
Fiat-Shamir Security of FRI and Related
SNARKs

Alexander R. Block1,2 Albert Garreta3 Jonathan Katz2

Justin Thaler1,4 Pratyush Ranjan Tiwari5 Michał Zając3

1Georgetown Univeristy

2University of Maryland

3Nethermind

4a16z crypto research

5Johns Hopkins University

1 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?

I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))

2 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness

3 / 33

SNARK Construction Paradigm

2 Replace oracles with Merkle trees, and replace Verifier queries with
Merkle authentication paths

Prover P Verifier V

L ∈ NP, Random Oracle H

Boun
ded

#

of RO Quer
ies Is x ∈ L?

I know w s.t.
(x,w) ∈ RL

MTH(f1)

Random c1

...
MTH(fr)

Random cr

MTH(fr+1)

1. Replace oracle query
answers with Merkle auth.
paths from P .
2. Check auth. path
consistency with roots,
do some computation.
3. Output Accept or
Reject. 4 / 33

SNARK Construction Paradigm

3 Compress Merkle tree protocol with Fiat-Shamir by replacing V
challenges with output of H

Prover P Verifier V

Proof π

L ∈ NP, Random Oracle H

Boun
ded

#

of RO Quer
ies

I know w s.t.
(x,w) ∈ RL

MTH(f1)

c1 = H(x,MT(f1))

...
MTH(fr)

cr = H(x,MT(f1), . . . ,MT(fr))

MTH(fr+1)

1. Generate queries to
fi with H.
2. Add Merkle auth.
paths for queries to π.

5 / 33

Security of Fiat-Shamir Transformation

Not secure in general [Bar01, GK03, BDG+13], even in RO model,
for many-round (ω(1)-round) protocols

E.g., sequential/parallel repetition of constant-sound interactive
protocols

FS often applied to many-round protocols without formal security
proofs

Often only prove interactive security

6 / 33

Security of Fiat-Shamir Transformation

Not secure in general [Bar01, GK03, BDG+13], even in RO model,
for many-round (ω(1)-round) protocols

E.g., sequential/parallel repetition of constant-sound interactive
protocols

FS often applied to many-round protocols without formal security
proofs

Often only prove interactive security

6 / 33

This Work

Our Results: Bird’s Eye View

1 Prove FS security of the FRI Protocol [BBH+18] and the
batched FRI Protocol

Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol

Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security

Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]

7 / 33

This Work

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]
7 / 33

Context: Why FRI?

FRI is popular in the SNARK space

80-bits of conjectured
interactive security

96-bits of conjectured
interactive security

96-bits of conjectured
interactive security

Also uses FRI

Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil]

8 / 33

Context: Why FRI?

FRI is popular in the SNARK space

80-bits of conjectured
interactive security

96-bits of conjectured
interactive security

96-bits of conjectured
interactive security

Also uses FRI

Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil]

8 / 33

Context: Why FRI?

FRI is popular in the SNARK space

80-bits of conjectured
interactive security

96-bits of conjectured
interactive security

96-bits of conjectured
interactive security

Also uses FRI

Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil]

8 / 33

Context: Why FRI?

FRI is popular in the SNARK space

80-bits of conjectured
interactive security

96-bits of conjectured
interactive security

96-bits of conjectured
interactive security

Also uses FRI

Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil]

8 / 33

Context: Why FRI?

Before this work, no formal
FS security analysis of FRI existed

9 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0

10 / 33

Showing Fiat-Shamir Security

Round-by-round (Knowledge) Soundness [CCH+19, CMS19]

RBR Soundness: Intuition

If x /∈ L, then protocol is “doomed”

No matter what the prover does, the protocol should forever remain
“doomed”

11 / 33

Showing Fiat-Shamir Security

Round-by-round (Knowledge) Soundness [CCH+19, CMS19]

RBR Soundness: Intuition
If x /∈ L, then protocol is “doomed”

No matter what the prover does, the protocol should forever remain
“doomed”

11 / 33

Round-by-round Soundness

Definition 1 (RBR Soundness)
A protocol Π for a language L has RBR soundness error ε if ∃ a
“doomed” set of (partial) transcripts D such that:

1 If x /∈ L then (x, ∅) ∈ D;
2 For all complete transcripts τ , if (x, τ) ∈ D then the verifier rejects;

and
3 If τi−1 is an (i− 1)-partial transcript and (x, τi−1) ∈ D, then for all

prover messages m:

Pr
c
[(x, τi−1∥m∥c) /∈ D] ⩽ ε.

12 / 33

Round-by-round Soundness

Definition 1 (RBR Soundness)
A protocol Π for a language L has RBR soundness error ε if ∃ a
“doomed” set of (partial) transcripts D such that:

1 If x /∈ L then (x, ∅) ∈ D;

2 For all complete transcripts τ , if (x, τ) ∈ D then the verifier rejects;
and

3 If τi−1 is an (i− 1)-partial transcript and (x, τi−1) ∈ D, then for all
prover messages m:

Pr
c
[(x, τi−1∥m∥c) /∈ D] ⩽ ε.

12 / 33

Round-by-round Soundness

Definition 1 (RBR Soundness)
A protocol Π for a language L has RBR soundness error ε if ∃ a
“doomed” set of (partial) transcripts D such that:

1 If x /∈ L then (x, ∅) ∈ D;
2 For all complete transcripts τ , if (x, τ) ∈ D then the verifier rejects;

and

3 If τi−1 is an (i− 1)-partial transcript and (x, τi−1) ∈ D, then for all
prover messages m:

Pr
c
[(x, τi−1∥m∥c) /∈ D] ⩽ ε.

12 / 33

Round-by-round Soundness

Definition 1 (RBR Soundness)
A protocol Π for a language L has RBR soundness error ε if ∃ a
“doomed” set of (partial) transcripts D such that:

1 If x /∈ L then (x, ∅) ∈ D;
2 For all complete transcripts τ , if (x, τ) ∈ D then the verifier rejects;

and
3 If τi−1 is an (i− 1)-partial transcript and (x, τi−1) ∈ D, then for all

prover messages m:

Pr
c
[(x, τi−1∥m∥c) /∈ D] ⩽ ε.

12 / 33

RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

RBR Error
ε

FS Error
Qε+O(Q2/2κ)

[CMS19, BCS16]

RO Model
Q-query adversary
κ-bit RO output

13 / 33

RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

RBR Error
ε

FS Error
Qε+O(Q2/2κ)

[CMS19, BCS16]

RO Model
Q-query adversary
κ-bit RO output

13 / 33

RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

RBR Error
ε

FS Error
Qε+O(Q2/2κ)

[CMS19, BCS16]

RO Model
Q-query adversary
κ-bit RO output

13 / 33

RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

RBR Error
ε

FS Error
Qε+O(Q2/2κ)

[CMS19, BCS16]

RO Model
Q-query adversary
κ-bit RO output

13 / 33

Our Results: FS Security of FRI

Theorem 1
Let F be a finite field, L0 ⊂ F∗ be a smooth multiplicative subgroup of size
2n, d0 = 2k, ρ = d0/|L0|, and ℓ ∈ Z+. For any integer m ⩾ 3,
η ∈ (0,

√
ρ/(2m)), δ ∈ (0, 1−√ρ− η), and function G0 : L0 → F that is

δ-far from RS[F, L0, d0], the FRI protocol has RBR (knowledge)
soundness error

εFRIrbr = max

{︃
(m+ 1/2)7|L0|2

3ρ3/2|F|
, (1− δ)ℓ

}︃
.

Same result holds for batched FRI

Implies FS error Q · εFRIrbr +O(Q2/2κ) in the ROM

14 / 33

Our Results: FS Security of FRI

Theorem 1
Let F be a finite field, L0 ⊂ F∗ be a smooth multiplicative subgroup of size
2n, d0 = 2k, ρ = d0/|L0|, and ℓ ∈ Z+. For any integer m ⩾ 3,
η ∈ (0,

√
ρ/(2m)), δ ∈ (0, 1−√ρ− η), and function G0 : L0 → F that is

δ-far from RS[F, L0, d0], the FRI protocol has RBR (knowledge)
soundness error

εFRIrbr = max

{︃
(m+ 1/2)7|L0|2

3ρ3/2|F|
, (1− δ)ℓ

}︃
.

Same result holds for batched FRI1

Implies FS error Q · εFRIrbr +O(Q2/2κ) in the ROM

1When batching with distinct challenges; see paper for details.
14 / 33

Our Results: FS Security of FRI

Theorem 1
Let F be a finite field, L0 ⊂ F∗ be a smooth multiplicative subgroup of size
2n, d0 = 2k, ρ = d0/|L0|, and ℓ ∈ Z+. For any integer m ⩾ 3,
η ∈ (0,

√
ρ/(2m)), δ ∈ (0, 1−√ρ− η), and function G0 : L0 → F that is

δ-far from RS[F, L0, d0], the FRI protocol has RBR (knowledge)
soundness error

εFRIrbr = max

{︃
(m+ 1/2)7|L0|2

3ρ3/2|F|
, (1− δ)ℓ

}︃
.

Same result holds for batched FRI1

Implies FS error Q · εFRIrbr +O(Q2/2κ) in the ROM

1When batching with distinct challenges; see paper for details.
14 / 33

Comparison with FRI Interactive Security

Best provable interactive soundness of FRI [BCI+20] is

ε1 + ε2 + ε3, where

ε1 =
(m+ 1/2)722n

3ρ3/2|F|
ε2 = O

(︃
2n · n
√
ρ|F|

)︃
ε3 = (1− δ)ℓ

We prove FRI has RBR soundness error = max{ε1, ε3}

15 / 33

Comparison with FRI Interactive Security

Best provable interactive soundness of FRI [BCI+20] is

ε1 + ε2 + ε3, where

ε1 =
(m+ 1/2)722n

3ρ3/2|F|
ε2 = O

(︃
2n · n
√
ρ|F|

)︃
ε3 = (1− δ)ℓ

We prove FRI has RBR soundness error = max{ε1, ε3}

15 / 33

δ-Correlated IOPs

Prover P Verifier V

L ∈ NP

L ∈ NP and
all prover oracles are δ-correlated

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles f1, . . . , fr+1.
2. Query O to check all f1, . . . ,
fr+1 at simultaneously.
3. Do some computation.
4. Output Accept or Reject.

δ-correlated: for a
fixed RS codespace, all
fi are δ-close to RS

Oracle O for
checking δ-corr.

16 / 33

δ-Correlated IOPs

Prover P Verifier V

L ∈ NP and
all prover oracles are δ-correlated

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles f1, . . . , fr+1.
2. Query O to check all f1, . . . ,
fr+1 at simultaneously.
3. Do some computation.
4. Output Accept or Reject.

δ-correlated: for a
fixed RS codespace, all
fi are δ-close to RS

Oracle O for
checking δ-corr.

16 / 33

δ-Correlated IOPs

Prover P Verifier V

L ∈ NP and
all prover oracles are δ-correlated

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles f1, . . . , fr+1.
2. Query O to check all f1, . . . ,
fr+1 at simultaneously.
3. Do some computation.
4. Output Accept or Reject.

δ-correlated: for a
fixed RS codespace, all
fi are δ-close to RS

Oracle O for
checking δ-corr.

16 / 33

δ-Correlated IOPs

Prover P Verifier V

L ∈ NP and
all prover oracles are δ-correlated

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles f1, . . . , fr+1.
2. Query O to check all f1, . . . ,
fr+1 at simultaneously.
3. Do some computation.
4. Output Accept or Reject.

δ-correlated: for a
fixed RS codespace, all
fi are δ-close to RS

Oracle O for
checking δ-corr.

16 / 33

Our Results: δ-Correlated IOPs

Theorem 2 (Informal)

Let ΠO
δ be a δ-correlated IOP for a fixed RS code of rate ρ ∈ (0, 1], and

let η ∈ (0,
√
ρ).

1 If ΠO
0 has RBR (knowledge) error ε, then ΠO

δ has RBR (knowledge)
error ε/(2η

√
ρ), where δ = 1−√ρ− η > 0.

2 If Π′ is an IOP for testing δ-correlation in RS with RBR error ε′,
then ΠΠ′

δ is an IOP with RBR (knowledge) error max{ε/(2η√ρ), ε′}.

17 / 33

Our Results: δ-Correlated IOPs

Theorem 2 (Informal)

Let ΠO
δ be a δ-correlated IOP for a fixed RS code of rate ρ ∈ (0, 1], and

let η ∈ (0,
√
ρ).

1 If ΠO
0 has RBR (knowledge) error ε, then ΠO

δ has RBR (knowledge)
error ε/(2η

√
ρ), where δ = 1−√ρ− η > 0.

2 If Π′ is an IOP for testing δ-correlation in RS with RBR error ε′,
then ΠΠ′

δ is an IOP with RBR (knowledge) error max{ε/(2η√ρ), ε′}.

17 / 33

Our Results: δ-Correlated IOPs

Theorem 2 (Informal)

Let ΠO
δ be a δ-correlated IOP for a fixed RS code of rate ρ ∈ (0, 1], and

let η ∈ (0,
√
ρ).

1 If ΠO
0 has RBR (knowledge) error ε, then ΠO

δ has RBR (knowledge)
error ε/(2η

√
ρ), where δ = 1−√ρ− η > 0.

2 If Π′ is an IOP for testing δ-correlation in RS with RBR error ε′,
then ΠΠ′

δ is an IOP with RBR (knowledge) error max{ε/(2η√ρ), ε′}.

17 / 33

SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform

18 / 33

SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform

18 / 33

SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform

18 / 33

SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform

18 / 33

SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform

18 / 33

Our Results: “Plonk-like” δ-Correlated IOP

We present a δ-correlated IOP called OPlonky

Captures “Plonk-like” protocols which use FRI as a sub-routine

We prove RBR soundness of OPlonky
Captures RBR soundness of [Pol, KPV22] and other Plonk-like
protocols

Our results can also be used to prove RBR soundness of ethSTARK
and RISC Zero [Tea23]

ethSTARK has since independently been proven to be RBR sound
[Sta23]

19 / 33

Our Results: “Plonk-like” δ-Correlated IOP

We present a δ-correlated IOP called OPlonky

Captures “Plonk-like” protocols which use FRI as a sub-routine

We prove RBR soundness of OPlonky
Captures RBR soundness of [Pol, KPV22] and other Plonk-like
protocols

Our results can also be used to prove RBR soundness of ethSTARK
and RISC Zero [Tea23]

ethSTARK has since independently been proven to be RBR sound
[Sta23]

19 / 33

Our Results: “Plonk-like” δ-Correlated IOP

We present a δ-correlated IOP called OPlonky

Captures “Plonk-like” protocols which use FRI as a sub-routine

We prove RBR soundness of OPlonky
Captures RBR soundness of [Pol, KPV22] and other Plonk-like
protocols

Our results can also be used to prove RBR soundness of ethSTARK
and RISC Zero [Tea23]

ethSTARK has since independently been proven to be RBR sound
[Sta23]

19 / 33

Remainder of the Talk

Full FRI Protocol Overview

RBR Soundness of FRI

20 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]

21 / 33

The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]
21 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency

1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency

1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency

1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency

1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency
1 V queries each oracle at 2 positions

2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency
1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times

22 / 33

The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency
1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times
22 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !

By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.

23 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

Protocol is doomed iff

1 G∗
i is not a correct folding of Gi−1; or

2 Gi+1 (computed from honest Gi) is δ-far.

24 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

Protocol is doomed iff

1 G∗
i is not a correct folding of Gi−1; or

2 Gi+1 (computed from honest Gi) is δ-far.

24 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

Protocol is doomed iff

1 G∗
i is not a correct folding of Gi−1; or

2 Gi+1 (computed from honest Gi) is δ-far.

24 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

Protocol is doomed iff
1 G∗

i is not a correct folding of Gi−1; or

2 Gi+1 (computed from honest Gi) is δ-far.

24 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

Protocol is doomed iff
1 G∗

i is not a correct folding of Gi−1; or
2 Gi+1 (computed from honest Gi) is δ-far.

24 / 33

RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

Gi−1 : Li−1 → F is δ-far from RSi−1

Roun
d i

sta
rts

doo
med

Gi ∈ RSi

(G∗
i (z))z∈Li

αi
$← F

By same argument [BCI+20]:

Pr
αi

[G∗
i , αi is not doomed] ⩽

(m+ 1/2)7|L0|2

3ρ3/2|F|
.

25 / 33

RBR Soundness of FRI

RBR Soundness of Query Phase

Prover P ∗ Verifier V

Protocol in doomed state
∃i ∈ [k − 1] s.t. Gi is δ-far

Roun
d k

sta
rts

doo
med

G∗
k ∈ F

Has oracles
G0, . . . , Gk−1

Protocol is not doomed iff all V checks pass

[BBH+18, BCI+20]: if ∃i ∈ [k − 1] such that Gi is δ-far, then

Pr[not doomed] = Pr[all V checks pass] ⩽ (1− δ)ℓ

26 / 33

RBR Soundness of FRI

RBR Soundness of Query Phase

Prover P ∗ Verifier V

Protocol in doomed state
∃i ∈ [k − 1] s.t. Gi is δ-far

Roun
d k

sta
rts

doo
med

G∗
k ∈ F

Has oracles
G0, . . . , Gk−1

Protocol is not doomed iff all V checks pass

[BBH+18, BCI+20]: if ∃i ∈ [k − 1] such that Gi is δ-far, then

Pr[not doomed] = Pr[all V checks pass] ⩽ (1− δ)ℓ

26 / 33

RBR Soundness of FRI

RBR Soundness of Query Phase

Prover P ∗ Verifier V

Protocol in doomed state
∃i ∈ [k − 1] s.t. Gi is δ-far

Roun
d k

sta
rts

doo
med

G∗
k ∈ F

Has oracles
G0, . . . , Gk−1

Protocol is not doomed iff all V checks pass

[BBH+18, BCI+20]: if ∃i ∈ [k − 1] such that Gi is δ-far, then

Pr[not doomed] = Pr[all V checks pass] ⩽ (1− δ)ℓ

26 / 33

RBR Soundness of FRI

RBR Soundness of Query Phase

Prover P ∗ Verifier V

Protocol in doomed state
∃i ∈ [k − 1] s.t. Gi is δ-far

Roun
d k

sta
rts

doo
med

G∗
k ∈ F

Has oracles
G0, . . . , Gk−1

Protocol is not doomed iff all V checks pass
[BBH+18, BCI+20]: if ∃i ∈ [k − 1] such that Gi is δ-far, then

Pr[not doomed] = Pr[all V checks pass] ⩽ (1− δ)ℓ

26 / 33

Summary

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

27 / 33

Thank You!

Full version
https://ia.cr/2023/1071

28 / 33

https://ia.cr/2023/1071

References I

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS,
pages 106–115. IEEE Computer Society, 2001.

[BBH+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In ICALP, volume 107 of
LIPIcs, 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and
Mary Maller. Arya: nearly linear-time zero-knowledge proofs for correct
program execution. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 595–626. Springer,
2018.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and
Shubhangi Saraf. Proximity gaps for reed-solomon codes. Cryptology ePrint
Archive, Paper 2020/654, 2020. url: https://eprint.iacr.org/2020/654.
Full version of the same work published at FOCS 2020. DOI:
https://doi.org/10.1109/FOCS46700.2020.00088.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In TCC (B2), volume 9986 of Lecture Notes in Computer Science,
pages 31–60, 2016.

29 / 33

https://eprint.iacr.org/2020/654
https://doi.org/10.1109/FOCS46700.2020.00088

References II

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain,
Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why "fiat-shamir
for proofs" lacks a proof. In TCC, volume 7785 of Lecture Notes in
Computer Science, pages 182–201. Springer, 2013.

[BEG+94] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12:225–244, 1994.

[BGK+20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf.
DEEP-FRI: sampling outside the box improves soundness. In ITCS,
volume 151 of LIPIcs, 5:1–5:32. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi,
Guy N. Rothblum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from
practice to theory. In STOC, pages 1082–1090. ACM, 2019.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct
arguments in the quantum random oracle model. In TCC (2), volume 11892
of Lecture Notes in Computer Science, pages 1–29. Springer, 2019.

30 / 33

References III

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: post-quantum
and transparent recursive proofs from holography. In EUROCRYPT (1),
volume 12105 of Lecture Notes in Computer Science, pages 769–793.
Springer, 2020.

[Dus] Dusk Network. Plonkup. https://github.com/dusk-network/plonkup.
Accessed May 24, 2023.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the
fiat-shamir paradigm. In FOCS, pages 102–113. IEEE Computer Society,
2003.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
permutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. IACR Cryptol. ePrint Arch.:953, 2019.

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. Redshift:
transparent snarks from list polynomial commitments. In CCS,
pages 1725–1737. ACM, 2022.

[Lip89] Richard J Lipton. Fingerprinting sets. Princeton University, Department of
Computer Science, 1989.

[Lip90] Richard J Lipton. Efficient checking of computations. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 207–215. Springer, 1990.

31 / 33

https://github.com/dusk-network/plonkup

References IV

[Mat] Matter Labs. Zksync 2.0: hello ethereum! https://blog.matter-
labs.io/zksync-2-0-hello-ethereum-ca48588de179. Accessed May 24,
2023.

[Min] Mina. Mina book: background on plonk.
https://o1-labs.github.io/proof-systems/plonk/overview.html.
Accessed May 24, 2023.

[nil] =nil; Foundation. Circuit definition library for =nil; foundation’s
cryptography suite. https://github.com/NilFoundation/zkllvm-blueprint.
Accessed May 24, 2023.

[Pol] Polygon Zero Team. Plonky2: fast recursive arguments with plonk and fri.
url: https://github.com/mir-protocol/plonky2/tree/main/plonky2.
https://github.com/mir-protocol/plonky2/tree/main/plonky2.

[Sta23] StarkWare. Ethstark documentation v1.2. Cryptology ePrint Archive, Paper
2021/582, 2023. url: https://eprint.iacr.org/2021/582.
https://eprint.iacr.org/2021/582.

[Suc] Succinct Labs. Gnark-plonky2-verifier.
https://github.com/succinctlabs/gnark-plonky2-verifier. Accessed
May 24, 2023.

32 / 33

https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://o1-labs.github.io/proof-systems/plonk/overview.html
https://github.com/NilFoundation/zkllvm-blueprint
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://github.com/succinctlabs/gnark-plonky2-verifier

References V

[Tea23] RISC Zero Team. Risc zero’s proof system for a zkvm. 2023. url:
https://github.com/risc0/risc0. Github repository.

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. Vram: faster verifiable ram with
program-independent preprocessing. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 908–925. IEEE, 2018.

33 / 33

https://github.com/risc0/risc0

	References

