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SNARKs

Succinct Non-interactive ARguments of Knowledge

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

π

Accept or
Reject

Completeness: ∀(x,w) ∈ RL:

Pr[V (x, π) = 1 | π ← P (x,w)] = 1

ε-Soundness: ∀x /∈ L, ∀ PPT P ∗:

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)] ⩽ ε(x, λ)

ε-Knowledge Soundness: ∃ PPT
extractor E such that ∀x and ∀ PPT P ∗:

Pr[(x, EP
∗
(x)) ∈ RL] + ε(x, λ) ⩾

Pr[V (x, π∗) = 1 | π∗ $← P ∗(x)]

Succinctness: |π| = oλ(|w|); ideally
Oλ(polylog(|w|))
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SNARK Construction Paradigm

1 Construct a public-coin Interactive Oracle Proof (IOP) for L ∈ NP

Prover P Verifier V

L ∈ NP

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Com
p.

Unboun
ded

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles
f1, . . . , fr+1.
2. Do some computation.
3. Output Accept or Re-
ject.

Same guarantees:
Completeness
Soundness
If desirable: Knowl-
edge Soundness
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SNARK Construction Paradigm

2 Replace oracles with Merkle trees, and replace Verifier queries with
Merkle authentication paths

Prover P Verifier V

L ∈ NP, Random Oracle H

Boun
ded

#

of RO Quer
ies Is x ∈ L?

I know w s.t.
(x,w) ∈ RL

MTH(f1)

Random c1

...
MTH(fr)

Random cr

MTH(fr+1)

1. Replace oracle query
answers with Merkle auth.
paths from P .
2. Check auth. path
consistency with roots,
do some computation.
3. Output Accept or
Reject. 4 / 33



SNARK Construction Paradigm

3 Compress Merkle tree protocol with Fiat-Shamir by replacing V
challenges with output of H

Prover P Verifier V

Proof π

L ∈ NP, Random Oracle H

Boun
ded

#

of RO Quer
ies

I know w s.t.
(x,w) ∈ RL

MTH(f1)

c1 = H(x,MT(f1))

...
MTH(fr)

cr = H(x,MT(f1), . . . ,MT(fr))

MTH(fr+1)

1. Generate queries to
fi with H.
2. Add Merkle auth.
paths for queries to π.

5 / 33



Security of Fiat-Shamir Transformation

Not secure in general [Bar01, GK03, BDG+13], even in RO model,
for many-round (ω(1)-round) protocols

E.g., sequential/parallel repetition of constant-sound interactive
protocols

FS often applied to many-round protocols without formal security
proofs

Often only prove interactive security
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This Work

Our Results: Bird’s Eye View

1 Prove FS security of the FRI Protocol [BBH+18] and the
batched FRI Protocol

Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

“Plonk-like” ≈ protocols which use FRI + a permutation argument
[Lip89, Lip90, ZGK+18, BEG+94, BCG+18], helped popularized by the

PLONK SNARK [GWC19]
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Context: Why FRI?

FRI is popular in the SNARK space

80-bits of conjectured
interactive security

96-bits of conjectured
interactive security

96-bits of conjectured
interactive security

Also uses FRI

Plonk-like protocols are also used in many L2 projects; e.g., [Min,
Mat, Suc, Dus, nil]
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Context: Why FRI?

Before this work, no formal
FS security analysis of FRI existed

9 / 33



The FRI Protocol

FRI = Fast Reed-Solomon IOP of Proximity [BBH+18]

Parameters:
Finite field F and L0 ⊂ F of size 2n

L0 is a smooth multiplicative subgroup

Degree bound d0 = 2k

RS0 := RS[F, L0, d0] = {(f(z))z∈L0 : f(X) ∈ F<d0 [X]}

Rate ρ = d0/|L0| = 2−(n−k), proximity parameter δ ∈ (0, 1−√ρ),
verifier repetition parameter ℓ ∈ Z+

FRI proves that a function G0 : L0 → F is δ-close to RS0
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Showing Fiat-Shamir Security

Round-by-round (Knowledge) Soundness [CCH+19, CMS19]

RBR Soundness: Intuition

If x /∈ L, then protocol is “doomed”

No matter what the prover does, the protocol should forever remain
“doomed”
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Round-by-round Soundness

Definition 1 (RBR Soundness)
A protocol Π for a language L has RBR soundness error ε if ∃ a
“doomed” set of (partial) transcripts D such that:

1 If x /∈ L then (x, ∅) ∈ D;
2 For all complete transcripts τ , if (x, τ) ∈ D then the verifier rejects;

and
3 If τi−1 is an (i− 1)-partial transcript and (x, τi−1) ∈ D, then for all

prover messages m:

Pr
c
[(x, τi−1∥m∥c) /∈ D] ⩽ ε.
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RBR Soundness and Fiat-Shamir Security

Round-by-round soundness implies Fiat-Shamir security

RBR Error
ε

FS Error
Qε+O(Q2/2κ)

[CMS19, BCS16]

RO Model
Q-query adversary
κ-bit RO output
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Our Results: FS Security of FRI

Theorem 1
Let F be a finite field, L0 ⊂ F∗ be a smooth multiplicative subgroup of size
2n, d0 = 2k, ρ = d0/|L0|, and ℓ ∈ Z+. For any integer m ⩾ 3,
η ∈ (0,

√
ρ/(2m)), δ ∈ (0, 1−√ρ− η), and function G0 : L0 → F that is

δ-far from RS[F, L0, d0], the FRI protocol has RBR (knowledge)
soundness error

εFRIrbr = max

{︃
(m+ 1/2)7|L0|2

3ρ3/2|F|
, (1− δ)ℓ

}︃
.

Same result holds for batched FRI

Implies FS error Q · εFRIrbr +O(Q2/2κ) in the ROM
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Comparison with FRI Interactive Security

Best provable interactive soundness of FRI [BCI+20] is

ε1 + ε2 + ε3, where

ε1 =
(m+ 1/2)722n

3ρ3/2|F|
ε2 = O

(︃
2n · n
√
ρ|F|

)︃
ε3 = (1− δ)ℓ

We prove FRI has RBR soundness error = max{ε1, ε3}
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δ-Correlated IOPs

Prover P Verifier V

L ∈ NP

L ∈ NP and
all prover oracles are δ-correlated

Is x ∈ L?
I know w s.t.
(x,w) ∈ RL

Oracle f1

Random c1

...
Oracle fr

Random cr

Oracle fr+1

1. Query oracles f1, . . . , fr+1.
2. Query O to check all f1, . . . ,
fr+1 at simultaneously.
3. Do some computation.
4. Output Accept or Reject.

δ-correlated: for a
fixed RS codespace, all
fi are δ-close to RS

Oracle O for
checking δ-corr.
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Our Results: δ-Correlated IOPs

Theorem 2 (Informal)

Let ΠO
δ be a δ-correlated IOP for a fixed RS code of rate ρ ∈ (0, 1], and

let η ∈ (0,
√
ρ).

1 If ΠO
0 has RBR (knowledge) error ε, then ΠO

δ has RBR (knowledge)
error ε/(2η

√
ρ), where δ = 1−√ρ− η > 0.

2 If Π′ is an IOP for testing δ-correlation in RS with RBR error ε′,
then ΠΠ′

δ is an IOP with RBR (knowledge) error max{ε/(2η√ρ), ε′}.
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SNARKs from δ-Correlated IOPs

Theorem 2 gives a new paradigm for SNARK design

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound δ-correlated

IOP

Theorem 2.1

RBR (knowledge)
sound IOP

IO
P for

δ-c
orr

ela
tio

n

+Theo
rem

2.2

SNARG
(SNARK)

[BCS16]
Transform
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Our Results: “Plonk-like” δ-Correlated IOP

We present a δ-correlated IOP called OPlonky

Captures “Plonk-like” protocols which use FRI as a sub-routine

We prove RBR soundness of OPlonky
Captures RBR soundness of [Pol, KPV22] and other Plonk-like
protocols

Our results can also be used to prove RBR soundness of ethSTARK
and RISC Zero [Tea23]

ethSTARK has since independently been proven to be RBR sound
[Sta23]
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Remainder of the Talk

Full FRI Protocol Overview

RBR Soundness of FRI
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The FRI Protocol

Phase 1: Folding Phase

Prover P Verifier V

G0 : L0 → F

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

“Fold” G0 into G1

1 L1 := {z2 : z ∈ L0}, d1 := d0/2

2 Define G1 : L1 → F as random α0-linear combo of “left” and “right”
halves of G0

3 Recurse above with G1 and RS1 = RS[F, L1, d1]
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The FRI Protocol

Phase 2: Query Phase

Prover P Verifier V

log(d0) = k rounds
of folding

Gk ∈ F

Has oracles
G0, . . . , Gk−1

Check Consistency

1 V queries each oracle at 2 positions
2 V checks consistency of Gi−1 and Gi for all i ∈ [k]

3 V repeats this process ℓ times
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RBR Soundness of FRI

RBR Soundness of Folding Phase

Prover P ∗ Verifier V

G0 : L0 → F is δ-far from RS0

Prot
oco

l

sta
rts

doo
med

G0 ∈ RS0

(G0(z))z∈L0

α0
$← F

If G1 is δ-close to RS1, then P ∗ can behave honestly and fool V !
By [BCI+20]:

Pr
α0

[G1 is δ-close] ⩽
(m+ 1/2)7|L0|2

3ρ3/2|F|
.
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RBR Soundness of FRI

RBR Soundness of Query Phase

Prover P ∗ Verifier V

Protocol in doomed state
∃i ∈ [k − 1] s.t. Gi is δ-far

Roun
d k

sta
rts

doo
med

G∗
k ∈ F

Has oracles
G0, . . . , Gk−1

Protocol is not doomed iff all V checks pass

[BBH+18, BCI+20]: if ∃i ∈ [k − 1] such that Gi is δ-far, then

Pr[not doomed] = Pr[all V checks pass] ⩽ (1− δ)ℓ
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Summary

Our Results: Bird’s Eye View
1 Prove FS security of the FRI Protocol [BBH+18] and the

batched FRI Protocol
Fills security gaps in [CMS19, COS20, KPV22]

2 Introduce δ-Correlated IOPs and prove their FS security
Intuitively, these are protocols that use FRI as a sub-routine

3 Formulate a δ-Correlated IOP which captures many “Plonk-like”
protocols and prove their FS security

Captures Plonky2 [Pol], Redshift [KPV22], RISC Zero [Tea23]
ethSTARK [Sta23] and DEEP-FRI [BGK+20] also fit in this
framework

27 / 33



Thank You!

Full version
https://ia.cr/2023/1071
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