

Differential-Linear Approximation Semi-Unconstrained Searching and Partition Tree: Application to LEA and Speck

Yi Chen¹, Zhenzhen Bao^{2,4}, Hongbo Yu^{3,4}

¹ Institute for Advanced Study, Tsinghua University

² Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University

³ Department of Computer Science and Technology, Tsinghua University

⁴ Zhongguancun Laboratory

Methods:

1. Differential-linear approximation (DLA) semi-unconstrained searching algorithms

a) Iterative search for short DLAs

b) Meet-in-the-middle search for long DLAs

Three-stage search [5,16,28] (before 2023)	Our algorithms	MIQCP/MILP models [6, 23] (reported in 2023)
The Hamming weight of linear masks is limited	 Have no constraints on the Hamming weight of linear masks Apply to large-state ciphers 	Fully automated but currently slow, i.e., not applying to large state ciphers

2. Partition tree

a) A general tool for building partitions for various encryption functions, which breaks the barrier of applying the partitioning technique and partition-based key recovery attacks

Applications:

3. Best-known or better distinguishers of LEA and Speck

Cipher	Туре	Round	Cor / Pr	Source	
LEA	Boomerang	16 (previous best)	$\Pr = 2^{-117.11}$	[19]	
	Differential-linear	17	$Cor = -2^{-59.04}$	This paper	
Speck48	Differential-linear	11 (previous best)	$Cor = -2^{-17.55}$	[23]	
	Differential-linear	11	$Cor = -2^{-17.40}$	This paper	

Method	Speck32	Speck48	Speck64	Speck96	Speck128				
MIQCP/MILP [6]	$A_{10}(-12.0)$	×	×	×	×				
MIQCP/MILP [23]	$A_{10}(-11.58)$	$A_{11}(-17.55)$	$A_{12}(-26.93)$	×	×				
Ours	$A_{10}(-12.2)$	$A_{11}(-17.40)$	A ₁₃ (-28.15)	$A_{15}(-41.72)$	$A_{18}(-55.81)$				
× : not reported. $A_r(X)$: an r-round DLA with an absolute correlation 2^X .									

Applications:

4. Best-known key recovery attacks on all the members of LEA

Variant	R.A./T.R.	Туре	Time	Data (CP)	Source
LEA-128	14 / 24	Differential	2 ^{124.79}	2 ^{124.79}	[30]
	17 / 24	Differential-Linear	2 ^{82.9}	2 ^{70.9}	This paper
LEA-192	14 / 28	Differential	2 ^{124.79}	2 ^{124.79}	[30]
	17 / 28	Differential-linear	2 ^{82.9}	2 ^{70.9}	This paper
	18 / 28	Differential-linear	2 ^{189.63}	2 ^{126.63}	This paper
LEA-256	15 / 32	Differential	2 ^{252.79}	2 ^{124.79}	[30]
	17 / 32	Differential-linear	2 ^{82.9}	2 ^{70.9}	This paper
	18 / 32	Differential-linear	2 ^{189.63}	2 ^{126.63}	This paper

Our attacks are based on newly found distinguishers and the partitioning technique.

DLA Semi-Unconstrained Searching

1. Problem

2.Core Idea and Motivation

3.Iterative Search 4.

4.MITM Search 5.Support Experiment

Fig. 1. The latest structure of differential-linear distinguishers.

Before 2023, three-stage searching [5,16,28]:

1.Verify short DLAs
$$\Delta_{\mathrm{m}} \xrightarrow{E_{\mathrm{m}}} \gamma_{\mathrm{m}}$$
 /* for a difference $\Delta_{\mathrm{m}}, \gamma_{\mathrm{m}} = [i] \text{ or } [i, i+1] * /$
2. Search $\Delta_{\mathrm{in}} \xrightarrow{E_{\mathrm{1}}} \Delta_{\mathrm{m}}$ and $\gamma_{\mathrm{m}} \xrightarrow{E_{\mathrm{2}}} \gamma_{\mathrm{out}}$ under fixed Δ_{m} and γ_{m}

3. Connect three short distinguishers

- 1. Problem 2.Core Idea and Motivation 3.Iterative Search 4.MITM Search 5.Support Experiment **Core ideas:**
 - 1. generate a new DLA from two known ones by the XOR operation.

$$egin{array}{lll} \Delta o \gamma_1, \ \Delta o \gamma_2 \implies \Delta o \gamma_3 \, = \, \gamma_1 \oplus \gamma_2 \ \Delta o \gamma_4, \ \Delta o \gamma_4 \implies \Delta o \gamma_6 \, = \, \gamma_4 \oplus \gamma_5 \end{array}$$

2. preferentially verify the correlation of DLA generated from two DLAs with high absolute correlation.

$$\text{If } |G_{i_1}| \! > \! c \; \; \text{for} \; \; i_1 \! \in \! \{1,2\}, \; |G_{i_2}| \! \leqslant \! c \; \text{for} \; \; i_2 \! \in \! \{4,5\},$$

we regard $\Delta \rightarrow \gamma_3$ as a better choice.

 $/ * G_i = \operatorname{Cor}(\Delta \to \gamma_i)$: the correlation of $\Delta \to \gamma_i * /$

1. Problem 2.Core Idea and Motivation 3.Iterative Search 4.MITM Search 5.Support Experiment Motivation: $\Delta \xrightarrow{E} \gamma \qquad \qquad z_{\gamma} = \langle E(P) \oplus E(P \oplus \Delta), \gamma \rangle$

under the assumption that z_{γ_i} are independent, we have

$$egin{aligned} &\Delta o \gamma_3 = \gamma_1 \oplus \gamma_2 \ \Rightarrow \ G_3 = G_1 imes G_2 & \Delta o \gamma_6 = \gamma_4 \oplus \gamma_5 \ \Rightarrow \ G_6 = G_4 imes G_5 \end{aligned}$$

Since $|G_{i_1}| > c ext{ for } i_1 \in \{1, 2\}, \ |G_{i_2}| \leqslant c ext{ for } i_2 \in \{4, 5\}, ext{ then}$
 $|G_3| > |G_6| \end{aligned}$

Heuristic conclusion:

Compared with two DLAs with a low absolute correlation, two ones with a high absolute correlation would be more likely to generate another relatively good DLA.

1. Problem 2.Core Idea and Motivation

otivation 3.Iter

3.lterative Search 4.

4.MITM Search

5.Support Experiment

Iterative Search:

1. Initialization phase: preset a difference Δ_m and threshold *c*, select *t* DLAs $\Delta_m \rightarrow \gamma_i$

$$\left|\operatorname{Cor}\left(\mathit{\Delta}_{\mathrm{m}} \stackrel{E_{\mathrm{m}}}{\longrightarrow} \! \gamma_{i}
ight)
ight| > \! c \qquad \qquad \mathcal{P} \!=\! \{ \, \gamma_{1}, \cdots, \gamma_{t} \}$$

2. Iterative phase: generate DLAs with a high correlation, repeat several iterations

$$\begin{split} \gamma_{i} \oplus \gamma_{j} \notin \mathcal{P} \text{ where } \gamma_{i}, \gamma_{j} \in \mathcal{P} \\ \left| \operatorname{Cor} \left(\Delta_{\mathrm{m}} \xrightarrow{E_{\mathrm{m}}} \gamma_{i} \oplus \gamma_{j} \right) \right| > c & \longrightarrow \mathcal{P} \leftarrow \mathcal{P} + \mathcal{Q} & \longrightarrow \\ \mathcal{Q} \leftarrow \mathcal{Q} + \{ \gamma_{i} \oplus \gamma_{j} \} \end{split} \quad \text{next iteration}$$

1. Problem 2.Core Idea and Motivation

otivation 3.Iter

3.lterative Search 4.

4.MITM Search

n 5.Support Experiment

Iterative Search:

1. Initialization phase: preset a difference Δ_m and threshold *c*, select *t* DLAs $\Delta_m \rightarrow \gamma_i$

$$\operatorname{Cor} \left(arDelta_{\mathrm{m}} \stackrel{E_{\mathrm{m}}}{\longrightarrow} \! \gamma_i
ight) ig| > c \qquad \qquad \mathcal{P} \,{=}\, \{ \, \gamma_1, \cdots, \gamma_t \}$$

Strong (Weak) Unbalanced bit:

$$\left| \operatorname{Cor} \left(arDelta_{\mathrm{m}} \stackrel{E_{\mathrm{m}}}{\longrightarrow} [i]
ight)
ight| \geqslant c \ \Downarrow$$

Bit *i* is a strong unbalanced bit (SUB)

 $\left|\operatorname{Cor}\left(arDelta_{\mathrm{m}} \stackrel{E_{\mathrm{m}}}{\longrightarrow} [i]
ight)
ight| < c$

Bit *i* is a weak unbalanced bit (WUB)

9/22 DLA Semi-Unconstrained Searching

1. Problem 2.Core Idea and Motivation 3.Iterative Search 4.MITM Search

5.Support Experiment

Support experiment for the heuristic conclusion:

$$egin{aligned} \mathcal{X}_1 \!=\! & \{ arDelta_\mathrm{m} \, rac{E_\mathrm{m}}{\longrightarrow} \! \gamma_\mathrm{m} | \, 0 \! <\! HW(\gamma_\mathrm{m}) \leqslant d \, \}, \ \mathcal{X}_2 \!=\! & \{ arDelta_\mathrm{m} \, rac{E_\mathrm{m}}{\longrightarrow} \! \gamma_\mathrm{m} | \, 0 \! <\! HW(\gamma_\mathrm{m}) \leqslant d; \gamma_\mathrm{m} \, [i] \!=\! 0 \, \, ext{for} \, i \!
otin \mathcal{B}_\mathcal{S} \} \} \end{aligned}$$

/* $HW(\gamma_{\rm m})$:Hamming weight of $\gamma_{\rm m}$; \mathcal{B}_S :strong unbalanced bit set*/

 $\mathcal{G} \subset \mathcal{X}_1$: the set of DLAs with an absolute correlation higher than a threshold c

$$\frac{|\mathcal{G}|}{|\mathcal{X}_1|} \text{ vs } \frac{|\mathcal{G} \cap \mathcal{X}_2|}{|\mathcal{X}_2|}$$

1. Problem 2.Core Idea and Motivation 3.Iterative Search 4.MITM Search

5.Support Experiment

Results of the support experiment :

Table 3. Comparison of differential-linear approximations in two spaces.

E_m	n	Δ_m	с	$ \mathcal{B}_S $	d	$ \mathcal{X}_1 $	$ \mathcal{X}_2 $	$ \mathcal{G} $	$ \mathcal{G}\cap\mathcal{X}_2 $	$\frac{ \mathcal{G} }{ \mathcal{X}_1 }$	$rac{ \mathcal{G}\cap\mathcal{X}_2 }{ \mathcal{X}_2 }$
8-round LEA	128	[31]	2^{-4}	14	2	8256	105	72	43	0.0087	0.4095
5-round Speck32	32	[22]	2^{-4}	10	4	41448	385	785	311	0.0189	0.8078
					3	5488	175	250	146	0.0456	0.8343
5-round PRESENT	64	[56]	2^{-4}	16	2	2080	136	46	31	0.0221	0.2279
4-round DES	64	[6]	2^{-4}	11	2	2080	66	31	22	0.0149	0.3333

	72	785	250	46	31	
Type 0 (only contains weak unbalanced bits)	15	27	10	8	3	
Type 1 (only contains strong unbalanced bits)	43	311	146	31	22	
Type 2 (contains WUBs and SUBs)	14	447	94	7	6	

1. Problem 2.Basic Concepts 3.Building Process and Usage 4.Dynamic Partitioning Technique

Partition-based Differential-Linear Attack [5,4]:

Build partitions for the function *F* **containing no keys**:

- 1. Partition conditions: b_i for $i \in \{1, \dots, s\}$
- 2. Conditional linear approximation:

$$\gamma_{ ext{out}} \xrightarrow{F} \gamma_p ext{ for } p = b_1 \parallel \cdots \parallel b_s \in \{0, \cdots 2^s - 1\}$$

/* λ_p : linear mask in current partition*/

Extra requirements:

The correlation in each partition is not zero[4].

2.Basic Concepts

1. Problem

3.Building Process and Usage 4.Dynamic Partitioning Technique

The same task:

Our extension for the attack proposed in [5, 4]:

1. Problem

2.Basic Concepts 3.Build

3.Building Process and Usage

ge 4.Dynamic Partitioning Technique

Partition Tree :

A tree that describes the partition conditions and approximations simultaneously.

Leaf Node :

Non-leaf Node :

Its value is known

Its value is unknown

Partition Edge :

Approximation Edge :

$$A \longrightarrow B \quad A = B \quad A = E$$

B is a partition condition

 $A \rightarrow B$

 $A \xrightarrow{X} B \iff A = X \oplus B$ where X is known.

1. Problem 2.Basic Concepts

3.Building Process and Usage

4.Dynamic Partitioning Technique

Building process: Simulate the propagation of linear approximation using the tree.

 $z_1[i] \approx \left< \gamma_p, y_2[i_a] || y_0[i_b] || y_1[i_b] || y_1[i_b-1] || y_1[i_b-2] || y_1[i_b-3] || y_0[i_c] || y_1[i_c] || y_1[i_c-1] || y_1[i_c-2] || y_1[i_c-3] \right>$

2.Basic Concepts

4.Dynamic Partitioning Technique

Usage :

1. Problem

3.Building Process and Usage

 $egin{aligned} b_1 &= y_1[i_a - 1] \oplus y_1[i_b - 2] \oplus y_1[i_c - 2] \ b_2 &= y_1[i_b - 1] \oplus y_0[i_b - 1] \ b_3 &= y_1[i_b - 2] \oplus y_0[i_b - 2] \ b_4 &= y_1[i_c - 1] \oplus y_0[i_c - 1] \ b_5 &= y_1[i_c - 2] \oplus y_0[i_c - 2] \ p &= b_1||b_2||b_3||b_4||b_5 \end{aligned}$

1. Problem 2.Basic Concepts 3.Building Process and Usage

4.Dynamic Partitioning Technique

Dynamic Partitioning Technique:

When the encryption function *F* is rather complex, in order to make the correlation in each partition be non-zero, we need to dynamically choose partition conditions for each data.

1. Problem 2.Basic Concepts 3.Building Process and Usage

4.Dynamic Partitioning Technique

Dynamic Partition Conditions

1. Problem 2.Basic Concepts 3.Building Process and Usage

4.Dynamic Partitioning Technique

Dynamic Partition Conditions

$$egin{aligned} &z_3[i] = &< \gamma_p, \; y_2[i] || y_2[i-1] || y_2[i-2] || y_1[i] || y_1[i-1] || y_1[i-2] || y_1[i-3] || \ &y_0[i] || z_0[i] || z_0[i-1] || z_0[i-2] || z_0[i-3] || k_2[i] || k_1[i] || k_0[i] \ &k_0[i-1] || k_0[i-2] || k_0[i-3] > \end{aligned}$$

 $b_1 = (y_0 \oplus z_0 \oplus k_0) \, [i - 1]; \; b_2 = (y_0 \oplus z_0 \oplus k_0) \, [i - 2]; \; b_3 = (y_0 \oplus z_0 \oplus k_0) \, [i - 3]$

$$b_4 = egin{cases} (y_1 \oplus k_1) \, [i-1] \oplus y_0 \, [i-2], \, ext{if} \, b_2 = 1 \ (y_1 \oplus k_1) \, [i-1] \oplus y_0 \, [i-3], \, ext{if} \, b_2 = 0 \ b_5 = egin{cases} (y_1 \oplus k_1) \, [i-2] \oplus y_0 \, [i-3], \, ext{if} \, b_3 = 1 \ (y_1 \oplus k_1) \, [i-2] \oplus y_0 \, [i-4], \, ext{if} \, b_3 = 0 \ (y_1 \oplus k_2) \, [i-1] \oplus y_1 \, [i-2], \, ext{if} \, b_2 \oplus b_5 = 0 \ b_6 = egin{cases} (y_2 \oplus k_2) \, [i-1] \oplus y_1 \, [i-3], \, ext{if} \, b_2 \oplus b_5 = 1 \ (y_2 \oplus k_2) \, [i-1] \oplus y_1 \, [i-3], \, ext{if} \, b_2 \oplus b_5 = 1 \ \end{array}$$

- How to further improve the DLA searching?
 - 1. Increasing the search space
 - 2. Remove the limitation on the intermediate difference $\Delta_{\rm m}$
 - 3. Improve the MIQCP/MILP-based fully automated DLA searching
- Apply the partition tree to SPN ciphers
 - **1. Build conditional linear approximations of S-box**

Thank you for watching

Feel free to contact us via

chenyi2023@mail.tsinghua.edu.cn ,

zzbao@mail.tsinghua.edu.cn,

yuhongbo@mail.tsinghua.edu.cn ,

if you have any questions or ideas to discuss.