

SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes

Qian Guo¹ Denis Nabokov¹ Alexander Nilsson^{1,2} Thomas Johansson¹ December 6, 2023

¹Dept. of Electrical and Information Technology, Lund University, Lund, Sweden {qian.guo,denis.nabokov,alexander.nilsson,thomas.johansson}@eit.lth.se

²Advenica AB, Malmö, Sweden

1. Introduction

- 2. Coefficient-wise Key-Recovery
- 3. Another approach to oracles
- 4. SCA-LDPC framework
- 5. Applications

Introduction

Fewer traces \Rightarrow more powerful attack

We propose a general framework to reduce the number of traces required for key-recovery on post-quantum KEMs

- Kyber lattice-based primary KEM algorithm for standardization
- HQC perspective code-based candidate in round 4

Fewer traces \Rightarrow more powerful attack

We propose a general framework to reduce the number of traces required for key-recovery on post-quantum KEMs

- Kyber lattice-based primary KEM algorithm for standardization
- HQC perspective code-based candidate in round 4

Fewer traces \Rightarrow more powerful attack

We propose a general framework to reduce the number of traces required for key-recovery on post-quantum KEMs

- Kyber lattice-based primary KEM algorithm for standardization
- HQC perspective code-based candidate in round 4

Fewer traces \Rightarrow more powerful attack

We propose a general framework to reduce the number of traces required for key-recovery on post-quantum KEMs

- Kyber lattice-based primary KEM algorithm for standardization
- HQC perspective code-based candidate in round 4

Oracles

- In (code-based and lattice-based) KEM decapsulation involves obtaining a message
- *m'* is connected to sk for the special ciphertext

Algorithm 1 KEM based on FO transform **Input:** $c, \mathsf{sk} = (s_1, \ldots, s_k), \mathsf{pk}, z$ 1: **Function** DECAPS $(c, \mathsf{sk}, \mathsf{pk}, z)$ $m' \leftarrow \mathsf{PKE}.\mathsf{Dec}(\mathsf{sk}, c)$ 2: $r' \leftarrow \mathsf{G}(m'[,\mathsf{pk}])$ 3: $c' \leftarrow \mathsf{PKE}.\mathsf{Enc}(\mathsf{pk}, m', r')$ 4: if c = c' then $5 \cdot$ return H(m', c)6: else 7: return $H_{prf}(z,c)$ 8:

Side-channel-assisted CCA using Side-Channel Oracle¹ that leaks information about *m*′

¹Such as plaintext-checking, decryption-failure, full-domain, etc.

- In (code-based and lattice-based) KEM decapsulation involves obtaining a message
- *m'* is connected to sk for the special ciphertext

Algorithm 1 KEM based on FO transformInput: $c, sk = (s_1, \ldots, s_k), pk, z$ 1: Function DECAPS(c, sk, pk, z)2: $m' \leftarrow \mathsf{PKE}.\mathsf{Dec}(\mathsf{sk}, c)$ 3: $r' \leftarrow \mathsf{G}(m'[, pk])$ 4: $c' \leftarrow \mathsf{PKE}.\mathsf{Enc}(\mathsf{pk}, m', r')$ 5: if c = c' then6: return $\mathsf{H}(m', c)$ 7: else8: return $\mathsf{H}_{\mathsf{prf}}(z, c)$

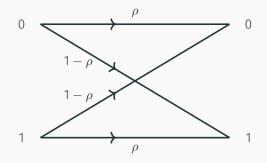
Side-channel-assisted CCA using Side-Channel Oracle¹ that leaks information about *m*′

¹Such as plaintext-checking, decryption-failure, full-domain, etc.

An oracle hides timing, cache-timing, power, electromagnetic, etc. leakages

The oracle is inherently inaccurate

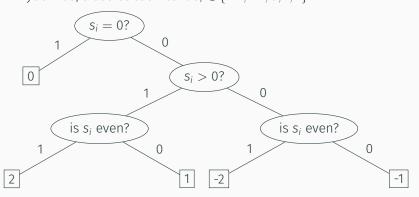
Typically, oracle with accuracy ρ behaves similarly to Binary Symmetric Channel^2



²Advanced oracle may return a bit with probability/confidence to be correct

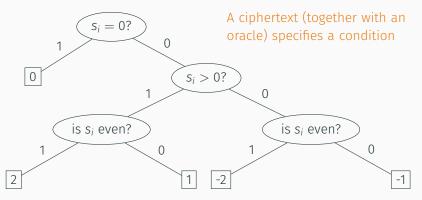
Coefficient-wise Key-Recovery

Binary case: single oracle call reveals the coefficient In Kyber-768, a secret coefficient $s_i \in \{-2, -1, 0, 1, 2\}$



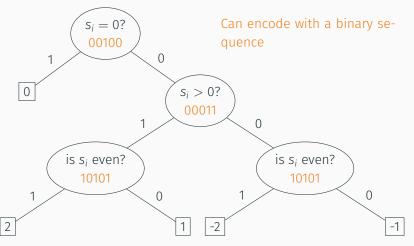
Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent $s_i \in \{-2, -1, 0, 1, 2\}$



Binary case: single oracle call reveals the coefficient

In Kyber-768, a secret coefficent $s_i \in \{-2, -1, 0, 1, 2\}$



Problem

The probability to recover secret key with a real-world oracle is very low

Common solution

Repeat the same ciphertext several times

Majority voting gives more accurate oracle

This approach requires a lot of traces to achieve adequate probability of key recovery

Another approach to oracles

Each oracle call updates the (known) distribution of s_i

An oracle (BSC) with accuracy $\rho = 0.95$

Prior

$$\Pr[s_i = 0] = 0.9$$
 $\xrightarrow{\text{oracle}}_{\text{returns 1}}$ $\Pr[s_i = 0] = 0.32$
 $\Pr[s_i = 1] = 0.1$ $\Pr[s_i = 1] = 0.68$

Framework works with empirical distributions

Our approach: do NOT try to focus all probability mass on a single value, some uncertainty for s_i is okay

Can construct a ciphertext connecting to $s_i \xrightarrow[modifications]{with some}$ Can construct a ciphertext connecting to $c_i = \sum_{j \in \mathcal{I}} s_j$

Similarly, can use a few traces to update distribution of c_i

Source coding

HQC case (binary secret)

HQC has a sparse secret key, each coefficient s_j can be approximated to be from the Bernoulli distribution. With the perfect oracle, the obtained information for a bit s_j is bounded by 0.0352 bit for hqc-128. Obtaining a bit for check variable as a XOR of 50 coefficients gives 0.6255 bit of information.

Error correction — use checks to correct the distributions of secret coefficients

SCA-LDPC framework

Low-density parity-check (LDPC) code — linear code with a sparse parity-check matrix

Why LDPC?

- \cdot close to optimal error correction performance
- efficient decoding

$$\mathsf{H} = \left[\mathsf{H}_{r \times k} | - \mathsf{I}_{r \times r}\right]^3$$

- *k* secret positions to recover
- *r* parity checks (variables)

 $^{^{3}\}mathrm{H}_{r\times k}$ is a sub-matrix of a matrix consisting of blocks of circulant (or negacyclic) matrices

Low-density parity-check (LDPC) code — linear code with a sparse parity-check matrix

Why LDPC?

- close to optimal error correction performance
- efficient decoding

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{r \times k} | - \mathbf{I}_{r \times r} \end{bmatrix}^3$$

- k secret positions to recover
- *r* parity checks (variables)

 $^{{}^3\}mathrm{H}_{r\times k}$ is a sub-matrix of a matrix consisting of blocks of circulant (or negacyclic) matrices

Each row of $\mathbf{H}_{r \times k}$ defines a check variable c_{k+1}, \ldots, c_{k+r}

$$\begin{bmatrix} \mathbf{H}_{r \times k} | - \mathbf{I}_{r \times r} \end{bmatrix} \cdot \begin{bmatrix} s_1 \dots s_k | c_{k+1} \dots c_{k+r} \end{bmatrix}^{\mathsf{T}} = \mathbf{0}$$

We compute empirical distributions for s_1, \ldots, s_k and c_{k+1}, \ldots, c_{k+r} . Send them to LDPC decoder

Decoder = iterative decoding via Belief Propagation using soft information

Output: updated distributions for s_1, \ldots, s_k (i.e. error-corrected)

- 1. Choose *r*, create a "good" matrix **H**
- (Adaptively) call an oracle a few (could be 0) times to get empirical distribution for s_j
- 3. Similarly for c_i^4
- 4. Call LDPC decoder with empirical distributions for $s_1, \ldots, s_k, c_{k+1}, \ldots, c_{k+r}$, obtain updated distributions for s_1, \ldots, s_k
- 5. Output hard values for s_1, \ldots, s_k

⁴Number of oracle calls for *s_i* and *c_i* is usually different

Applications

We attack masked implementation of Kyber-768 for ARM Cortex-M4⁵ We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the attacked device

A non-adaptive power attack with a full-domain oracle (returns the whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check variables

⁵https://github.com/masked-kyber-m4/mkm4

We attack masked implementation of Kyber-768 for ARM Cortex-M4⁵ We use ChipWhisperer toolkit to run power analysis The NN model is trained on a profiling device, then applied to the attacked device

A non-adaptive power attack with a full-domain oracle (returns the whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check variables

⁵https://github.com/masked-kyber-m4/mkm4

We attack masked implementation of Kyber-768 for ARM Cortex-M4⁵

We use ChipWhisperer toolkit to run power analysis

The NN model is trained on a profiling device, then applied to the attacked device

A non-adaptive power attack with a full-domain oracle (returns the whole decrypted message)

• 1 power trace = information about 256 secret coefficients/check variables

⁵https://github.com/masked-kyber-m4/mkm4

Average accuracy across message bits is about 0.95

	Number of traces	Average number of errors ⁶
Majority Voting	99	0.34/768
Our Method	12	0.82/768

Theoretical lower bound is 9 traces

⁶light post-processing is allowed

An adaptive timing attack with a **plaintext-checking** oracle (tells if the decrypted message is equal to some fixed message)

No traces for secret coefficients, only for check variables as a XOR of 50 coefficients

	Number of "Idealized oracle" ⁷ calls
[16] ⁸	866000
Our Method	pprox 10000

⁷Noise-free environment, but not 100% correct

⁸Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.: Don't reject this: Key-recovery timing attacks due to rejection-sampling in HQC and BIKE.

Conclusion

- Proposed a framework to significantly reduce the number of traces for successful key recovery
 - Soft information/empirical distributions
 - Check variables
 - LDPC decoder (Belief Propagation)
- $\cdot\,$ Showed real-world benefits for Kyber and HQC

Future work:

- Automate the selection of parameters (i.e. number of check variables, number of oracle calls, etc.)
- More advanced code-construction method with improved decoding performance
- Heavy post-processing (lattice-reduction or information-set decoding)

Questions?

Table 1: Comparison with the majority voting for full-key recovery. t is the number of votes cast, values in the brackets are m_0 , m_1 and m_2 , resp.

$\rho = 0.995$	Number of traces	Average number of errors
Majority Voting (t = 3)	27 (ref)	0.21/768
Our Method (2, 1, 4)	10 (-63%)	0.37/768
$\rho = 0.95$	Number of traces	Average number of errors
Majority Voting ($t = 7$)	63 (ref)	0.47/768
Our Method (3, 4, 2)	17 (-73%)	0.16/768
$\rho = 0.9$	Number of traces	Average number of errors
Majority Voting ($t = 11$)	99 (ref)	0.67/768
Our Method (4, 3, 4)	24 (-75.8%)	0.46/768

For each s_i we call an oracle a few times with different ciphertexts. How to choose them?

Can choose ciphertexts maximizing the information (difference between entropies) gain

The Shannon's binary entropy function $H(X) = -\sum_{x \in \mathcal{X}} \Pr[X = x] \log_2 \Pr[X = x]$