 256 secret coefficients/check
variables

Shttps://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4

Kyber results (cont.)

Average accuracy across message bits is about 0.95

Number of traces Average number of errors®
Majority Voting 99 0.34/768
Our Method 12 0.82/768

Theoretical lower bound is 9 traces

6light post-processing is allowed

HQC results

An adaptive timing attack with a plaintext-checking oracle (tells if the
decrypted message is equal to some fixed message)

No traces for secret coefficients, only for check variables as a XOR of
50 coefficients

Number of “Idealized oracle” calls

[16]8 866000
Our Method ~ 10000

’Noise-free environment, but not 100% correct
8Guo, Q., Hlauschek, C., Johansson, T, Lahr, N., Nilsson, A., Schroder, R.L: Don't reject
this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE.

16

Conclusion

- Proposed a framework to significantly reduce the number of
traces for successful key recovery

- Soft information/empirical distributions
- Check variables

- LDPC decoder (Belief Propagation)
- Showed real-world benefits for Kyber and HQC

Future work:

- Automate the selection of parameters (i.e. number of check
variables, number of oracle calls, etc.)

- More advanced code-construction method with improved
decoding performance

- Heavy post-processing (lattice-reduction or information-set
decoding)

Questions?

Kyber simulation

Table 1: Comparison with the majority voting for full-key recovery. t is the
number of votes cast, values in the brackets are mo, mi and my, resp.

p = 0.995 Number of traces Average number of errors
Majority Voting (t =3) 27 (ref) 0.21/768
Our Method (2,1, 4) 10 (—63%) 0.37/768
p=0.95 Number of traces Average number of errors
Majority Voting (t =7) 63 (ref) 0.47/768
Our Method (3, 4,2) 17 (—=73%) 0.16/768
p=09 Number of traces Average number of errors
Majority Voting (t = 11) 99 (ref) 0.67/768

Our Method (4,3, 4) 24 (=75.8%) 0.46/768

Maximizing information (lattice-based schemes)

For each s; we call an oracle a few times with different ciphertexts.
How to choose them?

Can choose ciphertexts maximizing the information (difference
between entropies) gain

The Shannon’s binary entropy function
H(X) = = > cx PrX = x]log, PrX = x]

	Introduction
	Coefficient-wise Key-Recovery
	Another approach to oracles
	SCA-LDPC framework
	Applications
	Appendix

