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Syndrome Decoding in the Head (FJR22)

 Code-based signature scheme
* Using MPC in the Head (MPCitH)

Source:

Thibauld Feneuil, Antoine Joux,
and Matthieu Rivain.
Syndrome Decoding in the
Head: Shorter Signatures from
Zero-Knowledge Proofs.
Crypto'22
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[ Scheme Name J Year I |sgn| ‘ |pk| ‘ tsgn J tyerif J Assumption ‘
Wave 2019 | 207 K | 3.2M |300| - | 5P over Fs (large weight)
(U, U + V)-codes indisting.
Durandal - T 2018 [ 397K | 149K | 4 5 Rank SD over Fom
Durandal - 1T 2018 [ 490 K | 182K | 5 6 Rank SD over Fom
LESS-FM -1 2020 | 152K | 97T K| - - Linear Code Equivalence
LESS-FM - II 2020 | 5.2 K| 206 K - - Perm. Code Equivalence
LESS-FM - III 2020 |10.39 K|11.57T K| - - Perm. Code Equivalence
|GPS22]-256 2021 | 240K | 011 K| - - SD over Fasg
[GPS22]-1024 2021 | 198 K| 012 K| - - SD over Fio24
[FJR21] (fast) 2021 | 226 K| 0.09 K| 13 | 12 SD over Fa
[FJR21] (short) 2021 [ 16,0 K | 0.09 K | 62 | 57 SD over Fs
[BGKM22] - Sigl | 2022 |23.7K | 0.1 K - - SD over Fa
[BGKM22] - Sig2 | 2022|206 K| 0.2 K - - (QC)SD over Fa
Our scheme - Varlf | 2022 | 15.6 K | 0.09 K - - SD over Fo
Qur scheme - Varls | 2022 | 109 K | 009 K | - - SD over Fy
Our scheme - Var2f | 2022 [ 170 K | 0.09 K | 13 13 SD over Fy
Our scheme - Var2s | 2022 | 11.8 K | 0.09 K | 64 61 SD over Fo
Our scheme - Var3f | 2022 [ 115 K |0.14 K | 6 6 SD over Fasg
Qur scheme - Vards | 2022 | 826 K | 0.14 K | 30 | 27 SD over Fasg

Table 6. Comparison of our scheme with signatures from the literature (128-bit security). The sizes are in bytes and
the timings are in milliseconds. Reported timings are from the original publications: Wave has been benchmarked on
a 3.5 Ghz Intel Xeon E3-1240 v5, Durandal on a 2.8 Ghz Intel Core i5-7440HQ, while [FJR21] and our scheme on a

3.8 GHz Intel Core i7.
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Identification schemes (3-round, public coin)

Prover P Verifier V
we Comm:\L (SL) w
c
< C <_K Cs‘oaw/
,7_.<—@csfousc (SL,U, C) 4 >

b« Vw‘% (f.b' W, 612)
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MPCitH for PQ-identification

(Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure multiparty computation”. STOC'07)

Given OWF F: X ->Y

Create identification scheme IDS that proves knowledge of x such that
F(x) =y

for given y in zero-knowledge.

sk=x, pk=y

Used for (at least) 9 of 40 new NIST signature proposals.
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MPCitH

KeyGen:
Sample x, set y = F(x)
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MPCitH

Commit:

—
Secret share x: X = 2/x; ¢, o FAXex Six;

Sample random tapes: r; <, &
Commit to shares & rand: cowm = COM (x; ,n)

Run MPC protocol 7 such that TC (s v ) = o

Output (com;  u: )L
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A

2,

a, =0
F(2x)=y
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MPCitH

Response:
Open all commitments except com_and output openings.

= RCJ‘MV‘(/[ <X(, Vi >

Lt C
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MPCitH

Verify:
Check cow = COM (x:.v;) o(;=1—L(XL.Vc)

vV

Verify 21 o =0

iz

Return true if none of the above failed.
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MPCitH Security

HVZK: Secrecy of inputs in MPC

Soundness: Cut & Choose - catch a cheating prover with
probability 1- (1 / #parties)

Special soundness: Two valid openings for same commitments but

different challenge reveal all secret shares (and as it opens
all parties, none of them can have cheated without getting caught)
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SDitH (FJR'22)

Apply MPCitH to Syndrome Decoding problem

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a

uniformly random parity check matriz H € Fg%_k)xm, and binary vector x € F'gp,
with wt(x) = w. Let syndrome y = Hx. Then given only H,y, it is difficult to

find X' € Fgp, such that Hx' =y with wt(x') < w.
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SDitH (FJR'22)

Apply MPCitH to Syndrome Decoding problem

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a

uniformly random parity check matriz H € Fg%_k)xm, and binary vector x € F'gp,
with wt(x) = w. Let syndrome y = Hx. Then given only H,y, it is difficult to

find X' € Fgp, such that Hx' =y with wt(x') < w.

Advantage: Linear function.
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SDitH (FJR'22)

Apply MPCitH to Syndrome Decoding problem

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a

uniformly random parity check matriz H € Fg%_k)xm, and binary vector x € F'gp,
with wt(x) = w. Let syndrome y = Hx. Then given only H,y, it is difficult to

find X' € Fgp, such that Hx' =y with wt(x') < w.

Advantage: Linear function.
Disadvantage: Weight check.
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SDitH — Weight check

* Uses "Polynomial zero-test"
 Uses polys Q, P, and public F as well as polynomial S derived from x
such that
T=SQ-PF=0 if wt(x) <w
e Checking this is done by evaluating T at random points.
* Needs multiplication which needs one more round of interaction!
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SDitH Identification scheme (5-round, public coin)

ProverP (sk-x) Verifier V
Camru’-!, S,Q‘P Esqul( rl
Secveh slave § QP p W
l-\/: ZCOM (Sz'a‘ltﬁ"-i)f-_ ~
i\l{}: pRG’( C.‘) C4 CS
M (CYL TN I e, CSpoce,
2'1 = { oL':I Za .
e Cs
< C&r —opacs
Z,° [(.f;' a;,ri,ri)}(_/tc Zy .

L)<- Vw‘% (FL' W, &, Zucugz)
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Tweaks

Use TreePRG for random x; and r.. (Log size opening)

Hypercube:

Carlos Aguilar-Melchor,

Nicolas Gama, James Howe,
Andreas Hiilsing, David Joseph,
and Dongze Yue

The Return of the SDitH.
EUROCRYPT, 2023

16  SDitH in the QROM

H-12 13
4 [ 15 | 16
17 | I8 | 19§

CDEE)

TU/e



Signature Scheme

Fiat-Shamir transform

* S.KeyGen = IDS.KeyGen

* S.Sign(sk,m)=P.COMMIT + P.RESPONSE, + P.RESPONSE,
with ¢; = H(w[, m]), ¢, = H(cy,z;,m)

» S.Verify = V.verify with ¢, = H(w[, m]), ¢, = H(c,,z,m)
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How to prove security?

18

IDS: Done in [FJR'22]
Signature against classical adversaries (ROM): Done in [FIR'22]

Signature against quantum adversaries (QROM): ?

SDitH in the QROM
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How to prove security?

19

IDS: Done in [FJR'22]
Signature against classical adversaries (ROM): Done in [FIR'22]
Signature against quantum adversaries (QROM): ?

Generic results on (5-round) FS have a horrible tightness loss
Amazing (pretty) tight result for commit & open IDS

J. Don, S. Fehr, C. Majenz, and C. Schaffner.
Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM.
Crypto'22

But: only for 3-round IDS
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Wait, FJR'22 showed 2-special soundness.

20  SDitH in the QROM
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We showed something about 2-special sound
5-round IDS in the MQDSS paper...
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Observation

We can apply a "cheap FS transform" to the first challenge.

* Replace challenge by hash of commitment
e Security argument based on hard search problem

e Cheap? No extraction needed. Just information theoretic arguments
(as everything is in the (Q)ROM).

22 SDitH in the QROM
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Proof strategy

 Reduce to 3-rounds
* Prove HVZK in QROM -> standard
* Prove Soundnessin QROM -> see below

* Apply known results:
. A. B. Grilo, K. Hovelmanns, A. Hiilsing, and Christian Majenz. Tight adaptive reprogramming in the QROM. Asiacrypt'21
UF-NMA + HVZK ==QROM==> UF-CMA
. J. Don, S. Fehr, C. Majenz, and C. Schaffner.

Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM.
Crypto'22

Sp. Sound. ==QROM==> UF-NMA
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Computational version of special soundness

Definition 3 ((Query-bounded) distance-d special soundness for IDS
with splittable challenge). We define the advantage of a possibly quantum
adversary A against the query bounded special soundness of a composed DS
with respect to extractor Ext in the (quantum-accessible) random oracle model as

follows
AdvldD_SiFéit (A) :=Pr][(sk, pk) < Keygen(); ((w1,c1,21), (wa,C2,22)) ARO (pk);
sk’ « EX‘tRO((Wl,Cl,Zl), (wa, C2,22)) : Vrf(pk,w;, c;z;) = 1
i€ {1,2} A (wg = wg) Ad = Dist(cy,c2) A (sk’, pk) & Keygen()],

24 SDitH in the QROM TU/e



Proven bound

Theorem 4. Our identification scheme I has query-bounded distance-d special
soundness. More precisely, let A“®™C be a distance-d special soundness adversary
making at most qcom and qa queries to its oracles Com and G, respectively, and
set ¢ = qcom + qc and § =q+ 7 - NP + 1. Then the bounds

(TNP + l)gi +q(7)p" in the ROM

AdviESP® (A) < 7
os e ()5 {(1OTND +4T) % + 10 ()0 in the QROM+

hold, where ¢ is the output length of Com.
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Proven bound

Theorem 4. Our identification scheme I has query-bounded distance-d special
soundness. More precisely, let A“®™C be a distance-d special soundness adversary
making at most qcom and qa queries to its oracles Com and G, respectively, and
set ¢ = qcom + qc and § =q+ 7 - NP + 1. Then the bounds

D ﬁ ~(T\ t-d .
Advldt;ss%it (A) < (TN" +1)3; JiSQ(d)p ) in the ROM 2
’ (107NP +47)L + 1042 () pt®  in th€ QROM+ ) -

hold, where ¢ is the output length of Com.
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QROM+ - Phase 1

A\I

27  SDitH in the QROM

Compressed oracle [Zhandry'18]
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QROM-+ - Phase 2

A\I

A
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Compressed oracle [Zhandry'18]
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Why do we need a QROM+?

* We build algorithm R for oracle search problem
* Rruns A against soundness of IDS

* Asolves search problems (reflected in queries)
* A's QROM queries cannot be seen by R

29  SDitH in the QROM TU/e



Why is this unproblematic?

Search problems are not easier in QROM+!
 Rasawhole (including A) has the knowledge

* It'sasif Ris oblivious

 Measurement does not give any new information

30 SDitH in the QROM
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UF-NMA

— ,LVWSQW‘”\
Sy oy e

deco

Corollary 2. Let A be a UF-NMA-adversary against FS[M,RO| that makes qro/> 7+ NP + 1,
Gcom and qc quantum querdes to RO, Com and G respectively. Then for alld =0J1,...,7 we get
1
ND:(r—d)"

Advpdine roj (A) <esp + (327N 7 + 107) L + 10-q (T) Pt + 2042

d
Here, egp 1s the mazximal success probability that an adversary with runtime TIME(A)+TIME(CompOr(q))+
TIME(Extg), where TIME(CompOr(q)) is the runtime of a compressed oracle simulation for q

queries, can solve syndrome decoding. Also ¢ = qcom +IRO + ¢ s the total number of random or-

acle queries of A, c is the output length of Com, and the¢ atomic polynomial zero test false-positive
probability p is defined and bounded in Equation (11) |and Equation (12).

2¢

SPccEaL Souun n(mosj +

FS" [‘fau.s Fo/ un
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UF-CMA

32

Wizl

Corollary 3. Let A be a UF-CMA-adversazyf against FS[M, RO| that makes qro > 7- NP +1,
4PRG, Qcom and qg quantum queries to , PRG, Com and G respectively, and qs (classical)
signing queries. Then for all d = 0,1, ..

A0 (A) < s+ AN + 10m°2 102 |

d
-
(QPRG+QST)2)+ 39‘5\/QR0+Q5+1

VAL

(14)

+qsT (16q<:om27"/2+ log(NP —1)

Here esp is the maximal success probability that an adversary that nuns in time TIME(A) +
TIME(CompOr(q)) + TIME(Exty), where TIME(CompOr(q)) is the réntime of a compressed
oracle simulation for q queries, can solve syndrome decoding. Moreover, ¢ = qcom + qrO + 4G
is the total number of random oracle queries of A, c is the output length of Com, and the
atomic polynomial zero test false-positive probability p is defined in Equation (11) and bounded
in Equation (12), n is the seed length of TreePRG, r is the length of commitment randomness.

Q&rroa rCun ta M&
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UF-CMA

33

(owr

Wl
Wizl

ARG (A) < eso -+ (N + 10002k 10 o

-
+gs7)?)\ 3 +qs+1
+1 Tog(NP — 1) qpr«zznqu))Jr ;IS\/QRO 235 | (1)
~ S

Here esp is \the mazimal stgtess probability that an\adversary that nuns in time TIME(A) +
TIME(CompQr(q)) + TIME(Exty), where TIME(Comp®r(q)) is the réntime of a compressed
oracle simulafion for q gleries, cap solve syndrome decyding. Moreover, ¢ = qgcom + qrO + G
is the total pumber of random orawle queries of A, c X the output length of Com, and the
atomic polynpmial Zro test false-positiye probability p is dkfined in Equation (11) and bounded
in Equation (12) /n is the seed length of NreePRG, r is the I&ngth of commitment randomness.

. ( EC’/ -0 v-awxmfu
Allbarget allcks Wl o, RO

SDitH in the QROM e

pt-d+2}(1|:-,{//4,4

TU/e



Results

Table 1: Implementation benchmarks of Hypercube-SDitH vs our tweaked scheme for NIST
security level I. For the PoW, the parameter kj;., = D is used.

Scheme Aim Signature Parameters Sign Time (in ms) Verify Time

Size (bytes) |Fpoints]

o~

D T Offline  Online Total (in ms) Total

Hypercube-SDitH  Short 8464 924 5 8 17 3.83 0.68 4.51 4.16
2] Shorter 6760 924 5 12 12 44.44 0.60 45.04 42.02

Ours Short 8464 924 5 8 17 4.45 0.049 4.50 4.17
Vanilla Shorter 6760 924 5 12 12 44.98 0.080  45.06 42.02
Ours Short 7968 224 5 8 16 4.20 0.14 4.34 4.00

PoW Shorter 6204 224 5 12 11 41.06 1.49 42.55 39.75
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Conclusion

35

Security proof for SDitH and H-SDitH against quantum adversaries
Bound is tight up to constants if multi-target mitigation is used
Allows for online-offline signatures with very short online phase
Technigues may apply to similar schemes

(eprint) POW can be used to optimize parameters

https://eprint.iacr.org/2023/756.pdf
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Backup
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PoW (increase cost of RO query)

37

Corollary 3. Let A be a UF-CMA-adversary against FS[M, RO| that makes qro > 7- NP +1,
dPRGs QCom and qg quantum queries to RO, PRG, Com and G respectively, and qs (classical)
signing queries. Then for alld=0,1,...,7T,

AdvESiBeRo; (A) < esp + (327N P +107)¢°27¢ + 10 - ¢° (2) P+ QOQQW

- + gsT)* 3 +qs+1
+qsT (16chm2 7"/2—|—1og(ND—1)(quG2nqS ) )+ gs\/qr‘o .

(14)

Here esp is the maximal success probability that an adversary that runs in time TIME(A) +
TIME(CompOr(q)) + TIME(Exty), where TIME(CompOr(q)) is the runtime of a compressed
oracle simulation for q queries, can solve syndrome decoding. Moreover, ¢ = Gcom + qrO + G
s the total number of random oracle queries of A, c is the output length of Com, and the
atomic polynomial zero test false-positive probability p is defined in Equation (11) and bounded
in Equation (12), n is the seed length of TreePRG, r is the length of commitment randomness.
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Identification schemes (5-round, public coin)

Prover P Verifier V
we Comm:\L (SL) w
€ < CS
< C'A R f)aco"
Zf'@csfwuscA( SL,U. g) 2, .
< c C% CSfm.oc/Z
az,< @csroum (Sl(, . ,'lecz) Zy >

l’)<‘~ VWF? (f’ G u[’uez)
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Security Properties

(special) soundness: There exists an efficient extractor E that given two
transcripts with same w but different c, extracts sk.

Honest verifier zero-knowledge (HVZK): There exists an efficient simulator S

that, given only the public key, outputs transcripts which are
indistinguishable from transcripts of honest protocol runs
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Identification schemes (3-round, public coin)

Prover P Verifier V
we Comm:\L (SL) w
c
< C <_K Cs‘oaw/
,7_.<—@csfousc (SL,U, C) 4 >

b« Vw‘% (f.b' W, 612)
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