FESTA: Fast Encrytion from Supersingular Iorsion Attacks

Andrea Basso, Luciano Maino, Giacomo Pope

ASIACRYPT 2023 - December 8th, 2023

Isogeny-based encryption

Isogeny-based encryption

The attacks on SIDH

A new assumption

Scaling torsion points prevents attacks

A new assumption

Scaling torsion points prevents attacks

A new assumption

Scaling torsion points prevents attacks

A new assumption

Scaling torsion points prevents attacks

An important property

A new assumption

Scaling torsion points prevents attacks

An important property

A new assumption

Scaling torsion points prevents attacks

An important property

A new assumption

Scaling torsion points prevents attacks

An important property

A new assumption

Scaling torsion points prevents attacks

An important property

A new assumption

Scaling torsion points prevents attacks

An important property

The FESTA trapdoor

The FESTA trapdoor

$$
\begin{array}{ll}
P_{0} \\
Q_{0}
\end{array} \quad \phi \quad \begin{aligned}
& \mathrm{P}_{\mathrm{A}}
\end{aligned}=\left[\begin{array}{l}
{[a] \phi\left(\mathrm{P}_{0}\right)} \\
\mathrm{Q}_{\mathrm{A}}
\end{array}{ }^{\left.-1 a^{-1}\right] \phi\left(\mathrm{Q}_{0}\right)}\right.
$$

The FESTA trapdoor

$f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}($

The FESTA trapdoor

$f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\psi, \sigma, \beta)$

The FESTA trapdoor

$$
\begin{aligned}
& P_{1}=[\beta] \psi\left(P_{0}\right) \\
& Q_{1}={ }^{\left[\beta^{-1}\right]} \psi\left(Q_{0}\right) \\
& f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\Psi, \sigma, \beta)
\end{aligned}
$$

The FESTA trapdoor

The FESTA trapdoor

The FESTA trapdoor

$$
\begin{array}{ll}
P_{1}=[\beta] \psi\left(P_{0}\right) & P_{2}=\left[\begin{array}{ll}
{[\beta]} & \sigma\left(P_{A}\right) \\
Q_{1} & \left.Q_{2}\right] \psi\left(Q_{0}\right)
\end{array} Q_{\left[\beta^{-1}\right] \sigma\left(Q_{A}\right)}\right.
\end{array}
$$

$$
f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\psi, \sigma, \beta)=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}
$$

The FESTA trapdoor

$$
\Rightarrow \begin{gathered}
\bar{\Psi} \phi \sigma\left(\mathrm{P}_{1}\right)=[\operatorname{deg} \psi]\left[\alpha^{-1} \mathrm{P}_{2}\right. \\
\bar{\psi} \phi \sigma\left(\mathrm{Q}_{1}\right)=[\operatorname{deg} \psi][\alpha] \mathrm{Q}_{2}
\end{gathered}
$$

$$
f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\psi, \sigma, \beta)=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}
$$

The FESTA PKE

$$
f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\psi, \sigma, \beta)=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}
$$

The FESTA PKE

$$
f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\underbrace{(U, \sigma, \beta}_{\text {partial-domain one-way }})=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}
$$

The FESTA PKE

$$
f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\underbrace{(U, \sigma, \beta}_{\text {partial-domain one-way }})=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}
$$

The FESTA PKE

$f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\underbrace{\Psi, \sigma, \beta}_{\text {partial-domain one-way }})=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}$
\Downarrow
OAEP transform
IND-CCA2 security in the QROM

Encrypt

1. Sample random rnd
2. $\psi=(m \| 0 . . .0)+H(r n d)$
3. $\sigma, \beta=G(\psi)+r n d$
4. $c t=f(\psi, \sigma, \beta)$

The FESTA PKE

$f_{E_{0}, P_{0}, Q_{0}, E_{A}, P_{A}, Q_{A}}(\underbrace{\Psi, \sigma, \beta}_{\text {partial-domain one-way }})=E_{1}, P_{1}, Q_{1}, E_{2}, P_{2}, Q_{2}$

Encrypt

1. Sample random rnd
2. $\psi=(m| | 0 . . .0)+H(r n d)$
3. $\sigma, \beta=G(\psi)+r n d$
4. $c t=f(\psi, \sigma, \beta)$

Decrypt

1. Compute ψ, σ, β
2. $\mathrm{rnd}=G(\psi)-(\sigma, \beta)$
3. $(\mathrm{m} \| 0 \ldots 0)=\psi-H(\mathrm{rnd})$

There are attacks and attacks

- Fast and simple implementation
- Strict degree requirements

There are attacks and attacks

Dimension two

- Fast and simple implementation
- Strict degree requirements

Dimension four (and higher)

- No degree requirements
- Slow and complex implementation

There are attacks and attacks

Dimension two

- Fast and simple implementation
- Strict degree requirements

Dimension four (and higher)

- No degree requirements
- Slow and complex implementation
\Downarrow
- Small parameters ($\mathrm{p} \approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

There are attacks and attacks

Dimension four (and higher)

- No degree requirements
- Slow and complex implementation
\Downarrow
- Small parameters ($\mathrm{p} \approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

There are attacks and attacks

Dimension four (and higher)

- No degree requirements
- Slow and complex implementation
\Downarrow
- Small parameters ($\mathrm{p} \approx 2^{400}$)
- Fast KeyGen and Encrypt, slow Decrypt

How to find parameters

Running times of the attack
dominated by the smoothness of the order of torsion points

How to find parameters

Running times of the attack dominated by the smoothness of the order of torsion points
$\Rightarrow \quad$ ord $P=\operatorname{ord} Q=2^{b}$

How to find parameters

Running times of the attack dominated by the smoothness of the order of torsion points
$\Rightarrow \quad$ ord $P=\operatorname{ord} Q=2^{b}$

Attacks in dimension two require that $\operatorname{deg}(\psi \phi \sigma)+c=2^{b}$
for c smooth and computable

How to find parameters

Running times of the attack dominated by the smoothness of the order of torsion points

$$
\Rightarrow \quad \text { ord } P=\operatorname{ord} Q=2^{b}
$$

Attacks in dimension two require that $\operatorname{deg}(\psi \phi \sigma)+c=2^{b}$
\Rightarrow
for c smooth and computable

$$
\operatorname{deg}\left(\psi \phi_{1}\right)+\operatorname{deg}\left(\phi_{2} \sigma\right)=2^{\mathrm{b}}
$$

with $\phi=\phi_{1} \phi_{2}$

How to find parameters

Running times of the attack dominated by the smoothness of the order of torsion points

Attacks in dimension two require that $\operatorname{deg}(\psi \phi \sigma)+c=2^{b}$
for c smooth and computable
$\Rightarrow \quad$ ord $P=\operatorname{ord} Q=2^{b}$
$\Rightarrow \quad m_{1}^{2} \operatorname{deg}\left(\psi \phi_{1}\right)+m_{2}^{2} \operatorname{deg}\left(\phi_{2} \sigma\right)=2^{b}$
with $\phi=\phi_{1} \phi_{2}$

How to find parameters

Running times of the attack dominated by the smoothness of the order of torsion points

Attacks in dimension two require that $\operatorname{deg}(\psi \phi \sigma)+\mathrm{c}=2^{\mathrm{b}}$
for c smooth and computable
$\Rightarrow \quad$ ord $P=\operatorname{ord} Q=2^{b}$
$\Rightarrow \quad m_{1}{ }^{2} \operatorname{deg}\left(\psi \phi_{1}\right)+m_{2}^{2} \operatorname{deg}\left(\phi_{2} \sigma\right)=2^{b}$
with $\phi=\phi_{1} \phi_{2}$

Ad-hoc approach based on
Cornacchia's algorithm

How to find parameters

1
Running times of the attack dominated by the smoothness of the order of torsion points

Attacks in dimension two require that $\operatorname{deg}(\psi \phi \sigma)+\mathrm{c}=2^{\mathrm{b}}$
for c smooth and computable

Ad-hoc approach based on
Cornacchia's algorithm

$$
\Rightarrow \quad \text { ord } P=\operatorname{ord} Q=2^{b}
$$

$$
\Rightarrow \quad m_{1}^{2} \operatorname{deg}\left(\psi \phi_{1}\right)+m_{2}^{2} \operatorname{deg}\left(\phi_{2} \sigma\right)=2^{b}
$$

$$
\text { with } \phi=\phi_{1} \phi_{2}
$$

$\operatorname{deg}(\psi), \operatorname{deg}(\sigma)$ are 2^{12} smooth,
$b=632$,
$p \approx 2^{1292}$

Results

Conclusion

Conclusion

New constructive framework based on the SIDH attacks

Conclusion

New constructive framework based on the SIDH attacks

New isogeny-based PKE scheme from more conservative assumptions

Conclusion

New constructive framework based on the SIDH attacks

New isogeny-based PKE scheme from more conservative assumptions

With great potential for improvements and advanced applications

Conclusion

New constructive framework based on the SIDH attacks

New isogeny-based PKE scheme from more conservative assumptions

Paper

https://eprint.iacr.org/2023/660.pdf

Source Code

https://github.com/FESTA-PKE/ FESTA-SageMath

