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A new assumption
Scaling torsion points prevents attacks

Po Pi1 _ [a] ¢(Po)
Qo Q1 [a"]d(Qo)

An important property

Po Pi _ [o] &(Po) P2 _ [B] W(Px) _ [aB] w(Po)
Qo Q1 [a7] d(Qo) Q2 BT W(Q1) [(@B)'Td(Qo)
b [0]o(P2) _ [B] owd(Po)

[0] o(Q2) — [BToY(Qo)
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The FESTA PKE

on, Po, Qo, Ea, Pa, QA(LP’O’ ﬁ) = E1’ P1! Q1! E2! P25 Q2
—

partial-domain one-way

|

OAEP transform
IND-CCAZ2 security in the QROM

Encrypt Decrypt
1.Sa mple random rnd
1. Compute y,0,
2.9 =(m]|0...0) + H(rnd) e =pG(L|))L|)- (0[3 .
3.0,B=G() +rnd “lo.
4.ct = f(,0,B) 3.(m || 0...0) = ¥ - H(rnd)
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There are attacks and attacks

Dimension two Dimension four (and higher)
X | X ‘ X X d\
* Fast and simple implementation | * No degree requirements
- Strict degree requirements |  Slow and complex implementation
- Larger parameters (p = 21300) - Small parameters (p =~ 2400)
» Practical running times * Fast KeyGen and Encrypt, slow Decrypt
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How to find parameters

Running times of the attack
dominated by the smoothness of the
order of torsion points

Attacks in dimension two require that
deg(pdo) + c =2b
for c smooth and computable

Ad-hoc approach based on
Cornacchia’s algorithm

ordP=o0ord Q =2b

mi2 deg(P+) + m22 deg(c-0) = 2
with & = p1do2

deg(V), deg(o) are 212 smooth,
deg(®) is 216 smooth,

b =632,
D ~ 21292



Results

andrea@MacBook-Pro FESTA-SageMath % sage example festa.sage

Running FESTA 128

Keygen took: 4.467 seconds

Compressed public key: 561 bytes

Encrypt took: 3.057 seconds

Compressed ciphertext: 1122 bytes

Decrypt took: 10.102 seconds
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Paper Source Code

https://github.com/FESTA-PKE/

https://eprint.iacr.org/2023/660.pdf FESTA-SageMath



