G+G: A Fiat-Shamir Lattice Signature Based on Convolved Gaussians

Julien Devevey Alain Passelègue Damien Stehlé
ANSSI
France
CryptoLab Inc.
France
CryptoLab Inc.
France

Our contributions

- New technique for building Fiat-Shamir lattice-based signatures, a.k.a. Lyubashevsky's signatures
- No rejection sampling, no noise flooding
- We rely on Gaussian convolutions

Paradigm	Scheme	Signature size	Aborts
Rejection sampling	Dilithium, HAETAE, ...	Small ($\sim 2 \mathrm{kB}$)	YES
Noise flooding	Raccoon	Large ($\sim 15 \mathrm{kB})$	NO
This work	G+G	Small (~2kB)	NO

Our contributions

- New technique for building Fiat-Shamir lattice-based signatures, a.k.a. Lyubashevsky's signatures
- No rejection sampling, no noise flooding
- We rely on Gaussian convolutions

Lyubashevsky's signatures in a nutshell

- A lattice adaptation of Schnorr's identification protocol/signature
- Introduced by Lyubashevsky in 2009 [Lyu'09, Lyu'11]

Discrete logarithm problem:
Given g, g^{x} find x

SISILWE problem
Given A, AS for S small, find S

Lattice-based identification protocol

Prover
$\mathrm{A} \leftarrow \mathbb{Z}_{q}^{m \times k}$
Verifier
$\mathrm{S} \leftarrow \mathbb{Z}^{k \times \ell}$ small
$\mathrm{A}, \mathrm{T}:=\mathrm{AS}$

Lattice-based identification protocol

$$
\begin{array}{lc}
& \text { Prover } \\
\mathrm{A} \leftarrow \mathbb{Z}_{q}^{m \times k} & \text { Verifier } \\
\mathrm{S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small } & \mathrm{A}, \mathbf{T}:=\mathrm{AS}
\end{array}
$$

$\mathrm{y} \leftarrow \mathbb{Z}^{k}$ small
$\mathrm{w} \leftarrow \mathbf{A y} \bmod q$ \qquad

Lattice-based identification protocol

$$
\begin{aligned}
& \text { Prover } \\
& \mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \quad \mathbf{A}, \mathbf{T}:=\mathbf{A S} \\
& \mathrm{S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small } \\
& \begin{array}{l}
\mathbf{y} \leftarrow \mathbb{Z}^{k}{ }_{\text {small }} \\
\mathbf{w} \leftarrow \mathbf{A}_{\mathbf{y} \bmod } q
\end{array} \\
& \longleftarrow \mathbb{C} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{aligned}
$$

Lattice-based identification protocol

$$
\begin{aligned}
& \text { Prover } \\
& \mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \quad \mathbf{A}, \mathbf{T}:=\mathbf{A S} \\
& \mathrm{S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small } \\
& \mathbf{y} \leftarrow \mathbb{Z}^{k}{ }_{\text {small }} \\
& \mathbf{w} \leftarrow \mathbf{A y} \bmod q \\
& c \leftarrow U\left(\{0,1\}^{\ell}\right) \\
& \mathrm{Z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow
\end{aligned}
$$

Lattice-based identification protocol

Prover

$$
\begin{aligned}
& \mathrm{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \\
& \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y} \leftarrow \mathbb{Z}^{k}{ }_{\text {small }} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod q
\end{aligned}
$$

$c \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{Z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) \mathbb{Z} is small
(2) $\mathbf{A z}=\mathbf{w}+\mathrm{Tc} \bmod q$

Lattice-based identification protocol

Prover

$$
\begin{aligned}
& \mathrm{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \\
& \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
\end{aligned}
$$

$$
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}
$$

$$
\mathbf{w} \leftarrow \mathbf{A y} \bmod q
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) \mathbb{Z} is small
(2) $\mathrm{Az}=\mathrm{w}+\mathrm{Tc} \bmod q$

Resulting signature

Prover

$$
\begin{aligned}
& \mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \\
& \mathbf{S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
\end{aligned}
$$

$$
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}
$$

$$
\mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod q
$$

$$
\mathbf{c} \leftarrow H(\mathbf{A}, \mathbf{T}, \mathbf{w}, \mu)
$$

$\mathbb{Z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \xrightarrow{\operatorname{Sign}(\mathrm{~A}, \mathrm{~S}, \mu)=(\mathrm{w}, \mathrm{c}, \mathrm{z})}$ Verify that:
(1) \mathbb{Z} is small
(2) $\mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

Resulting signature

Prover

$$
\begin{aligned}
& \mathrm{A} \leftarrow \mathbb{Z}_{q}^{m \times k} \\
& \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
\end{aligned}
$$

$$
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}
$$

$$
\mathbf{w} \leftarrow \mathbf{A y} \bmod q
$$

$$
\mathbf{c} \leftarrow H(\mathbf{A}, \mathbf{T}, \mathbf{w}, \mu)
$$

$\mathrm{Z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \xrightarrow{\operatorname{Sign}(\mathrm{~A}, \mathrm{~S}, \mu)=(\not \subset, \mathrm{c}, \mathrm{z})}$ Verify that:
(1) \mathbb{Z} is small
(2) $\mathrm{c} \leftarrow H(\mathbf{A}, \mathbf{T}, \underbrace{\mathbf{A}-\mathbf{T}}_{=\mathbf{w} \bmod q}, \mu)$

Properties of this protocol

Prover
Verifier
A, S

$$
\mathbf{A}, \mathbf{T}:=\mathbf{A S}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow \\
\\
\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

Properties of this protocol

Prover
A.S

Verifier

$$
\mathrm{A}, \mathbf{T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathbf{A y} \bmod q \\
\longleftrightarrow
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathrm{Tc} \bmod q$

$$
\text { (2) } \mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q
$$

$$
\begin{aligned}
& \mathbf{A z}=\mathbf{A}(\mathbf{y}+\mathbf{S c})=\mathbf{w}+\mathbf{T c} \bmod q \\
& \mathbf{z}=\mathbf{y}+\mathbf{S c} \text { is small }
\end{aligned}
$$

Completeness:
 Completeness:

Properties of this protocol

Prover
A, S
Verifier
$\mathrm{A}, \mathrm{T}:=\mathrm{AS}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay}_{\operatorname{yod}} q \longrightarrow \\
\\
\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathrm{Tc} \bmod q$

Completeness:

$$
\begin{aligned}
& \mathbf{A z}=\mathbf{A}(\mathbf{y}+\mathbf{S c})=\mathbf{w}+\mathbf{T} \mathbf{c} \bmod q \\
& \mathbf{z}=\mathbf{y}+\mathbf{S c} \text { is small }
\end{aligned}
$$

Soundness:

From the hardness of SIS (or LWE)

Properties of this protocol

Prover
A, S
Verifier
$\mathrm{A}, \mathbf{T}:=\mathrm{AS}$

$$
\begin{aligned}
\mathrm{y} & \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} & \leftarrow \mathrm{Ay} \bmod q .
\end{aligned}
$$

$$
\longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathrm{Tc} \bmod q$

Completeness:

$$
\begin{aligned}
& \mathbf{A z}=\mathbf{A}(\mathbf{y}+\mathbf{S c})=\mathbf{w}+\mathbf{T} \mathbf{c} \bmod q \\
& \mathbf{z}=\mathbf{y}+\mathbf{S c} \text { is small }
\end{aligned}
$$

Soundness:

From the hardness of SIS (or LWE)

Zero-knowledge:

This is the focus of this talk!

Honest-Verifier Zero-knowledge

Prover
A, S
Verifier

$$
\mathrm{A}, \mathbf{T}:=\mathrm{AS}
$$

"A real transcript contains no more information that what is already contained in the challenge and verification key"

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \\
\longleftrightarrow
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathrm{w}+\mathrm{Tc} \bmod q$

Honest-Verifier Zero-knowledge

Prover
A.S

Verifier

$$
\mathrm{A}, \mathrm{~T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow
\end{array} \\
& \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathrm{w}+\mathrm{Tc} \bmod q$
"A real transcript contains no more information that what is already contained in the challenge and verification key"

There exists a PPT simulator Sim satisfying the following:

Input: A, T, c
Output: $\mathbf{w}, \mathbf{c}, \mathbf{z}$

Honest-Verifier Zero-knowledge

Prover
A.S

Verifier

$$
\mathrm{A}, \mathrm{~T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \operatorname{Ay} \bmod q \longrightarrow
\end{array} \\
& \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$
"A real transcript contains no more information that what is already contained in the challenge and verification key"

There exists a PPT simulator Sim satisfying the following:

Input: A, T, c
Output: $\mathbf{w}, \mathbf{c}, \mathbf{z}$

Indistinguishability of transcripts:

$$
\begin{aligned}
& \Delta(((\mathbf{w}, \mathbf{c}, \mathbf{z}) \leftarrow(\mathrm{P}(\mathbf{A}, \mathbf{S}) \leftrightarrow \mathrm{V}(\mathbf{A}, \mathbf{T}))), \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c})) \leq \epsilon \\
& \text { or } \\
& \mathrm{RD}(((\mathbf{w}, \mathbf{c}, \mathbf{z}) \leftarrow(\mathrm{P}(\mathbf{A}, \mathbf{S}) \leftrightarrow \mathrm{V}(\mathbf{A}, \mathbf{T}))) \mid \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c})) \leq 1+\epsilon
\end{aligned}
$$

Simulation

Prover
A.S

Verifier
A,T:=AS

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathbf{w}+\mathrm{Tc} \bmod q$

Simulation strategy:

```
Sim(A,T, c) :
```

Return (w, c, z)

Simulation

Prover
A.S

Verifier

$$
\mathrm{A}, \mathrm{~T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow
\end{aligned}
$$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

$$
4
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathrm{w}+\mathrm{Tc} \bmod q$

Simulation

Prover
A.S

$$
\mathrm{A}, \mathrm{~T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathrm{w} \leftarrow \mathrm{Ay}^{2} \bmod q \longrightarrow
\end{aligned}
$$

 What is the correct

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

$$
\text { Return }(\mathbf{w}, \mathbf{c}, \mathbf{z})
$$

distribution?

Must be sampled from without \mathbf{S}
$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathrm{Az}_{\mathrm{z}}=\mathrm{w}+\mathrm{Tc} \bmod q$

Simulation

Prover
A, S

Verifier

$$
\mathrm{A}, \mathrm{~T}:=\mathrm{AS}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \\
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
${ }^{(2)} \mathbf{A z}=\mathrm{w}+\mathrm{Tc} \bmod q$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

$$
\text { Return }(\mathbf{w}, \mathbf{c}, \mathbf{z})
$$

In the real protocol:

$$
\mathrm{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

What is the correct distribution?

Must be sampled from without \mathbf{S}

Enforced by
completeness

Simulation

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \\
\end{array}
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

$$
\text { Return }(\mathbf{w}, \mathbf{c}, \mathbf{z})
$$

In the real protocol:

$$
\mathrm{z} \leftarrow \mathrm{y}+\mathbf{S c}
$$

What is the correct distribution?

Must be sampled from without \mathbf{S}

Enforced by
completeness

Simulation

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow
\end{array} \\
& \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

$$
\text { Return }(\mathbf{w}, \mathbf{c}, \mathbf{z})
$$

In the real protocol:

$$
\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}
$$

What is the correct distribution?

Must be sampled from without \mathbf{S}

Enforced by
completeness

Simulation

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \boldsymbol{\sigma}} \\
\mathrm{w} \leftarrow \mathrm{Ay} \bmod q \longrightarrow
\end{array} \\
& \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

What is the correct distribution?

Must be sampled from without \mathbf{S}

Return ($\mathbf{w}, \mathbf{c}, \mathbf{z}$)
In the real protocol:

$$
\mathrm{z} \leftarrow \mathrm{y}+\mathbf{S c}
$$

$$
\mathcal{D}_{\mathbf{z}}=\mathcal{D}_{\mathbb{Z}^{k}, \sigma, \mathbf{S c}}
$$

$$
\rho_{\mathbf{y}+\mathrm{Sc}}
$$

Simulation

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathrm{w} \leftarrow \mathbf{A y} \bmod q \longrightarrow
\end{aligned}
$$

$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc} \bmod q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathbf{w}+\mathbf{T c} \bmod q$

$$
\rho_{\mathbf{y}+\mathbf{S c}}
$$

Simulation strategy:

$$
\begin{aligned}
& \operatorname{Sim}(\mathbf{A}, \mathbf{T}, \mathbf{c}): \\
& \mathbf{z} \leftarrow \mathcal{D}_{\mathbf{z}} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{z}-\mathbf{T} \mathbf{c} \bmod q
\end{aligned}
$$

 Enforced by completeness

The protocol is actually not always secure

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 1: choose the distribution of \mathbf{y} such that it remains close when shifted by $\mathbf{S c}$

Make \mathbf{y} much larger than $\mathbf{S c}$ but still small compared to q. This requires large parameters...

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 1: choose the distribution of y such that it remains close when shifted by Sc

Make \mathbf{y} much larger than $\mathbf{S c}$ but still small compared to q. This requires large parameters...

Noise-flooding $\quad \rho_{\mathbf{y}}$	$\rho_{\mathbf{y}+\mathbf{S c}}$	

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{Z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Two known approaches

Problem: we want to be able to sample from the distribution of \mathbf{z} without knowing \mathbf{S}

$$
\mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}
$$

Solution 2: make the distribution of \mathbf{z} independent of $\mathbf{S c}$ by rejecting to a target distribution

Trade-off: abort-rate vs size

\mathbf{y}, \mathbf{z} are larger but less aborts

\mathbf{y}, \mathbf{z} are smaller but much more aborts

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

Verifier

A
s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$

Using bimodal Gaussians

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

Verifier

A
s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$

$$
\begin{aligned}
& \mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod 2 q
\end{aligned}
$$

$$
\begin{array}{cl}
b \leftarrow U(\{0,1\}) \\
\mathrm{z} \leftarrow \mathrm{y}+(-1)^{b} \mathrm{Sc} \bmod 2 q
\end{array} \longrightarrow \begin{aligned}
& \text { Verify that: } \\
& \cline { 1 - 3 }
\end{aligned} \begin{aligned}
& \text { (1) } \mathbb{Z} \text { is small } \\
& \text { (2) } \mathbf{A} \mathbf{z}=\mathbf{w}+q \mathbb{c} \bmod 2 q
\end{aligned}
$$

Using bimodal Gaussians

Using bimodal Gaussians

The scaling factor M is much smaller... Smaller expected number of aborts.
\rightarrow Less aborts, or reduced size for same abort-rate

Why does verification still pass?

> Prover
> A, S
> s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
> $\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
> $\mathbf{w} \leftarrow$ Ay $\bmod 2 q$
> Verifier
> A
> $\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
> $\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
> (1) Z is small
> (2) $\mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Why does verification still pass?

Prover
A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathrm{w} \leftarrow$ Ay $\bmod 2 q \longrightarrow$
$\longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

$$
\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q \Rightarrow 2 \mathbf{A} \mathbf{S}=\mathbf{0} \bmod 2 q
$$

Why does verification still pass?

$$
\begin{gathered}
\begin{array}{c}
\text { Prover } \\
\mathbf{A}, \mathrm{S} \\
\text { s.t. } \mathbf{A S}=q \mathbf{I}_{k}
\end{array} \\
\begin{array}{c}
\text { Verifier } \\
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \leftarrow \mathrm{Ay} \bmod 2 q \longrightarrow
\end{array} \\
\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right) \\
\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow \\
\text { Verify that: } \\
\text { (1) } \mathrm{Z} \text { is small } \\
\text { (2) } \mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q
\end{gathered}
$$

Verifier

Verifier

$\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q \Rightarrow 2 \mathbf{A S}=\mathbf{0} \bmod 2 q$

For completeness, one needs: $\mathbf{A y}+\mathbf{A S c}=\mathbf{w}+q \mathbf{c} \bmod 2 q$

Why does verification still pass?

$$
\begin{aligned}
& \text { Prover } \\
& \text { A, S } \\
& \text { s.t. } \mathbf{A S}=q \mathbf{I}_{k} \\
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
& \mathbf{w} \leftarrow \text { Ay } \bmod 2 q \\
& \longleftrightarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right) \\
& \mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow \text { Verify that: } \\
& \text { (1) } \mathrm{Z} \text { is small } \\
& \text { (2) } \mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q \\
& \text { A }
\end{aligned}
$$

Verifier

Verifier

For completeness, one needs:

$$
\underbrace{\mathbf{A} \mathbf{y}}_{=\mathbf{w}}+\underbrace{\mathbf{A} \mathbf{S} \mathbf{c}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

Why does verification still pass?

Prover
A, S

$$
\text { s.t. } \mathbf{A S}=q \mathbf{I}_{k}
$$

$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathbf{w} \leftarrow \mathbf{A y} \bmod 2 q$
\longrightarrow
$\mathrm{z} \leftarrow \mathrm{y} \pm$ Sc $\bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathrm{w}+q \mathrm{c} \bmod 2 q$
$\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$

Verifier

A

For completeness, one needs:

$$
\underbrace{\mathbf{A} \mathbf{y}}_{=\mathbf{w}}+\underbrace{\mathbf{A S} \mathbf{c}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\mathbf{A}(\mathbf{y}-\mathbf{S c})=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

$$
\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q \Rightarrow 2 \mathbf{A} \mathbf{S}=\mathbf{0} \bmod 2 q
$$

Why does verification still pass?

Prover

A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathbf{w} \leftarrow$ Ay $\bmod 2 q$
\longrightarrow
$\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Verifier

A

For completeness, one needs:

$$
\underbrace{\mathbf{A} \mathbf{y}}_{=\mathbf{w}}+\underbrace{\mathbf{A} \mathbf{S} \mathbf{c}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\mathbf{A}(\mathbf{y}-\mathbf{S} \mathbf{c})=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

$$
\mathbf{y}+\mathbf{S c}-2 \mathbf{S c}
$$

Why does verification still pass?

Prover

A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathbf{w} \leftarrow \mathbf{A y} \bmod 2 q$
\longrightarrow
$\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Verifier

A

For completeness, one needs:

$$
\underbrace{\mathbf{A y}}_{=\mathbf{w}}+\underbrace{\mathbf{A S} \mathbf{S}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\begin{aligned}
\mathbf{A}(\mathbf{y}-\mathbf{S} \mathbf{c}) & =\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& =\mathbf{A} \mathbf{y}+\mathbf{A S c}-2 \mathbf{A S c} \bmod 2 q
\end{aligned}
$$

$$
\mathbf{y}+\mathbf{S c}-2 \mathbf{S c}
$$

Why does verification still pass?

Prover

A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathbf{w} \leftarrow \mathbf{A y} \bmod 2 q$
\longrightarrow
$\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Verifier

A

For completeness, one needs:

$$
\underbrace{\mathbf{A y}}_{=\mathbf{w}}+\underbrace{\mathbf{A S} \mathbf{S}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\begin{aligned}
\mathbf{A}(\mathbf{y}-\mathbf{S c}) & =\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& =\mathbf{A} \mathbf{y}+\mathbf{A S c}-\underbrace{2 \mathbf{A S} \mathbf{c}}_{=\mathbf{0}} \bmod 2 q
\end{aligned}
$$

$$
\mathbf{y}+\mathbf{S c}-2 \mathbf{S c}
$$

Why does verification still pass?

Prover
A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathrm{w} \leftarrow$ Av $\bmod 2 q$

$$
\longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
$$

$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathbf{A z}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Verifier

A

$$
\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q \Rightarrow 2 \mathbf{A S}=\mathbf{0} \bmod 2 q
$$

For completeness, one needs:

$$
\underbrace{\mathbf{A y}}_{=\mathbf{w}}+\underbrace{\mathbf{A S S} \mathbf{w}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\begin{aligned}
\mathbf{A}(\mathbf{y}-\mathbf{S} \mathbf{c}) & =\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& =\mathbf{A} \mathbf{y}+\mathbf{A S c}-\underbrace{2 \mathbf{A S} \mathbf{c}}_{=\mathbf{0}} \bmod 2 q
\end{aligned}
$$

Actually, for any $\mathbf{h} \in \mathbb{Z}^{\ell}$, we have:

$$
\mathbf{A}(\mathbf{y}+\mathbf{S c})=\mathbf{A}(\mathbf{y}+\mathbf{S c}+2 \mathbf{S h}) \bmod 2 q
$$

Why does verification still pass?

Prover
A, S
s.t. $\mathbf{A S}=q \mathbf{I}_{k}$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
$\mathrm{w} \leftarrow \mathrm{Ay} \bmod 2 q$

$$
\longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
$$

$\mathrm{z} \leftarrow \mathrm{y} \pm \mathrm{Sc} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathrm{Az}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Verifier

A

For completeness, one needs:

$$
\underbrace{\mathbf{A y}}_{=\mathbf{w}}+\underbrace{\mathbf{A S} \mathbf{S}}_{=q \mathbf{I}_{k}}=\mathbf{w}+q \mathbf{c} \bmod 2 q
$$

But also:

$$
\begin{aligned}
\mathbf{A}(\mathbf{y}-\mathbf{S} \mathbf{c}) & =\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& =\mathbf{A} \mathbf{y}+\mathbf{A S c}-\underbrace{2 \mathbf{A S} \mathbf{c}}_{=\mathbf{0}} \bmod 2 q
\end{aligned}
$$

Actually, for any $\mathbf{h} \in \mathbb{Z}^{\ell}$, we have:

$$
\mathbf{A}(\mathbf{y}+\mathbf{S c})=\mathbf{A}(\mathbf{y}+\mathbf{S c}+2 \mathbf{S h}) \bmod 2 q
$$

Any \mathbf{z} of the form: $\mathbf{z}=\mathbf{y}+\mathbf{S c}+2 \mathbf{S h}$ for any $\mathbf{h} \in \mathbb{Z}^{\ell}$ passes verification as long as it is small

Why does verification still pass?

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathrm{c}}{2}}$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$
2. The distribution of \mathbf{Z} is publicly sampleable

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$
2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}}$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$
2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}} \Rightarrow \mathbf{Z} \sim \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$
2. The distribution of \mathbf{Z} is publicly sampleable

$$
\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4{\sigma^{\prime 2}}^{2} \mathbf{S S} \boldsymbol{\top}} \Rightarrow \mathbf{z} \sim \mathcal{D}_{\mathbb{Z}^{k}, \sigma}
$$

Which choice for the two Gaussians?

We set: $\quad \mathbf{z} \leftarrow \mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \bmod 2 q$
We want the following:

1. The distribution of \mathbf{Z} is centered in 0
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime}, \frac{-\mathbf{c}}{2}} \Rightarrow 2 \mathbf{S h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4 \sigma^{\prime 2} \mathbf{S S}^{\top},-\mathbf{S c}}$
2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}} \Rightarrow \mathbf{Z} \sim \mathcal{D}_{\mathbb{Z}^{k}, \sigma}$
[BMKMS'22,GMPW'20]
We are actually interested in the discrete case but we can make it work as well. Assuming:

$$
\begin{aligned}
\sigma^{\prime} & \geq \sqrt{2 \ln (\ell-1+2 \ell / \epsilon) / \pi} \\
\sigma & \geq \sqrt{8} \cdot \sigma_{1}(\mathbf{S}) \cdot \sigma^{\prime}
\end{aligned}
$$

Then:

$$
\mathbf{z} \sim_{\epsilon} \mathcal{D}_{\mathbb{Z}^{k}, \sigma}
$$

The G+G protocol

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$

The G+G protocol

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}}$
$\mathbf{w} \leftarrow$ Ay $\bmod 2 q$ \qquad

The G+G protocol

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

Verifier
A
s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}{ }^{\top}}$
$\mathbf{w} \leftarrow$ Ay $\bmod 2 q$

$c \leftarrow U\left(\{0,1\}^{\ell}\right)$

The G+G protocol

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

Verifier

A
s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}{ }^{\top}}$
$\mathbf{w} \leftarrow$ Ay $\bmod 2 q$

$\mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime},-\mathbf{c} / 2}$
$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}+2 \mathrm{Sh} \bmod 2 q$

The G+G protocol

Prover

$$
\mathbf{A} \leftarrow \mathbb{Z}_{2 q}^{m \times k}, \mathrm{~S} \leftarrow \mathbb{Z}^{k \times \ell} \text { small }
$$

Verifier
A
s.t. $\mathbf{A S}=q \mathbf{I}_{k} \bmod 2 q$
$\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}{ }^{\top}}$
$\mathrm{w} \leftarrow$ Ay $\bmod 2 q$
$c \leftarrow U\left(\{0,1\}^{\ell}\right)$
$\mathrm{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime},-\mathbf{c} / 2}$
$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}+2 \mathrm{Sh} \bmod 2 q$
Verify that:
(1) \mathbb{Z} is small
(2) $\mathbf{A z}=\mathbf{w}+q \mathrm{c} \bmod 2 q$

Properties of G+G

$$
\begin{aligned}
& \text { Prover } \\
& \text { Verifier } \\
& \text { A, S } \\
& \text { A } \\
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}} \\
& \mathrm{w} \leftarrow \mathrm{Ay} \bmod 2 q \\
& \longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right) \\
& \mathrm{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime},-\mathbf{c} / 2} \\
& \mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}+2 \mathrm{Sh} \bmod 2 q \longrightarrow \text { Verify that: } \\
& \text { (1) } \mathrm{Z} \text { is small } \\
& \text { (2) } \mathrm{Az}_{\mathrm{z}}=\mathrm{w}+q \mathrm{c} \bmod 2 q
\end{aligned}
$$

Properties of G+G

$$
\begin{aligned}
& \text { Prover } \\
& \text { A, S } \\
& \text { s.t. } \mathbf{A S}=q \mathbf{I}_{k} \\
& \mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S S}^{\top}} \\
& \mathrm{w} \leftarrow \mathbf{A} \mathbf{y} \bmod 2 q \\
& \longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right) \\
& \mathrm{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime},-\mathbf{c} / 2} \\
& \mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}+2 \mathrm{Sh} \bmod 2 q \longrightarrow \text { Verify that: } \\
& \text { (1) } \mathrm{Z} \text { is small } \\
& \text { (2) } \mathbf{A z}=\mathrm{w}+q \mathrm{c} \bmod 2 q
\end{aligned}
$$

Completeness:

$$
\begin{aligned}
& \mathbf{A z}=\mathbf{A}(\mathbf{y}+\mathbf{S c}+\mathbf{2 S h})=\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& \mathbf{z}=\mathbf{y}+\mathbf{S c}+\mathbf{2 S h} \text { is small }
\end{aligned}
$$

Soundness:

From the hardness of SIS (or LWE)

Properties of G+G

Prover
A, S

$$
\text { s.t. } \mathbf{A S}=q \mathbf{I}_{k}
$$

$$
\mathrm{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma^{2} \mathbf{I}_{k}-4 \sigma^{\prime 2} \mathbf{S} \mathbf{S}^{\top}}
$$

$$
\mathrm{w} \leftarrow \mathbf{A} \mathbf{y} \bmod 2 q
$$

$$
\longleftarrow \mathrm{c} \leftarrow U\left(\{0,1\}^{\ell}\right)
$$

$\mathrm{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma^{\prime},-\mathbf{c} / 2}$
$\mathrm{z} \leftarrow \mathrm{y}+\mathrm{Sc}+2 \mathrm{Sh} \bmod 2 q \longrightarrow$ Verify that:
(1) Z is small
(2) $\mathrm{Az}_{\mathrm{z}}=\mathrm{w}+q \mathrm{c} \bmod 2 q$

Completeness:

$$
\begin{aligned}
& \mathbf{A z}=\mathbf{A}(\mathbf{y}+\mathbf{S c}+\mathbf{2 S h})=\mathbf{w}+q \mathbf{c} \bmod 2 q \\
& \mathbf{z}=\mathbf{y}+\mathbf{S c}+\mathbf{2} \mathbf{S h} \text { is small }
\end{aligned}
$$

Soundness:

From the hardness of SIS (or LWE)

Zero-knowledge:

Simulator simply does the following:

$$
\begin{aligned}
\mathbf{z} & \leftarrow \mathcal{D}_{\mathbb{Z}^{k}, \sigma} \\
\mathbf{w} & \leftarrow \mathbf{A} \mathbf{z}-q \mathbf{c} \bmod 2 q
\end{aligned}
$$

Performances of the resulting Fiat-Shamir signature

		Signature size (kB)			Public-key size (kB)		
	Security	120-bit	180-bit	260-bit	120-bit	180-bit	260-bit
(flooding)	Raccoon	12	14	20.5	2.3	3.2	4.1
(aborts, unimodal, hypercubes)	Dilithium	2.4	3.3	4.6	1.3	1.9	2.6
(aborts, unimodal, hyperballs)	DFPS22	1.9	2.5	3.4	0.8	1.1	1.8
(aborts, bimodal, hyperballs)	HAETAE	1.5	2.3	2.9	1.0	1.5	2.1
(convolved Gaussians)	G+G	1.7	2.1	2.8	1.5	1.9	2.3

Performances of the resulting Fiat-Shamir signature

Performances of the resulting Fiat-Shamir signature

Conclusion

More in the paper:

- Detailed analysis (SD and RD) in the ROM and QROM
- Parameters (asymptotic and concrete)
- Optimizations
- NTRU instantiation

Open problems:

- Extension to ZK proofs
- Extension to advanced signatures (e.g., threshold signatures)
$+$
4

Thanks!

