
WhatsUpp with Sender Keys?
Analysis, Improvements and Security Proofs

David Balbás1,2, Daniel Collins3, Phillip Gajland4,5

7th December 2023

1IMDEA Software Institute, Madrid, Spain
2Universidad Politécnica de Madrid, Spain
3EPFL, Lausanne, Switzerland
4Max Planck Institute for Security and Privacy, Bochum, Germany
5Ruhr University Bochum, Germany

ASIACRYPT 2023, Guangzhou, China

1



Group Messaging

2



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

3



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

3



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

3



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

4



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

5



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

5



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

5



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

5



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

6



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

6



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

6



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

7



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

7



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

7



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

7



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

7



Protocol and Syntax



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

8



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

8



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

8



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}

• b $← Proc(T , γ)

8



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

8



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ckA, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

ckA

9



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

H2()

H1()

ckA ck′A

mki

9



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ

9



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ (c , i ,A),σ

(c , i ,A),σ

9



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ck′A, spkA
ckB , spkB
ckC , sskC

ck′A, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ (c , i ,A),σ

(c , i ,A),σ mki ← H1(ckA)

ck′A ← H2(ckA)

Ver(spkA, (c , i ,A))
?
= 1

m ← Dec(mki , c)

9



Sender Keys: Exec & Proc

A B

C

ckB , spkB
ckC , spkC
ckA, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

Trem,C Trem,C

Trem,C

TPC.Send((ck′A, spk
′
A))

10



Sender Keys: Exec & Proc

A B

C

ck′A, ssk′A

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

Trem,C

Trem,C

Trem,C

TPC.Send((ck′A, spk
′
A))

10



Sender Keys: Exec & Proc

A B

C

ck′A, ssk′A

ckA, spkA
ckB , spkB
ckC , sskC

ck′A, spk′A

Trem,C Trem,C

Trem,C

TPC.Send((ck′A, spk
′
A))

10



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC, parametrized by a PCS bound ∆.

∆ is the number of messages needed for the channel to heal [ACD19].

11



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC, parametrized by a PCS bound ∆.

∆ is the number of messages needed for the channel to heal [ACD19].

11



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC, parametrized by a PCS bound ∆.

∆ is the number of messages needed for the channel to heal [ACD19].

11



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC, parametrized by a PCS bound ∆.

∆ is the number of messages needed for the channel to heal [ACD19].

11



Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

1

2

3

4

5

6

This can be problematic in practice.

12



Proving Security



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

13



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

13



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

13



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

13



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• (Add/Remove)(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

13



Security

Security of Sender Keys (informal)

Let

• SymEnc a IND-CPA symmetric encryption scheme

• Sig a SUF-CMA signature scheme

• H a PRG.

• 2PC a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then, with some adversarial restrictions, Sender Keys is M-INDC(∆) secure.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.

14



Security

Security of Sender Keys (informal)

Let

• SymEnc a IND-CPA symmetric encryption scheme

• Sig a SUF-CMA signature scheme

• H a PRG.

• 2PC a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then, with some adversarial restrictions, Sender Keys is M-INDC(∆) secure.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.

14



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

15



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

15



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

15



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

15



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

15



Sender Keys+

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

Security against network adversaries unclear.

• No authentication for control messages:

• Burgle into the group [Rösler et. al, 2018]

• Censorship

• Insecure administration

• Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!

16



Efficient Key Updates

• Naive approach: Alice sends a fresh pair (ckA, spkA) to everyone.

• Heals only Alice, O
(
n2
)
messages for full group.

• Another approach: Alice sends r $← {0, 1}λ to all users; H(ckID , r) is computed
for all ckID .

• Heals all users, O(n) communication.

• Problem: concurrency; when to delete keys?

• Solution: All keys hashed forward N times before r is applied + keep track of
indices.

• Can remove parties efficiently – O(n) communication.

• Drawback: signature keys not updated.

17



Efficient Key Updates

• Naive approach: Alice sends a fresh pair (ckA, spkA) to everyone.

• Heals only Alice, O
(
n2
)
messages for full group.

• Another approach: Alice sends r $← {0, 1}λ to all users; H(ckID , r) is computed
for all ckID .

• Heals all users, O(n) communication.

• Problem: concurrency; when to delete keys?

• Solution: All keys hashed forward N times before r is applied + keep track of
indices.

• Can remove parties efficiently – O(n) communication.

• Drawback: signature keys not updated.

17



Efficient Key Updates

• Naive approach: Alice sends a fresh pair (ckA, spkA) to everyone.

• Heals only Alice, O
(
n2
)
messages for full group.

• Another approach: Alice sends r $← {0, 1}λ to all users; H(ckID , r) is computed
for all ckID .

• Heals all users, O(n) communication.

• Problem: concurrency; when to delete keys?

• Solution: All keys hashed forward N times before r is applied + keep track of
indices.

• Can remove parties efficiently – O(n) communication.

• Drawback: signature keys not updated.

17



Final Remarks



Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org


Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org


Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org


Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org


Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org


Takeaways

• New modelling for group messaging

deviating from CGKA.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

• Careful with not refreshing 2pc! Stale

channels are unsafe.

Future work: what if total ordering

is violated?

Thank you!

ia.cr/2023/1385

david.balbas@imdea.org

daniel.collins@epfl.ch

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
david.balbas@imdea.org
daniel.collins@epfl.ch
phillip.gajland@mpi-sp.org

	Protocol and Syntax
	Proving Security
	Final Remarks

