FIAT-SHAMIR SECURITY OF FRI AND RELATED SNARKS

¹Georgetown University

²University of Maryland

 3 Nethermind

⁴a16z crypto research

⁵Johns Hopkins University

$\mathbf{S} \text{uccinct } \mathbf{N} \text{on-interactive } \mathbf{A} \mathbf{R} \text{guments of } \mathbf{K} \text{nowledge}$

Completeness: $\forall (x, w) \in \mathcal{R}_{\mathcal{L}}$:

$$\Pr[V(x,\pi) = 1 \mid \pi \leftarrow P(x,w)] = 1$$

$\mathbf{S} \text{uccinct } \mathbf{N} \text{on-interactive } \mathbf{A} \mathbf{R} \text{guments of } \mathbf{K} \text{nowledge}$

Completeness: $\forall (x, w) \in \mathcal{R}_{\mathcal{L}}$:

$$\Pr[V(x,\pi) = 1 \mid \pi \leftarrow P(x,w)] = 1$$

 ε -Soundness: $\forall x \notin \mathcal{L}, \forall \text{ PPT } P^*$:

$$\Pr[V(x,\pi^*) = 1 \mid \pi^* \stackrel{\$}{\leftarrow} P^*(x)] \leqslant \varepsilon(x,\lambda)$$

$\mathbf{S} \text{uccinct } \mathbf{N} \text{on-interactive } \mathbf{A} \mathbf{R} \text{guments of } \mathbf{K} \text{nowledge}$

Completeness: $\forall (x, w) \in \mathcal{R}_{\mathcal{L}}$:

$$\Pr[V(x,\pi) = 1 \mid \pi \leftarrow P(x,w)] = 1$$

 ε -Soundness: $\forall x \notin \mathcal{L}, \forall \text{ PPT } P^*$:

 $\Pr[V(x,\pi^*) = 1 \mid \pi^* \xleftarrow{\$} P^*(x)] \leqslant \varepsilon(x,\lambda)$

 ε -Knowledge Soundness: \exists PPT extractor \mathcal{E} such that $\forall x$ and \forall PPT P^* :

$$\Pr[(x, \mathcal{E}^{P^*}(x)) \in \mathcal{R}_{\mathcal{L}}] + \varepsilon(x, \lambda) \ge \\ \Pr[V(x, \pi^*) = 1 \mid \pi^* \stackrel{\$}{\leftarrow} P^*(x)]$$

$\mathbf{S} \text{uccinct } \mathbf{N} \text{on-interactive } \mathbf{A} \mathbf{R} \text{guments of } \mathbf{K} \text{nowledge}$

Completeness: $\forall (x, w) \in \mathcal{R}_{\mathcal{L}}$:

$$\Pr[V(x,\pi) = 1 \mid \pi \leftarrow P(x,w)] = 1$$

 ε -Soundness: $\forall x \notin \mathcal{L}, \forall \text{ PPT } P^*$:

 $\Pr[V(x,\pi^*) = 1 \mid \pi^* \xleftarrow{\$} P^*(x)] \leqslant \varepsilon(x,\lambda)$

 ε -Knowledge Soundness: \exists PPT extractor \mathcal{E} such that $\forall x$ and \forall PPT P^* :

$$\Pr[(x, \mathcal{E}^{P^*}(x)) \in \mathcal{R}_{\mathcal{L}}] + \varepsilon(x, \lambda) \ge \\ \Pr[V(x, \pi^*) = 1 \mid \pi^* \stackrel{\$}{\leftarrow} P^*(x)]$$

Succinctness: $|\pi| = o_{\lambda}(|w|)$; ideally $O_{\lambda}(\text{polylog}(|w|))$

2 Replace oracles with Merkle trees, and replace Verifier queries with Merkle authentication paths

3 Compress Merkle tree protocol with Fiat-Shamir by replacing V challenges with output of \mathcal{H}

- Not secure in general [Bar01, GK03, BDG⁺13], even in RO model, for many-round ($\omega(1)$ -round) protocols
 - E.g., sequential/parallel repetition of constant-sound interactive protocols

- Not secure in general [Bar01, GK03, BDG⁺13], even in RO model, for many-round ($\omega(1)$ -round) protocols
 - E.g., sequential/parallel repetition of constant-sound interactive protocols
- FS often applied to many-round protocols **without** formal security proofs
 - Often only prove *interactive security*

Our Results: Bird's Eye View

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

THIS WORK

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ -Correlated IOPs and prove their FS security

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ -Correlated IOPs and prove their FS security

■ Intuitively, these are protocols that use FRI as a sub-routine

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

- 2 Introduce δ -Correlated IOPs and prove their FS security
 - Intuitively, these are protocols that use FRI as a sub-routine
- **3** Formulate a δ -Correlated IOP which captures many "Plonk-like" protocols and prove their FS security

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

- **2** Introduce δ -Correlated IOPs and prove their FS security
 - Intuitively, these are protocols that use FRI as a sub-routine
- **3** Formulate a δ -Correlated IOP which captures many "Plonk-like" protocols and prove their FS security
 - Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
 - ethSTARK [Sta23] and DEEP-FRI [BGK⁺20] also fit in this framework

Our Results: Bird's Eye View

Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol

■ Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ -Correlated IOPs and prove their FS security

- Intuitively, these are protocols that use FRI as a sub-routine
- **3** Formulate a δ -Correlated IOP which captures many "Plonk-like" protocols and prove their FS security
 - Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
 - ethSTARK [Sta23] and DEEP-FRI [BGK⁺20] also fit in this framework

"Plonk-like" \approx protocols which use FRI + a permutation argument [Lip89, Lip90, ZGK⁺18, BEG⁺94, BCG⁺18], helped popularized by the PLONK SNARK [GWC19]

CONTEXT: WHY FRI?

■ FRI is popular in the SNARK space

CONTEXT: WHY FRI?

■ FRI is popular in the SNARK space

CONTEXT: WHY FRI?

■ FRI is popular in the SNARK space

 Plonk-like protocols are also used in many L2 projects; e.g., [Min, Mat, Suc, Dus, nil]
Before this work, no formal FS security analysis of FRI existed

THE FRI PROTOCOL

 $\mathbf{FRI} = \mathbf{F}$ ast Reed-Solomon IOP of Proximity [BBH⁺18]

$FRI = Fast Reed-Solomon IOP of Proximity [BBH^+18]$

Parameters:

- Finite field \mathbb{F} and $L_0 \subset \mathbb{F}$ of size 2^n
 - L_0 is a smooth multiplicative subgroup

$\mathbf{FRI} = \mathbf{F}$ ast Reed-Solomon IOP of Proximity [BBH⁺18]

Parameters:

- Finite field \mathbb{F} and $L_0 \subset \mathbb{F}$ of size 2^n
 - L_0 is a smooth multiplicative subgroup

• Degree bound $d_0 = 2^k$

$\mathbf{FRI} = \mathbf{F}$ ast Reed-Solomon IOP of Proximity [BBH⁺18]

Parameters:

- Finite field \mathbb{F} and $L_0 \subset \mathbb{F}$ of size 2^n
 - L_0 is a smooth multiplicative subgroup
- Degree bound $d_0 = 2^k$

•
$$\mathsf{RS}^0 := \mathsf{RS}[\mathbb{F}, L_0, d_0] = \{ (f(z))_{z \in L_0} \colon f(X) \in \mathbb{F}^{< d_0}[X] \}$$

$\mathbf{FRI} = \mathbf{F}$ ast Reed-Solomon IOP of Proximity [BBH⁺18]

Parameters:

- Finite field \mathbb{F} and $L_0 \subset \mathbb{F}$ of size 2^n
 - L_0 is a smooth multiplicative subgroup
- Degree bound $d_0 = 2^k$

RS⁰ := RS[
$$\mathbb{F}, L_0, d_0$$
] = { $(f(z))_{z \in L_0} : f(X) \in \mathbb{F}^{}$

■ Rate $\rho = d_0/|L_0| = 2^{-(n-k)}$, proximity parameter $\delta \in (0, 1 - \sqrt{\rho})$, verifier repetition parameter $\ell \in \mathbb{Z}^+$

$\mathbf{FRI} = \mathbf{F}$ ast Reed-Solomon IOP of Proximity [BBH⁺18]

Parameters:

- Finite field \mathbb{F} and $L_0 \subset \mathbb{F}$ of size 2^n
 - L_0 is a smooth multiplicative subgroup

• Degree bound
$$d_0 = 2^k$$

•
$$\mathsf{RS}^0 := \mathsf{RS}[\mathbb{F}, L_0, d_0] = \{ (f(z))_{z \in L_0} \colon f(X) \in \mathbb{F}^{$$

■ Rate $\rho = d_0/|L_0| = 2^{-(n-k)}$, proximity parameter $\delta \in (0, 1 - \sqrt{\rho})$, verifier repetition parameter $\ell \in \mathbb{Z}^+$

FRI proves that a function $G_0: L_0 \to \mathbb{F}$ is δ -close to RS^0

■ Round-by-round (Knowledge) Soundness [CCH⁺19, CMS19]

RBR Soundness: Intuition

■ Round-by-round (Knowledge) Soundness [CCH⁺19, CMS19]

RBR Soundness: Intuition

If $x \notin \mathcal{L}$, then protocol is "doomed"

No matter what the prover does, the protocol should forever remain "doomed"

A protocol Π for a language \mathcal{L} has RBR soundness error ε if \exists a "doomed" set of (partial) transcripts \mathcal{D} such that:

A protocol Π for a language \mathcal{L} has RBR soundness error ε if \exists a "doomed" set of (partial) transcripts \mathcal{D} such that:

1 If $x \notin \mathcal{L}$ then $(x, \emptyset) \in \mathcal{D}$;

A protocol Π for a language \mathcal{L} has RBR soundness error ε if \exists a "doomed" set of (partial) transcripts \mathcal{D} such that:

- 1 If $x \notin \mathcal{L}$ then $(x, \emptyset) \in \mathcal{D}$;
- **2** For all complete transcripts τ , if $(x, \tau) \in \mathcal{D}$ then the verifier rejects; and

A protocol Π for a language \mathcal{L} has RBR soundness error ε if \exists a "doomed" set of (partial) transcripts \mathcal{D} such that:

1 If
$$x \notin \mathcal{L}$$
 then $(x, \emptyset) \in \mathcal{D}$;

- **2** For all complete transcripts τ , if $(x, \tau) \in \mathcal{D}$ then the verifier rejects; and
- **3** If τ_{i-1} is an (i-1)-partial transcript and $(x, \tau_{i-1}) \in \mathcal{D}$, then for all prover messages m:

$$\Pr_{c}[(x,\tau_{i-1}||m||c)\notin\mathcal{D}]\leqslant\varepsilon.$$

Round-by-round soundness implies Fiat-Shamir security

Round-by-round soundness implies Fiat-Shamir security

RO Model Q-query adversary κ -bit RO output

RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

Round-by-round soundness implies Fiat-Shamir security

OUR RESULTS: FS SECURITY OF FRI

Theorem 1

Let \mathbb{F} be a finite field, $L_0 \subset \mathbb{F}^*$ be a smooth multiplicative subgroup of size 2^n , $d_0 = 2^k$, $\rho = d_0/|L_0|$, and $\ell \in \mathbb{Z}^+$. For any integer $m \ge 3$, $\eta \in (0, \sqrt{\rho}/(2m))$, $\delta \in (0, 1 - \sqrt{\rho} - \eta)$, and function $G_0: L_0 \to \mathbb{F}$ that is δ -far from $\mathsf{RS}[\mathbb{F}, L_0, d_0]$, the FRI protocol has RBR (knowledge) soundness error

$$\varepsilon_{\mathsf{rbr}}^{\mathsf{FRI}} = \max\left\{\frac{(m+1/2)^7 |L_0|^2}{3\rho^{3/2}|\mathbb{F}|}, (1-\delta)^\ell\right\}$$

OUR RESULTS: FS SECURITY OF FRI

Theorem 1

Let \mathbb{F} be a finite field, $L_0 \subset \mathbb{F}^*$ be a smooth multiplicative subgroup of size 2^n , $d_0 = 2^k$, $\rho = d_0/|L_0|$, and $\ell \in \mathbb{Z}^+$. For any integer $m \ge 3$, $\eta \in (0, \sqrt{\rho}/(2m))$, $\delta \in (0, 1 - \sqrt{\rho} - \eta)$, and function $G_0: L_0 \to \mathbb{F}$ that is δ -far from $\mathsf{RS}[\mathbb{F}, L_0, d_0]$, the FRI protocol has RBR (knowledge) soundness error

$$\varepsilon_{\mathsf{rbr}}^{\mathsf{FRI}} = \max\left\{\frac{(m+1/2)^7 |L_0|^2}{3\rho^{3/2}|\mathbb{F}|}, (1-\delta)^\ell\right\}$$

■ Same result holds for **batched FRI**¹

¹When batching with distinct challenges; see paper for details.

OUR RESULTS: FS SECURITY OF FRI

Theorem 1

Let \mathbb{F} be a finite field, $L_0 \subset \mathbb{F}^*$ be a smooth multiplicative subgroup of size 2^n , $d_0 = 2^k$, $\rho = d_0/|L_0|$, and $\ell \in \mathbb{Z}^+$. For any integer $m \ge 3$, $\eta \in (0, \sqrt{\rho}/(2m))$, $\delta \in (0, 1 - \sqrt{\rho} - \eta)$, and function $G_0: L_0 \to \mathbb{F}$ that is δ -far from $\mathsf{RS}[\mathbb{F}, L_0, d_0]$, the FRI protocol has RBR (knowledge) soundness error

$$\varepsilon_{\mathsf{rbr}}^{\mathsf{FRI}} = \max\left\{\frac{(m+1/2)^7 |L_0|^2}{3\rho^{3/2}|\mathbb{F}|}, (1-\delta)^\ell\right\}$$

■ Same result holds for **batched FRI**¹

• Implies FS error $Q \cdot \varepsilon_{\mathsf{rbr}}^{\mathsf{FRI}} + O(Q^2/2^{\kappa})$ in the ROM

¹When batching with distinct challenges; see paper for details.

Best provable interactive soundness of FRI [BCI⁺20] is

 $\varepsilon_1 + \varepsilon_2 + \varepsilon_3$, where

$$\varepsilon_1 = \frac{(m+1/2)^7 2^{2n}}{3\rho^{3/2} |\mathbb{F}|} \qquad \varepsilon_2 = O\left(\frac{2^n \cdot n}{\sqrt{\rho} |\mathbb{F}|}\right) \qquad \varepsilon_3 = (1-\delta)^\ell$$

■ Best provable interactive soundness of FRI [BCI⁺20] is

 $\varepsilon_1 + \varepsilon_2 + \varepsilon_3$, where

$$\varepsilon_1 = \frac{(m+1/2)^7 2^{2n}}{3\rho^{3/2}|\mathbb{F}|} \qquad \varepsilon_2 = O\left(\frac{2^n \cdot n}{\sqrt{\rho}|\mathbb{F}|}\right) \qquad \varepsilon_3 = (1-\delta)^\ell$$

• We prove FRI has RBR soundness error $= \max{\{\varepsilon_1, \varepsilon_3\}}$

Theorem 2 (Informal)

Let $\Pi^{\mathcal{O}}_{\delta}$ be a δ -correlated IOP for a fixed RS code of rate $\rho \in (0, 1]$, and let $\eta \in (0, \sqrt{\rho})$.

Theorem 2 (Informal)

Let $\Pi^{\mathcal{O}}_{\delta}$ be a δ -correlated IOP for a fixed RS code of rate $\rho \in (0, 1]$, and let $\eta \in (0, \sqrt{\rho})$.

If $\Pi_0^{\mathcal{O}}$ has RBR (knowledge) error ε , then $\Pi_{\delta}^{\mathcal{O}}$ has RBR (knowledge) error $\varepsilon/(2\eta\sqrt{\rho})$, where $\delta = 1 - \sqrt{\rho} - \eta > 0$.

Theorem 2 (Informal)

Let $\Pi^{\mathcal{O}}_{\delta}$ be a δ -correlated IOP for a fixed RS code of rate $\rho \in (0, 1]$, and let $\eta \in (0, \sqrt{\rho})$.

- **1** If $\Pi_0^{\mathcal{O}}$ has RBR (knowledge) error ε , then $\Pi_{\delta}^{\mathcal{O}}$ has RBR (knowledge) error $\varepsilon/(2\eta\sqrt{\rho})$, where $\delta = 1 \sqrt{\rho} \eta > 0$.
- 2 If Π' is an IOP for testing δ -correlation in RS with RBR error ε' , then $\Pi^{\Pi'}_{\delta}$ is an IOP with RBR (knowledge) error $\max\{\varepsilon/(2\eta\sqrt{\rho}), \varepsilon'\}$.

Theorem 2 gives a new paradigm for SNARK design

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge) sound 0-correlated IOP

Theorem 2 gives a new paradigm for SNARK design

Our Results: "Plonk-like" δ -Correlated IOP

 \blacksquare We present a $\delta\text{-correlated IOP called $\mathsf{OPlonky}$}$

• Captures "Plonk-like" protocols which use FRI as a sub-routine

Our Results: "Plonk-like" δ -Correlated IOP

- \blacksquare We present a $\delta\text{-correlated IOP called $\mathsf{OPlonky}$}$
 - Captures "Plonk-like" protocols which use FRI as a sub-routine
- We prove RBR soundness of OPlonky
 - Captures RBR soundness of [Pol, KPV22] and other Plonk-like protocols
- \blacksquare We present a $\delta\text{-correlated IOP called $\mathsf{OPlonky}$}$
 - Captures "Plonk-like" protocols which use FRI as a sub-routine
- We prove RBR soundness of OPlonky
 - Captures RBR soundness of [Pol, KPV22] and other Plonk-like protocols
- Our results can also be used to prove RBR soundness of ethSTARK and RISC Zero [Tea23]
 - ethSTARK has since independently been proven to be RBR sound [Sta23]

■ Full FRI Protocol Overview

■ RBR Soundness of FRI

THE FRI PROTOCOL

Phase 1: Folding Phase

THE FRI PROTOCOL

Phase 1: Folding Phase

THE FRI PROTOCOL

THE FRI PROTOCOL

$$L_1 := \{ z^2 \colon z \in L_0 \}, \, d_1 := d_0/2$$

2 Define $G_1: L_1 \to \mathbb{F}$ as random α_0 -linear combo of "left" and "right" halves of G_0

1
$$L_1 := \{z^2 \colon z \in L_0\}, d_1 := d_0/2$$

2 Define $G_1: L_1 \to \mathbb{F}$ as random α_0 -linear combo of "left" and "right" halves of G_0

B Recurse above with G_1 and $\mathsf{RS}^1 = \mathsf{RS}[\mathbb{F}, L_1, d_1]$

THE FRI PROTOCOL

Phase 2: Query Phase

 $\log(d_0) = k \text{ rounds}$ of folding

 $\log(d_0) = k \text{ rounds}$ of folding

THE FRI PROTOCOL

RBR Soundness of Folding Phase

RBR Soundness of Folding Phase

 $G_0 \colon L_0 \to \mathbb{F}$ is δ -far from RS^0

If G_1 is δ -close to RS^1 , then P^* can behave honestly and fool V!

If G₁ is δ-close to RS¹, then P* can behave honestly and fool V!
By [BCI+20]:

$$\Pr_{\alpha_0}[G_1 \text{ is } \delta\text{-close}] \leqslant \frac{(m+1/2)^7 |L_0|^2}{3\rho^{3/2} |\mathbb{F}|}.$$

Protocol is doomed iff

Protocol is doomed iff

1 G_i^* is not a correct folding of G_{i-1} ; or

Protocol is doomed iff

- **1** G_i^* is not a correct folding of G_{i-1} ; or
- **2** G_{i+1} (computed from honest G_i) is δ -far.

By same argument $[BCI^+20]$:

$$\Pr_{\alpha_i}[G_i^*, \alpha_i \text{ is not doomed}] \leqslant \frac{(m+1/2)^7 |L_0|^2}{3\rho^{3/2} |\mathbb{F}|}$$

Protocol is not doomed iff **all** V checks pass

• Protocol is not doomed iff **all** V checks pass • [BBH⁺18, BCI⁺20]: if $\exists i \in [k-1]$ such that G_i is δ -far, then

 $\Pr[\text{not doomed}] = \Pr[\text{all } V \text{ checks pass}] \leq (1 - \delta)^{\ell}$

SUMMARY

Our Results: Bird's Eye View

- Prove FS security of the FRI Protocol [BBH⁺18] and the batched FRI Protocol
 - Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ -Correlated IOPs and prove their FS security

- Intuitively, these are protocols that use FRI as a sub-routine
- **3** Formulate a δ -Correlated IOP which captures many "Plonk-like" protocols and prove their FS security
 - Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
 - ethSTARK [Sta23] and DEEP-FRI [BGK⁺20] also fit in this framework

Full version https://ia.cr/2023/1071
References I

- [Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In *FOCS*, pages 106–115. IEEE Computer Society, 2001.
- [BBH⁺18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of proximity. In *ICALP*, volume 107 of *LIPIcs*, 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
- [BCG⁺18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller. Arya: nearly linear-time zero-knowledge proofs for correct program execution. In International Conference on the Theory and Application of Cryptology and Information Security, pages 595–626. Springer, 2018.
- [BCI⁺20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for reed-solomon codes. Cryptology ePrint Archive, Paper 2020/654, 2020. URL: https://eprint.iacr.org/2020/654. Full version of the same work published at FOCS 2020. DOI: https://doi.org/10.1109/F0CS46700.2020.00088.
- [BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In TCC (B2), volume 9986 of Lecture Notes in Computer Science, pages 31–60, 2016.

References II

- [BDG⁺13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why "fiat-shamir for proofs" lacks a proof. In TCC, volume 7785 of Lecture Notes in Computer Science, pages 182–201. Springer, 2013.
- [BEG⁺94] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of memories. *Algorithmica*, 12:225–244, 1994.
- [BGK⁺20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sampling outside the box improves soundness. In *ITCS*, volume 151 of *LIPIcs*, 5:1–5:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
- [CCH⁺19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, pages 1082–1090. ACM, 2019.
- [CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random oracle model. In TCC (2), volume 11892 of Lecture Notes in Computer Science, pages 1–29. Springer, 2019.

References III

[COS20]	Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: post-quantum
	and transparent recursive proofs from holography. In EUROCRYPT (1),
	volume 12105 of Lecture Notes in Computer Science, pages 769–793.
	Springer, 2020.

- [Dus] Dusk Network. Plonkup. https://github.com/dusk-network/plonkup. Accessed May 24, 2023.
- [GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In *FOCS*, pages 102–113. IEEE Computer Society, 2003.
- [GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. *IACR Cryptol. ePrint Arch.*:953, 2019.
- [KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. Redshift: transparent snarks from list polynomial commitments. In CCS, pages 1725–1737. ACM, 2022.
- [Lip89] Richard J Lipton. Fingerprinting sets. Princeton University, Department of Computer Science, 1989.
- [Lip90] Richard J Lipton. Efficient checking of computations. In Annual Symposium on Theoretical Aspects of Computer Science, pages 207–215. Springer, 1990.

References IV

[Mat] Matter Labs. Zksync 2.0: hello ethereum! https://blog.matterlabs.io/zksync-2-0-hello-ethereum-ca48588de179. Accessed May 24, 2023[Min] Mina. Mina book: background on plonk. https://o1-labs.github.io/proof-systems/plonk/overview.html. Accessed May 24, 2023. [nil] =nil; Foundation. Circuit definition library for =nil; foundation's cryptography suite. https://github.com/NilFoundation/zkllvm-blueprint. Accessed May 24, 2023. [Pol] Polygon Zero Team. Plonky2: fast recursive arguments with plonk and fri. URL: https://github.com/mir-protocol/plonky2/tree/main/plonky2. https://github.com/mir-protocol/plonky2/tree/main/plonky2. [Sta23] StarkWare. Ethstark documentation v1.2. Cryptology ePrint Archive, Paper 2021/582, 2023. URL: https://eprint.iacr.org/2021/582. https://eprint.iacr.org/2021/582. [Suc] Succinct Labs. Gnark-plonky2-verifier. https://github.com/succinctlabs/gnark-plonky2-verifier. Accessed May 24, 2023.

References V

[Tea23] RISC Zero Team. Risc zero's proof system for a zkvm. 2023. URL: https://github.com/risc0/risc0. Github repository.

 $[\mathrm{ZGK}^+18]$

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. Vram: faster verifiable ram with program-independent preprocessing. In 2018 IEEE Symposium on Security and Privacy (SP), pages 908–925. IEEE, 2018.