
SCA-LDPC: A Code-Based Framework for
Key-Recovery Side-Channel Attacks on
Post-Quantum Encryption Schemes

Qian Guo1 Denis Nabokov1 Alexander Nilsson1,2 Thomas Johansson1

December 6, 2023
1Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{qian.guo,denis.nabokov,alexander.nilsson,thomas.johansson}@eit.lth.se

2Advenica AB, Malmö, Sweden



Table of contents

1. Introduction

2. Coefficient-wise Key-Recovery

3. Another approach to oracles

4. SCA-LDPC framework

5. Applications

1



Introduction



Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces⇒ more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Apply a framework for Kyber and HQC

• Kyber — lattice-based primary KEM algorithm for standardization
• HQC — perspective code-based candidate in round 4

2



Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces⇒ more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Apply a framework for Kyber and HQC

• Kyber — lattice-based primary KEM algorithm for standardization
• HQC — perspective code-based candidate in round 4

2



Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces⇒ more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Apply a framework for Kyber and HQC

• Kyber — lattice-based primary KEM algorithm for standardization
• HQC — perspective code-based candidate in round 4

2



Framework for Side-Channel Attacks

SCAs are designed to break crypto in the presence of additional
information

Fewer traces⇒ more powerful attack

We propose a general framework to reduce the number of traces
required for key-recovery on post-quantum KEMs

Apply a framework for Kyber and HQC

• Kyber — lattice-based primary KEM algorithm for standardization
• HQC — perspective code-based candidate in round 4

2



Oracles

• In (code-based and
lattice-based) KEM
decapsulation involves
obtaining a message

• m′ is connected to sk
for the special
ciphertext

Side-channel-assisted CCA using Side-Channel Oracle1 that leaks
information about m′

1Such as plaintext-checking, decryption-failure, full-domain, etc.

3



Oracles

• In (code-based and
lattice-based) KEM
decapsulation involves
obtaining a message

• m′ is connected to sk
for the special
ciphertext

Side-channel-assisted CCA using Side-Channel Oracle1 that leaks
information about m′

1Such as plaintext-checking, decryption-failure, full-domain, etc.

3



Oracles (cont.)

Side-Channel Oracle
chosen
ciphertext

(imprecise)
knowledge

of si

An oracle hides timing, cache-timing, power, electromagnetic, etc.
leakages

4



Oracles (cont.)

The oracle is inherently inaccurate

Typically, oracle with accuracy ρ behaves similarly to Binary
Symmetric Channel2

0

1

0

1

ρ

ρ

1− ρ

1− ρ

2Advanced oracle may return a bit with probability/confidence to be correct

5



Coefficient-wise Key-Recovery



Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent si ∈ {−2,−1, 0, 1, 2}

si = 0?

0 si > 0?

is si even? is si even?

2 1 -2 -1

1 0

1 0

1 0 1 0

6



Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent si ∈ {−2,−1, 0, 1, 2}

si = 0?

0 si > 0?

is si even? is si even?

2 1 -2 -1

A ciphertext (together with an
oracle) specifies a condition

1 0

1 0

1 0 1 0

6



Example of coefficient retrieval

Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent si ∈ {−2,−1, 0, 1, 2}

si = 0?
00100

0 si > 0?
00011

is si even?
10101

is si even?
10101

2 1 -2 -1

Can encode with a binary se-
quence

1 0

1 0

1 0 1 0

6



Imperfect oracle

Problem
The probability to recover secret key with a real-world oracle is very
low

Common solution
Repeat the same ciphertext several times

Majority voting gives more accurate oracle

This approach requires a lot of traces to achieve adequate
probability of key recovery

7



Another approach to oracles



Working on (empirical) distributions

Each oracle call updates the (known) distribution of si

An oracle (BSC) with accuracy ρ = 0.95

Prior
Pr [si = 0] = 0.9
Pr [si = 1] = 0.1

oracle−−−−−→
returns 1

Posterior
Pr [si = 0] = 0.32
Pr [si = 1] = 0.68

Framework works with empirical distributions

Our approach: do NOT try to focus all probability mass on a single
value, some uncertainty for si is okay

8



Check variables

Can construct a ciphertext connecting to si
with some

========⇒
modifications

Can construct a ciphertext connecting to ci =
∑

j∈I sj

Side-Channel Oracle
chosen
ciphertext

(imprecise)
knowledge
of ci =∑

j∈I sj

Similarly, can use a few traces to update distribution of ci

9



Benefits of check variables

Source coding

HQC case (binary secret)
HQC has a sparse secret key, each coefficient sj can be
approximated to be from the Bernoulli distribution. With the
perfect oracle, the obtained information for a bit sj is bounded by
0.0352 bit for hqc-128. Obtaining a bit for check variable as a XOR of
50 coefficients gives 0.6255 bit of information.

Error correction — use checks to correct the distributions of secret
coefficients

10



SCA-LDPC framework



LDPC code

Low-density parity-check (LDPC) code — linear code with a sparse
parity-check matrix

Why LDPC?

• close to optimal error correction performance
• efficient decoding

H =
[
Hr×k| − Ir×r

]
3

• k secret positions to recover
• r parity checks (variables)

3Hr×k is a sub-matrix of a matrix consisting of blocks of circulant (or negacyclic)
matrices

11



LDPC code

Low-density parity-check (LDPC) code — linear code with a sparse
parity-check matrix

Why LDPC?

• close to optimal error correction performance
• efficient decoding

H =
[
Hr×k| − Ir×r

]
3

• k secret positions to recover
• r parity checks (variables)

3Hr×k is a sub-matrix of a matrix consisting of blocks of circulant (or negacyclic)
matrices

11



LDPC code (cont.)

Each row of Hr×k defines a check variable ck+1, . . . , ck+r[
Hr×k| − Ir×r

]
·
[
s1 . . . sk|ck+1 . . . ck+r

]⊺
= 0

We compute empirical distributions for s1, . . . , sk and ck+1, . . . , ck+r.
Send them to LDPC decoder

Decoder = iterative decoding via Belief Propagation using soft
information

Output: updated distributions for s1, . . . , sk (i.e. error-corrected)

12



Attack steps

1. Choose r, create a “good” matrix H
2. (Adaptively) call an oracle a few (could be 0) times to get
empirical distribution for sj

3. Similarly for ci4

4. Call LDPC decoder with empirical distributions for
s1, . . . , sk, ck+1, . . . , ck+r, obtain updated distributions for
s1, . . . , sk

5. Output hard values for s1, . . . , sk

4Number of oracle calls for sj and ci is usually different

13



Applications



Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M45

We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the
attacked device

A non-adaptive power attack with a full-domain oracle (returns the
whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check
variables

5https://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4


Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M45

We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the
attacked device

A non-adaptive power attack with a full-domain oracle (returns the
whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check
variables

5https://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4


Kyber results

We attack masked implementation of Kyber-768 for ARM Cortex-M45

We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the
attacked device

A non-adaptive power attack with a full-domain oracle (returns the
whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check
variables

5https://github.com/masked-kyber-m4/mkm4

14

https://github.com/masked-kyber-m4/mkm4


Kyber results (cont.)

Average accuracy across message bits is about 0.95

Number of traces Average number of errors6

Majority Voting 99 0.34/768
Our Method 12 0.82/768

Theoretical lower bound is 9 traces

6light post-processing is allowed

15



HQC results

An adaptive timing attack with a plaintext-checking oracle (tells if the
decrypted message is equal to some fixed message)

No traces for secret coefficients, only for check variables as a XOR of
50 coefficients

Number of “Idealized oracle”7 calls
[16]8 866000
Our Method ≈ 10000

7Noise-free environment, but not 100% correct
8Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.: Don’t reject
this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE.

16



Conclusion

• Proposed a framework to significantly reduce the number of
traces for successful key recovery

• Soft information/empirical distributions
• Check variables
• LDPC decoder (Belief Propagation)

• Showed real-world benefits for Kyber and HQC

Future work:

• Automate the selection of parameters (i.e. number of check
variables, number of oracle calls, etc.)

• More advanced code-construction method with improved
decoding performance

• Heavy post-processing (lattice-reduction or information-set
decoding)

17



Questions?

17



Kyber simulation

Table 1: Comparison with the majority voting for full-key recovery. t is the
number of votes cast, values in the brackets are m0, m1 and m2, resp.

ρ = 0.995 Number of traces Average number of errors
Majority Voting (t = 3) 27 (ref) 0.21/768
Our Method (2, 1, 4) 10 (−63%) 0.37/768
ρ = 0.95 Number of traces Average number of errors
Majority Voting (t = 7) 63 (ref) 0.47/768
Our Method (3, 4, 2) 17 (−73%) 0.16/768
ρ = 0.9 Number of traces Average number of errors
Majority Voting (t = 11) 99 (ref) 0.67/768
Our Method (4, 3, 4) 24 (−75.8%) 0.46/768



Maximizing information (lattice-based schemes)

For each si we call an oracle a few times with different ciphertexts.
How to choose them?

Can choose ciphertexts maximizing the information (difference
between entropies) gain

The Shannon’s binary entropy function
H(X) = −

∑
x∈X Pr [X = x] log2 Pr [X = x]


	Introduction
	Coefficient-wise Key-Recovery
	Another approach to oracles
	SCA-LDPC framework
	Applications
	Appendix

