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Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.
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Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ
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What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.
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So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?
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Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.
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Protocol and Syntax



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)
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Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ckA, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

ckA
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H2()
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Sender Keys: Send & Recv
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Sender Keys: Exec & Proc
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TPC.Send((ck′A, spk
′
A))
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Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC, parametrized by a PCS bound ∆.

∆ is the number of messages needed for the channel to heal [ACD19].
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Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

1

2

3

4

5

6

This can be problematic in practice.
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Proving Security



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)
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Security

Security of Sender Keys (informal)

Let

• SymEnc a IND-CPA symmetric encryption scheme

• Sig a SUF-CMA signature scheme

• H a PRG.

• 2PC a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then, with some adversarial restrictions, Sender Keys is M-INDC(∆) secure.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.
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Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.
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Sender Keys+

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!
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Efficient Key Updates

• Naive approach: Alice sends a fresh pair (ckA, spkA) to everyone.

• Heals only Alice, O
(
n2
)
messages for full group.

• Another approach: Alice sends r $← {0, 1}λ to all users; H(ckID , r) is computed
for all ckID .

• Heals all users, O(n) communication.

• Problem: concurrency; when to delete keys?

• Solution: All keys hashed forward N times before r is applied + keep track of
indices.

• Can remove parties efficiently – O(n) communication.

• Drawback: signature keys not updated.
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Final Remarks



Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org
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