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SNARKS

Succinct Non-interactive ARguments of Knowledge

Verifier V

Accept or
Reject

Completeness: V(z,w) € Re:
Pr[V(z,n)=1| 7+ P(z,w)] =1
e-Soundness: Vz ¢ L,V PPT P*:
Pr[V(z,7*) =1 | 7" & P*(2)] < ez, \)

e-Knowledge Soundness: 3 PPT
extractor £ such that Vax and V PPT P*:

Pr[(z, €7 (2)) € Re] +e(x,\) >
Pr[V(z,7*) =1 | 7° <& P*(2)]

Succinctness: |7| = ox(Jw]|); ideally
Ox(polylog(|w|))
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SNARK CONSTRUCTION PARADIGM

Construct a public-coin Interactive Oracle Proof (IOP) for £ € NP

I know w s.t.
(z,w) € Re

Verifier V

1. Query oracles
R

2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness

If desirable: Knowl-
edge Soundness

Random c¢,

3/33



SNARK CONSTRUCTION PARADIGM

Replace oracles with Merkle trees, and replace Verifier queries with
Merkle authentication paths

| L € NP, Random Oracle H |

I know w s.t.
(z,w) € Rp Q
MT"(f1) > w

Random ¢;
Prover P . Verifier V/
) 1. Replace oracle query
H
MT (f 7’) answers with Merkle auth.
paths from P.
Random ¢, 2. Check auth. path

consistency with roots,

MT* (f r+1) do some computation.
) 3. Output Accept or

Reject. 4/33



SNARK CONSTRUCTION PARADIGM

Compress Merkle tree protocol with Fiat-Shamir by replacing V
challenges with output of H

‘ L € NP, Random Oracle H ‘

I know w s.t.
(z,w) € Re

MT"(f))

Prover P

1. Generate queries to

MTH(fT) fi with H.
cr = H(z, MT(f1),..., MT(fr))Q' Add Merkle auth.

paths for queries to 7.
MT" (f 7"+1) )
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m E.g., sequential /parallel repetition of constant-sound interactive
protocols
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m Not secure in general [Bar01, GK03, BDG 13|, even in RO model,
for many-round (w(1)-round) protocols

m E.g., sequential /parallel repetition of constant-sound interactive
protocols

m F'S often applied to many-round protocols without formal security

proofs
m Often only prove interactive security
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Our Results: Bird’s Eye View
Prove FS security of the FRI Protocol [BBH"18] and the
batched FRI Protocol
m Fills security gaps in [CMS19, COS20, KPV22]

Introduce 6-Correlated IOPs and prove their FS security
m Intuitively, these are protocols that use FRI as a sub-routine

Formulate a d-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security
m Captures Plonky?2 [Pol|, Redshift [KPV22], RISC Zero [Tea23]
m ethSTARK [Sta23] and DEEP-FRI [BGK " 20] also fit in this
framework

“Plonk-like” ~ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK 18, BEG 94, BCG 18], helped popularized by the
PLONK SNARK [GWC19]
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CONTEXT: WHY FRI?

m FRI is popular in the SNARK space

80-bits of conjectured ¥ dydXv3 O A ZKRolly ¢ $341Mm
interactive security

Immutable X o validium ¢ $197M -
j{)ﬁ-blts of conjectured

interactive security

Starknet ZKRollup @ $167M

Also uses FRI Polygon zkEVM © ZKRollup®  $113M

m Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil|
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CONTEXT: WHY FRI?

Before this work, no formal
FS security analysis of FRI existed
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Parameters:

m Finite field F and Ly C F of size 2™
m [ is a smooth multiplicative subgroup

m Degree bound dy = 2F
m RSY := RS[F, Lo, do] = {(f(2))zeLo: f(X) € F<®[X]}

= Rate p = do/|Lo| = 2~"%), proximity parameter 6 € (0,1 — VP),
verifier repetition parameter £ € Z*

FRI proves that a function Gg: Ly — F is d-close to RS” J
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SHOWING FIAT-SHAMIR SECURITY

= Round-by-round (Knowledge) Soundness [CCH 19, CMS19]

RBR Soundness: Intuition
If z ¢ L, then protocol is “doomed”

No matter what the prover does, the protocol should forever remain
“doomed”
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ROUND-BY-ROUND SOUNDNESS

Definition 1 (RBR Soundness)

A protocol II for a language £ has RBR soundness error ¢ if 3 a
“doomed” set of (partial) transcripts D such that:

If z ¢ £ then (z,0) € D;

For all complete transcripts 7, if (x,7) € D then the verifier rejects;
and

If 7,1 is an (¢ — 1)-partial transcript and (z,7;—1) € D, then for all
prover messages m:

Pr((z, mi-1llmflc) € D] <e.
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RBR SOUNDNESS AND FIAT-SHAMIR SECURITY

Round-by-round soundness implies Fiat-Shamir security

RBR Error [CMS19, BCSLG] N FS Error
£ 7| Qe +0(Q%/2%)

RO Model
Q-query adversary
k-bit RO output
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OUR REsuLTS: FS SECURITY OF FRI

Theorem 1

Let F be a finite field, Lo C F* be a smooth multiplicative subgroup of size
2" do = 2%, p=dy/|Lo|, and £ € ZF. For any integer m > 3,

n € (0,y/p/(2m)), 6 € (0,1 —\/p —mn), and function Go: Lo — F that is
d-far from RS[F, Lo, dy], the FRI protocol has RBR (knowledge)
soundness error

FRI (m+ 1/2)7|L0‘2 ¢
= I ]_ - 6 .
Erbr ax{ 3,03/2’IF| 7( )
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Theorem 1

Let F be a finite field, Lo C F* be a smooth multiplicative subgroup of size
2" do = 2%, p=dy/|Lo|, and £ € ZF. For any integer m > 3,

n € (0,y/p/(2m)), 6 € (0,1 —\/p —mn), and function Go: Lo — F that is
d-far from RS[F, Lo, dy], the FRI protocol has RBR (knowledge)
soundness error

FRI (m+ 1/2)7|L0‘2 ¢
= I ]_ - 5 .
Erbr ax{ 3,03/2’IF| 7( )

m Same result holds for batched FRI

m Implies FS error @ - £FX + O(Q?/2%) in the ROM

"When batching with distinct challenges; see paper for details.
14/33




COMPARISON WITH FRI INTERACTIVE SECURITY

m Best provable interactive soundness of FRI [BCI*20] is

€1+ €9 + €3, where

(m+1/2)722n 2" . n ¢
S el =0 =(1-6
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m Best provable interactive soundness of FRI [BCI*20] is

€1+ €9 + €3, where

(m +1/2)722" (2”-n) ¢
o 353/2[F| oI es=(1-9)

m We prove FRI has RBR soundness error = max{ej,e3}
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0-CORRELATED IOPS

L € NP and o-correlated: for a
all prover oracles are d-correlated fixed RS codespace, all
fi are d-close to RS

I know w s.t.
(z,w) € Rp

.
\z

Random c1

Oracle O for

\

Prover P

Verlﬁer |4

m 1. Query oracles f1,..., fry1-
Oracle /. o/ 2. Query O to check all fi, ...
fr+1 at simultaneously.

3. Do some computation.
4. Output Accept or Reject.

Random ¢,
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OUR RESULTS: 0-CORRELATED [OPS

Theorem 2 (Informal)

Let Hf;g be a 0-correlated IOP for a fized RS code of rate p € (0, 1], and
let n € (0,/p).
If IS has RBR (knowledge) error e, then 11§ has RBR (knowledge)
error €/(2n,/p), where d =1 —/p —n > 0.
If 11" is an IOP for testing §-correlation in RS with RBR error €,
then TI§ is an IOP with RBR (knowledge) error max{e/(21/p), 8/};
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SNARKS FROM §-CORRELATED IOPS

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)

sound O-correlated RER(lnowledze)

S sound IOP
Theorem 2.1 T[gr]zgssfiin

RBR (knowledge) SNARG

sound J-correlated (SNARK)

I0OP
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OUR REsuULTS: “PLONK-LIKE” 6-CORRELATED I1OP

m We present a d-correlated IOP called OPlonky
m Captures “Plonk-like” protocols which use FRI as a sub-routine

m We prove RBR soundness of OPlonky

m Captures RBR soundness of [Pol, KPV22| and other Plonk-like
protocols

m Our results can also be used to prove RBR soundness of ethSTARK
and RISC Zero [Tea23|

m ethSTARK has since independently been proven to be RBR sound
[Sta23]
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REMAINDER OF THE TALK

m Full FRI Protocol Overview

m RBR Soundness of FRI
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THE FRI PROTOCOL

Phase 1: Folding Phase J

Go Lo—)IF

Go ))zeLo ﬂ

Prover P _ Verifier V'

“Fold” Go into G1
Ly = {2%: z € Ly}, dy := do/2

Define G1: Ly — F as random «g-linear combo of “left” and “right”
halves of G

Recurse above with Gy and RS' = RS[F, Ly, d; ]

21 /33
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THE FRI PROTOCOL

Phase 2: Query Phase J

log(dy) = k rounds
of folding

Has oracles

Go,...,Gr1
GpelF v

\ u
Prover P Verifier V'
Check Consistency

V' queries each oracle at 2 positions
V' checks consistency of G;—1 and Gj for all i € [k]

V repeats this process £ times

22 /33
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RBR SOUNDNESS OF FRI

RBR Soundness of Folding Phase

Go: Lo — F is é-far from RS

m If Gy is d-close to RS!, then P* can behave honestly and fool V!
= By [BCI20]:
(m +1/2)7|Lo|?

3p3/2|F|

Pr[G is 6-close] <
ao

23
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RBR SOUNDNESS OF FRI

RBR Soundness of Folding Phase

Gi_1: Li_1 — F is §-far from RS !

Protocol is doomed iff

G7 is not a correct folding of G;_1; or

Gi+1 (computed from honest G;) is d-far.
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RBR SOUNDNESS OF FRI

RBR Soundness of Folding Phase

Gi_1: Li—1 — Fis é-far from RS*™!

By same argument [BCI'20]:

(m +1/2)7|Lo|?
3p3/2|F|

Pr[G}, «; is not doomed] <
a;
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RBR SOUNDNESS OF FRI

RBR Soundness of Query Phase J

Protocol in doomed state
Ji € [k —1] s.t. G; is d-far

Has oracles

Go,...,Gr1
G €F l;)

Prover P* Verifier V
m Protocol is not doomed iff all V' checks pass
m [BBH' 18, BCI"20]: if 3i € [k — 1] such that G; is é-far, then

Pr[not doomed] = Pr[all V checks pass] < (1 — 6)*

o
26 /33




SUMMARY

Our Results: Bird’s Eye View
Prove FS security of the FRI Protocol [BBH"18] and the
batched FRI Protocol
m Fills security gaps in [CMS19, COS20, KPV22]

Introduce 6-Correlated IOPs and prove their FS security
m Intuitively, these are protocols that use FRI as a sub-routine

Formulate a J-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security
m Captures Plonky?2 [Pol|, Redshift [KPV22], RISC Zero [Tea23|
m ethSTARK [Sta23] and DEEP-FRI [BGK ' 20| also fit in this
framework
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THANK YoUu!

Full version
https://ia.cr/2023/1071
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