FESTA: Fast Encryption from Supersingular Torsion Attacks

Andrea Basso, Luciano Maino, Giacomo Pope

ASIACRYPT 2023 – December 8th, 2023

Isogeny-based encryption

Isogeny-based encryption

The attacks on SIDH

Scaling torsion points prevents attacks

$$\begin{array}{ccc} P_0 & P_1 \\ Q_0 & \varphi & Q_1 \end{array} = \begin{bmatrix} \alpha \end{bmatrix} & \varphi(P_0) \\ \begin{bmatrix} \alpha^{-1} \end{bmatrix} & \varphi(Q_0) \end{array}$$

Scaling torsion points prevents attacks

$$\begin{array}{ccc} P_{0} & P_{1} \\ Q_{0} & \varphi & Q_{1} \end{array} = \begin{bmatrix} \alpha \end{bmatrix} & \varphi(P_{0}) & P_{2} \\ \begin{bmatrix} \alpha^{-1} \end{bmatrix} & \varphi(Q_{0}) & Q_{2} \end{array} = \begin{bmatrix} \beta \end{bmatrix} & \psi(P_{1}) \\ Q_{2} & \varphi & \varphi \end{array}$$

Scaling torsion points prevents attacks

$$\begin{array}{ccc} P_{0} \\ Q_{0} \\ \bullet \end{array} \xrightarrow{\begin{array}{c} P_{1} \\ Q_{1} \end{array}} = \begin{bmatrix} \alpha \end{bmatrix} & \phi(P_{0}) \\ \begin{bmatrix} \alpha^{-1} \end{bmatrix} & \phi(Q_{0}) \end{array} \xrightarrow{\begin{array}{c} P_{2} \\ Q_{2} \end{array}} = \begin{bmatrix} \beta \end{bmatrix} & \psi(P_{1}) \\ \begin{bmatrix} \beta^{-1} \end{bmatrix} & \psi(Q_{1}) \end{array} = \begin{bmatrix} \alpha\beta \end{bmatrix} & \psi\phi(P_{0}) \\ \begin{bmatrix} \alpha\beta \end{bmatrix}^{-1} \end{bmatrix} & \psi\phi(Q_{0}) \end{array}$$

Scaling torsion points prevents attacks

$$\begin{array}{cccc} P_{0} & P_{1} \\ Q_{0} & \varphi & Q_{1} \end{array} = \begin{bmatrix} \alpha \end{bmatrix} & \varphi(P_{0}) \\ \begin{bmatrix} \alpha^{-1} \end{bmatrix} & \varphi(Q_{0}) & Q_{2} \end{array} = \begin{bmatrix} \beta \end{bmatrix} & \psi(P_{1}) \\ \begin{bmatrix} \beta^{-1} \end{bmatrix} & \psi(Q_{1}) \end{array} = \begin{bmatrix} \alpha\beta \end{bmatrix} & \psi\varphi(P_{0}) \\ \begin{bmatrix} (\alpha\beta)^{-1} \end{bmatrix} & \psi\varphi(Q_{0}) \end{array}$$

Scaling torsion points prevents attacks

$$f_{E_0, P_0, Q_0, E_A, P_A, Q_A}$$
 (ψ,σ,β)

 $f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta)$

 $f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta) = E_1, P_1, Q_1, E_2, P_2, Q_2$

 $f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta) = E_1, P_1, Q_1, E_2, P_2, Q_2$

$$f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta) = E_1, P_1, Q_1, E_2, P_2, Q_2$$

$f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta) = E_1, P_1, Q_1, E_2, P_2, Q_2$

$f_{E_0, P_0, Q_0, E_A, P_A, Q_A}(\psi, \sigma, \beta) = E_1, P_1, Q_1, E_2, P_2, Q_2$

partial-domain one-way

Encrypt

1. Sample random rnd 2. $\psi = (m \parallel 0...0) + H(rnd)$ 3. σ , $\beta = G(\psi) + rnd$ 4. $ct = f(\psi, \sigma, \beta)$

Encrypt

Decrypt

1. Sample random rnd 2. $\psi = (m \parallel 0...0) + H(rnd)$ 3. σ , $\beta = G(\psi) + rnd$ 4. $ct = f(\psi, \sigma, \beta)$

1. Compute ψ, σ, β 2. rnd = $G(\psi)$ - (σ, β) 3. (m || 0...0) = ψ - H(rnd)

Dimension two

Dimension four (and higher)

Dimension two

- Fast and simple implementation
- Strict degree requirements

Dimension four (and higher)

Dimension two

- Fast and simple implementation
- Strict degree requirements

Dimension four (and higher)

No degree requirements

• Slow and complex implementation

Dimension two

- Fast and simple implementation
- Strict degree requirements

Dimension four (and higher)

- No degree requirements
- Slow and complex implementation

₩

- Small parameters (p $\approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

↓

- Small parameters (p $\approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

- Small parameters (p $\approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

Running times of the attack dominated by the smoothness of the order of torsion points

Running times of the attack dominated by the smoothness of the order of torsion points

 \implies ord P = ord Q = 2^b

Running times of the attack dominated by the smoothness of the order of torsion points

ord $P = ord Q = 2^b$

 \Rightarrow

Attacks in dimension two require that $deg(\psi \phi \sigma) + c = 2^{b}$

for c smooth and computable

Running times of the attack dominated by the smoothness of the order of torsion points

ord $P = ord Q = 2^b$

 \Rightarrow

Attacks in dimension two require that

 $deg(\psi \phi \sigma) + c = 2^{b}$

for c smooth and computable

 $deg(\psi \phi_1) + deg(\phi_2 \sigma) = 2^b$ with $\phi = \phi_1 \phi_2$

Running times of the attack dominated by the smoothness of the order of torsion points

ord $P = ord Q = 2^b$

 \Rightarrow

Attacks in dimension two require that

 $deg(\psi \phi \sigma) + c = 2^{b}$

for c smooth and computable

 $m_1^2 \operatorname{deg}(\psi \phi_1) + m_2^2 \operatorname{deg}(\phi_2 \sigma) = 2^b$ with $\phi = \phi_1 \phi_2$

Running times of the attack dominated by the smoothness of the order of torsion points

ord $P = ord Q = 2^{b}$

 \Rightarrow

Attacks in dimension two require that

 $deg(\psi \phi \sigma) + c = 2^{b}$

for c smooth and computable

Ad-hoc approach based on Cornacchia's algorithm

 $m_1^2 \operatorname{deg}(\psi \phi_1) + m_2^2 \operatorname{deg}(\phi_2 \sigma) = 2^b$ with $\phi = \phi_1 \phi_2$

Running times of the attack dominated by the smoothness of the order of torsion points

ord $P = ord Q = 2^{b}$

Attacks in dimension two require that

 $deg(\psi \phi \sigma) + c = 2^{b}$

for c smooth and computable

 \Rightarrow

 $m_1^2 \text{deg}(\psi \phi_1) + m_2^2 \text{deg}(\phi_2 \sigma) = 2^b$ with $\phi = \phi_1 \phi_2$

Ad-hoc approach based on Cornacchia's algorithm

 $\begin{array}{ll} \mbox{deg}(\psi),\mbox{ deg}(\sigma) & \mbox{are } 2^{12}\mbox{ smooth}, & \mbox{ b} = 632, \\ \mbox{deg}(\varphi) & \mbox{ is } 2^{16}\mbox{ smooth}, & \mbox{ p} \approx 2^{1292} \end{array}$

Results

andrea@MacBook-Pro FESTA-SageMath % sage example_festa.sage
Keygen took: 4.467 seconds
Compressed public key: 561 bytes
Encrypt took: 3.057 seconds
Compressed ciphertext: 1122 bytes
Decrypt took: 10.102 seconds

New constructive framework based on the SIDH attacks

New constructive framework based on the SIDH attacks

New constructive framework based on the SIDH attacks

New isogeny-based PKE scheme from more conservative assumptions

With great potential for improvements and advanced applications

New constructive framework based on the SIDH attacks

New isogeny-based PKE scheme from more conservative assumptions

Paper

https://eprint.iacr.org/2023/660.pdf

Source Code

https://github.com/FESTA-PKE/ FESTA-SageMath