G+G: A Fiat-Shamir Lattice Signature Based on Convolved Gaussians

Julien Devevey

Alain Passelègue

Damien Stehlé

ANSSI France CryptoLab Inc. France CryptoLab Inc. France

Our contributions

- New technique for building Fiat-Shamir lattice-based signatures, a.k.a. Lyubashevsky's signatures
- No rejection sampling, no noise flooding
- We rely on Gaussian convolutions

Paradigm	Scheme	Signature size	Aborts
Rejection sampling	Dilithium, HAETAE,	Small (~2kB)	YES
Noise flooding	Raccoon	Large (~15kB)	NO
This work	G+G	Small (~2kB)	NO

Our contributions

- New technique for building Fiat-Shamir lattice-based signatures, a.k.a. Lyubashevsky's signatures
- No rejection sampling, no noise flooding
- We rely on Gaussian convolutions

Paradigm	Scheme	Signature size	Aborts
Rejection sampling	Dilithium, HAETAE,	Small (~2kB)	YES —
Noise flooding	Raccoon	Large (~15kB)	NO
This work	G+G	Small (~2kB)	NO

- proofs of signatures are subtle [DFPS23, BBD+23]
- complicates design of advanced applications (e.g. threshold signatures)

Lyubashevsky's signatures in a nutshell

- A lattice adaptation of Schnorr's identification protocol/signature
- Introduced by Lyubashevsky in 2009 [Lyu'09, Lyu'11]

Prover

$$\begin{split} \mathbf{A} & \leftarrow \mathbb{Z}_q^{m \times k} \\ \mathbf{S} & \leftarrow \mathbb{Z}^{k \times \ell} \text{ small} \end{split}$$

Verifier

$$\mathbf{A}$$
 , $\mathbf{T}:=\mathbf{AS}$

Prover

$$\mathbf{A} \leftarrow \mathbb{Z}_q^{m imes k}$$

 $\mathbf{S} \leftarrow \mathbb{Z}^{k imes \ell}$ small

Verifier

$$\mathbf{A}$$
 , $\mathbf{T}:=\mathbf{AS}$

$$\begin{array}{l} \mathbf{y} \leftarrow \mathbb{Z}^k \text{ small} \\ \mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod q \end{array}$$

Resulting signature

Verifier

$$\mathbf{A} \leftarrow \mathbb{Z}_q^{m imes k}$$

 $\mathbf{S} \leftarrow \mathbb{Z}^{k imes \ell}$ small

 $\mathbf{A}, \mathbf{T} := \mathbf{AS}$

Resulting signature

$$\mathbf{A} \leftarrow \mathbb{Z}_q^{m imes k} \ \mathbf{S} \leftarrow \mathbb{Z}^{k imes \ell}$$
 small

Verifier

$$\mathbf{A}$$
 , $\mathbf{T}:=\mathbf{AS}$

 $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{A}\mathbf{y} \mod q$ $\mathbf{c} \leftarrow H(\mathbf{A}, \mathbf{T}, \mathbf{w}, \mu)$ $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} \mod q \xrightarrow{\mathsf{Sign}(\mathbf{A}, \mathbf{S}, \mu) = (\mathbf{y}, \mathbf{c}, \mathbf{z})}$ Verify that: (1) \mathbb{Z} is small (2) $\mathbf{c} \leftarrow H(\mathbf{A}, \mathbf{T}, \underbrace{\mathbf{Az} - \mathbf{Tc}}_{= \mathbf{w} \mod q}, \mu)$ = $\mathbf{w} \mod q$ 4/17

Completeness:

$$Az = A(y + Sc) = w + Tc \mod q$$
$$z = y + Sc \text{ is small}$$

Completeness:

$$Az = A(y + Sc) = w + Tc \mod q$$
$$z = y + Sc \text{ is small}$$

$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^{k},\sigma}$ $\mathbf{w} \leftarrow \mathbf{A}\mathbf{y} \mod q \longrightarrow$ $\mathbf{c} \leftarrow U(\{0,1\}^{\ell})$ $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{S}\mathbf{c} \mod q \longrightarrow$ Verify that: (1) \mathbf{Z} is small (2) $\mathbf{A}\mathbf{z} = \mathbf{w} + \mathbf{T}\mathbf{c} \mod q$

Soundness:

From the hardness of SIS (or LWE)

Completeness:

$$Az = A(y + Sc) = w + Tc \mod q$$
$$z = y + Sc \text{ is small}$$

Soundness:

From the hardness of SIS (or LWE)

Zero-knowledge:

This is the focus of this talk!

Honest-Verifier Zero-knowledge

"A real transcript contains no more information that what is already contained in the challenge and verification key"

Honest-Verifier Zero-knowledge

"A real transcript contains no more information that what is already contained in the challenge and verification key"

There exists a PPT simulator Sim satisfying the following:

Input: $\mathbf{A}, \mathbf{T}, \mathbf{c}$

Output: $\mathbf{w}, \mathbf{c}, \mathbf{z}$

Honest-Verifier Zero-knowledge

Prover Verifier	"A a
\mathbf{A}, \mathbf{S} $\mathbf{A}, \mathbf{T} := \mathbf{AS}$	Theres
	Input
$\bullet - $	Outp
$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} \mod q \longrightarrow$ Verify that: (1) \mathbf{Z} is small	Indis
$^{(2)}\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + \mathbf{T}\mathbf{c} \bmod q$	$\Delta(((\mathbf{w}$

A real transcript contains no more information that what is already contained in the challenge and verification key"

There exists a PPT simulator Sim satisfying the following:

Input: $\mathbf{A}, \mathbf{T}, \mathbf{c}$

Output: $\mathbf{w}, \mathbf{c}, \mathbf{z}$

Indistinguishability of transcripts:

$$\begin{split} \Delta(((\mathbf{w},\mathbf{c},\mathbf{z})\leftarrow(\mathsf{P}(\mathbf{A},\mathbf{S})\leftrightarrow\mathsf{V}(\mathbf{A},\mathbf{T}))),\mathsf{Sim}(\mathbf{A},\mathbf{T},\mathbf{c}))\leq\epsilon\\ & \mathsf{Or}\\ \mathsf{RD}(((\mathbf{w},\mathbf{c},\mathbf{z})\leftarrow(\mathsf{P}(\mathbf{A},\mathbf{S})\leftrightarrow\mathsf{V}(\mathbf{A},\mathbf{T})))\mid\mathsf{Sim}(\mathbf{A},\mathbf{T},\mathbf{c}))\leq1+\epsilon \end{split}$$

Simulation strategy:

 $\mathsf{Sim}(\mathbf{A},\mathbf{T},\mathbf{c}):$

 $\text{Return}\;(\mathbf{w},\mathbf{c},\mathbf{z})$

What is the correct

Must be sampled

Enforced by

completeness

from without S

distribution?

Simulation strategy:What is the correct
distribution?
$$Sim(A, T, c) :$$

 $z \leftarrow D_z$ Must be sampled
from without S $w \leftarrow Az - Tc \mod q$ Enforced by
completenessReturn (w, c, z) In the real protocol:

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{S}\mathbf{c}$$

 $\frac{\text{In the real protocol:}}{\mathbf{z} \leftarrow \mathbf{y} + \mathbf{S}\mathbf{c}}$

The protocol is actually not always secure

Alain Passelègue – Asiacrypt 2023

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 1:</u> choose the distribution of y such that it remains close when shifted by Sc

Make y much larger than Sc but still small compared to q. This requires large parameters...

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 1:</u> choose the distribution of y such that it remains close when shifted by Sc

Make y much larger than Sc but still small compared to q. This requires large parameters...

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 2</u>: make the distribution of z independent of Sc by rejecting to a target distribution

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 2</u>: make the distribution of z independent of Sc by rejecting to a target distribution

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 2</u>: make the distribution of z independent of Sc by rejecting to a target distribution

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

Solution 2: make the distribution of z independent of Sc by rejecting to a target distribution

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

<u>Solution 2:</u> make the distribution of z independent of Sc by rejecting to a target distribution

Problem: we want to be able to sample from the distribution of z without knowing S

$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$$

Solution 2: make the distribution of z independent of \mathbf{Sc} by rejecting to a target distribution

Alain Passelègue – Asiacrypt 2023
Trade-off: abort-rate vs size

Alain Passelègue – Asiacrypt 2023

Using bimodal Gaussians [DDLL'13, Duc'14]

Prover

Verifier

Α

 $\mathbf{A} \leftarrow \mathbb{Z}_{2q}^{m \times k}, \ \mathbf{S} \leftarrow \mathbb{Z}^{k \times \ell}$ small s.t. $\mathbf{AS} = q\mathbf{I}_k \mod 2q$

Using bimodal Gaussians [DDLL'13, Duc'14]

Using bimodal Gaussians

Alain Passelègue – Asiacrypt 2023

Using bimodal Gaussians

The scaling factor M is much smaller... Smaller expected number of aborts.

➡ L

Less aborts, or reduced size for same abort-rate

Alain Passelègue – Asiacrypt 2023

Prover	Verifier
A , <mark>S</mark>	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q \longrightarrow$	•
•	$\mathbf{c} \leftarrow U(\{0,1\}^\ell)$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$ —	• Verify that:
	(1) Z is small
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$

Prover	Verifier
A , <mark>S</mark>	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \bmod 2q$	→
←	$-$ c $\leftarrow U(\{0,1\}^{\ell})$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:
	(1) Z is small
	(2) $\mathbf{A}\mathbf{z} = \mathbf{w} + q\mathbf{c} \mod 2q$

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

Prover	Verifier
A , <mark>S</mark>	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \bmod 2q$	→
•	$ \mathbf{c} \leftarrow U(\{0,1\}^{\ell})$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:
	(1) Z is small
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $Ay + ASc = w + qc \mod 2q$

Prover	Verifier
A , S	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$	
←	$ \mathbf{c} \leftarrow U(\{0,1\}^{\ell})$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:
	(1) Z is small
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} + \underbrace{\mathbf{ASc}}_{=\mathbf{W}} = \mathbf{w} + q\mathbf{c} \mod 2q$ $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} = q\mathbf{I}_k$

Prover	Verifier
A, <mark>S</mark>	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \bmod 2q $	→
	$ \mathbf{c} \leftarrow U(\{0,1\}^{\ell})$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:
	(1) Z is small
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} + \underbrace{\mathbf{ASc}}_{=q} = \mathbf{w} + q\mathbf{c} \mod 2q$ $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} = q\mathbf{I}_k$

But also: $A(y - Sc) = w + qc \mod 2q$

Prover	Verifier	ΔS
A , S	\mathbf{A}	
s.t. $\mathbf{AS} = q\mathbf{I}_k$		For
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$	►	$\underbrace{\mathbf{Ay}}_{=}$
←	$-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$	But
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	 Verify that: (1) Z is small 	$\mathbf{A}(\mathbf{y})$
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$	
		$\mathbf{v} + \mathbf{s}$

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} + \underbrace{\mathbf{ASc}}_{=\mathbf{W}} = q\mathbf{I}_k$

But also: $A(y - Sc) = w + qc \mod 2q$ y + Sc - 2Sc

Prover	Verifier	
A , S	\mathbf{A}	
s.t. $\mathbf{AS} = q\mathbf{I}_k$		
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$		
←	$-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:	
	(1) Z is small	
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$	
		-

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} + \underbrace{\mathbf{ASc}}_{=q} = \mathbf{w} + q\mathbf{c} \mod 2q$

But also:

$$\mathbf{A}(\mathbf{y} - \mathbf{Sc}) = \mathbf{w} + q\mathbf{c} \mod 2q$$

 $\mathbf{A} = \mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{Sc} - 2\mathbf{A}\mathbf{Sc} \mod 2q$
 $\mathbf{A} + \mathbf{Sc} - 2\mathbf{Sc}$

Prover	Verifier	
A, S	Α	-
s.t. $\mathbf{AS} = q\mathbf{I}_k$		
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$	>	,
←	$ \mathbf{c} \leftarrow U(\{0,1\}^{\ell})$	
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	→ Verify that:	
	(1) Z is small	
	(2) $\mathbf{A}_{\mathbf{Z}} = \mathbf{w} + q\mathbf{c} \mod 2q$	
		У

 $\mathbf{AS} = q\mathbf{I}_k \bmod 2q \Rightarrow 2\mathbf{AS} = \mathbf{0} \bmod 2q$

For completeness, one needs: $\underbrace{\mathbf{Ay}}_{=\mathbf{W}} + \underbrace{\mathbf{ASc}}_{=\mathbf{W}} = q\mathbf{I}_k$

But also:

$$\mathbf{A}(\mathbf{y} - \mathbf{Sc}) = \mathbf{w} + q\mathbf{c} \mod 2q$$

$$= \mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{Sc} - 2\mathbf{A}\mathbf{S}\mathbf{c} \mod 2q$$

$$= \mathbf{0}$$

$$+ \mathbf{Sc} - 2\mathbf{Sc}$$

12/17

Prover	Verifier	$\mathbf{AS} = a\mathbf{I}_k \mod 2a \Rightarrow 2\mathbf{AS} = 0 \mod 2a$
A , S	\mathbf{A}	
$s.t. \mathbf{AS} = q\mathbf{I}_k$ $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$	>	For completeness, one needs: $\mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{S}\mathbf{c} = \mathbf{w} + q\mathbf{c} \mod 2q$ $\mathbf{w} = q\mathbf{I}_k$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	$ c \leftarrow U(\{0,1\}^{\ell}) $ $ \rightarrow \text{ Verify that:} $ (1) Z is small (2) Az = w + qc mod 2q	But also: $\mathbf{A}(\mathbf{y} - \mathbf{Sc}) = \mathbf{w} + q\mathbf{c} \mod 2q$ $= \mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{Sc} - \underbrace{2\mathbf{A}\mathbf{Sc}}_{=0} \mod 2q$
Actually, for any $\mathbf{h}\in\mathbb{Z}^\ell$, we have:		
$\mathbf{A}(\mathbf{y} + \mathbf{Sc}) = \mathbf{A}(\mathbf{y} + \mathbf{Sc} + 2\mathbf{Sh}) \bmod 2q$		

Prover	Verifier	$\mathbf{AS} = a\mathbf{I}_k \mod 2a \Rightarrow 2\mathbf{AS} = 0 \mod 2a$
A, <mark>S</mark>	\mathbf{A}	$110 41_{\mathcal{K}} 1100 24 7 2110 0 1100 24$
s.t. $\mathbf{AS} = q\mathbf{I}_k$		For completeness, one needs:
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$	>	$\underbrace{\mathbf{A}\mathbf{y}}_{=\mathbf{W}} + \underbrace{\mathbf{A}\mathbf{S}\mathbf{c}}_{=q} = \mathbf{w} + q\mathbf{c} \mod 2q$
$\mathbf{z} \leftarrow \mathbf{y} \pm \mathbf{Sc} \mod 2q$	$ c \leftarrow U(\{0,1\}^{\ell}) $ $ \rightarrow \text{ Verify that:} $ (1) Z is small	But also: $A(y - Sc) = w + qc \mod 2q$ $= Ay + ASc - 2ASc \mod 2q$
	(2) $\mathbf{A}\mathbf{Z} = \mathbf{w} + q\mathbf{c} \mod 2q$	$\widetilde{=0}$
Actually, for any $\mathbf{h}\in\mathbb{Z}^\ell$, we have:		
$\mathbf{A}(\mathbf{y} + \mathbf{Sc}) = \mathbf{A}(\mathbf{y} + \mathbf{Sc} + 2\mathbf{Sh}) \mod 2q$		

Any z of the form: z = y + Sc + 2Sh for any $h \in \mathbb{Z}^{\ell}$ passes verification as long as it is small

We set: $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of ${f Z}$ is centered in 0

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of $\,{\bf Z}\,$ is centered in 0

$$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', rac{-\mathbf{c}}{2}}$$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of ${f Z}$ is centered in 0

$$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', \frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4\sigma'^{2}\mathbf{S}\mathbf{S}^{\intercal}, -\mathbf{S}\mathbf{c}}$$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of ${f Z}$ is centered in 0

$$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', \frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4\sigma'^{2}\mathbf{S}\mathbf{S}^{\intercal}, -\mathbf{S}\mathbf{c}}$$

2. The distribution of $\,{\bf Z}\,$ is publicly sampleable

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of ${f Z}$ is centered in 0

$$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', \frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4\sigma'^{2}\mathbf{S}\mathbf{S}^{\intercal}, -\mathbf{S}\mathbf{c}}$$

2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^\intercal}$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of ${f Z}$ is centered in 0

$$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', \frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4\sigma'^{2}\mathbf{S}\mathbf{S}^{\intercal}, -\mathbf{S}\mathbf{c}}$$

2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS^T}} \Rightarrow \mathbf{z} \sim \mathcal{D}_{\mathbb{Z}^k,\sigma}$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of \mathbf{Z} is centered in 0 $\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', \frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k}, 4\sigma'^{2}\mathbf{S}\mathbf{S}^{\intercal}, -\mathbf{S}\mathbf{c}}$

2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS^T}} \Rightarrow \mathbf{z} \sim \mathcal{D}_{\mathbb{Z}^k,\sigma}$

We set:
$$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + \mathbf{2Sh} \mod 2q$$

We want the following:

1. The distribution of \mathbf{Z} is centered in 0 $\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell},\sigma',\frac{-\mathbf{c}}{2}} \Rightarrow 2\mathbf{S}\mathbf{h} \sim \mathcal{D}_{\mathbb{Z}^{k},4\sigma'^{2}\mathbf{SS}^{\intercal},-\mathbf{Sc}}$

2. The distribution of \mathbf{Z} is publicly sampleable $\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS^T}} \Rightarrow \mathbf{z} \sim \mathcal{D}_{\mathbb{Z}^k,\sigma}$

[BMKMS'22,GMPW'20]

13/17

We are actually interested in the discrete case but we can make it work as well. Assuming:

$$\sigma' \ge \sqrt{2\ln(\ell - 1 + 2\ell/\epsilon)/\pi}$$

$$\sigma \ge \sqrt{8} \cdot \sigma_1(\mathbf{S}) \cdot \sigma'$$

Then:

$$\mathbf{z}\sim_{\epsilon}\mathcal{D}_{\mathbb{Z}^k,\sigma}$$

Prover

Verifier

Α

 $\mathbf{A} \leftarrow \mathbb{Z}_{2q}^{m \times k}, \mathbf{S} \leftarrow \mathbb{Z}^{k \times \ell} \text{ small}$ $s.t. \ \mathbf{AS} = q\mathbf{I}_k \bmod 2q$

Prover

Verifier

Α

 $\mathbf{A} \leftarrow \mathbb{Z}_{2q}^{m \times k}, \mathbf{S} \leftarrow \mathbb{Z}^{k \times \ell} \text{ small}$ $s.t. \ \mathbf{AS} = q\mathbf{I}_k \bmod 2q$

$$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^\intercal}$$

 $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$

Verifier

Α

 $\mathbf{A} \leftarrow \mathbb{Z}_{2q}^{m \times k}, \mathbf{S} \leftarrow \mathbb{Z}^{k \times \ell} \text{ small}$ s.t. $\mathbf{AS} = q\mathbf{I}_k \mod 2q$

$$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^*}$$
$$\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q$$

Properties of G+G

Prover	Verifier
A , <mark>S</mark>	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^\intercal}$ $\mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod 2q \qquad _$	▶
•	$ \mathbf{c} \leftarrow U(\{0,1\}^{\ell}) $
$ \begin{aligned} \mathbf{h} &\leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', -\mathbf{c}/2} \\ \mathbf{z} &\leftarrow \mathbf{y} + \mathbf{Sc} + 2\mathbf{Sh} \bmod 2q \end{aligned} $	Verify that:
	(1) Z is small
	(2) $\mathbf{Az} = \mathbf{w} + q\mathbf{c} \mod 2q$

Properties of G+G

Prover	Verifier
A , S	\mathbf{A}
s.t. $\mathbf{AS} = q\mathbf{I}_k$	
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^\intercal}$ $\mathbf{w} \leftarrow \mathbf{A} \mathbf{y} \bmod 2q \qquad $	▶
<	$-\!\!\!-\!\!\!-\!\!\!\!-\!$
$ \mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^{\ell}, \sigma', -\mathbf{c}/2} \\ \mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + 2\mathbf{Sh} \mod 2q - \mathbf{c} $	→ Verify that: (1) Z is small (2) Az = w + qc mod 2d

Completeness:

 $Az = A(y + Sc + 2Sh) = w + qc \mod 2q$ z = y + Sc + 2Sh is small

Soundness:

From the hardness of SIS (or LWE)

Properties of G+G

Prover	Verifier				
A , S	Α				
s.t. $\mathbf{AS} = q\mathbf{I}_k$					
$\mathbf{y} \leftarrow \mathcal{D}_{\mathbb{Z}^k, \sigma^2 \mathbf{I}_k - 4\sigma'^2 \mathbf{SS}^\intercal}$ $\mathbf{w} \leftarrow \mathbf{Ay} \mod 2q \qquad $	►				
<	$-\!\!\!\!-\!\!\!\!-\!$				
$\mathbf{h} \leftarrow \mathcal{D}_{\mathbb{Z}^\ell, \sigma', -\mathbf{c}/2}$					
$\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc} + 2\mathbf{Sh} \mod 2q$ —	Verify that:				
	(1) Z is small				
	(2) $\mathbf{Az} = \mathbf{w} + q\mathbf{c} \mod 2q$				

Completeness:

 $\begin{aligned} \mathbf{A}\mathbf{z} &= \mathbf{A}(\mathbf{y} + \mathbf{S}\mathbf{c} + \mathbf{2S}\mathbf{h}) = \mathbf{w} + q\mathbf{c} \mod 2q\\ \mathbf{z} &= \mathbf{y} + \mathbf{S}\mathbf{c} + \mathbf{2S}\mathbf{h} \text{ is small} \end{aligned}$

Soundness:

From the hardness of SIS (or LWE)

Zero-knowledge:

Simulator simply does the following:

$$\mathbf{z} \leftarrow \mathcal{D}_{\mathbb{Z}^k,\sigma} \\ \mathbf{w} \leftarrow \mathbf{A}\mathbf{z} - q\mathbf{c} \bmod 2q$$

Performances of the resulting Fiat-Shamir signature

		Signature size (kB)			Public-key size (kB)		
	Security	120-bit	180-bit	260-bit	120-bit	180-bit	260-bit
(flooding)	Raccoon	12	14	20.5	2.3	3.2	4.1
(aborts, unimodal, hypercubes)	Dilithium	2.4	3.3	4.6	1.3	1.9	2.6
(aborts, unimodal, hyperballs)	DF P S22	1.9	2.5	3.4	0.8	1.1	1.8
(aborts, bimodal, hyperballs)	HAETAE	1.5	2.3	2.9	1.0	1.5	2.1
(convolved Gaussians)	G+G	1.7	2.1	2.8	1.5	1.9	2.3

Performances of the resulting Fiat-Shamir signature

		Signature size (kB)		Public-key size (kB)			
	Security	120-bit	180-bit	260-bit	120-bit	180-bit	260-bit
(flooding)	Raccoon	12	14	20.5	2.3	3.2	4.1
(aborts, unimodal, hypercubes)	Dilithium	2.4	3.3	4.6	1.3	1.9	2.6
(aborts, unimodal, hyperballs)	DF P S22	1.9	2.5	3.4	0.8	1.1	1.8
(aborts, bimodal, hyperballs)	HAETAE	1.5	2.3	2.9	1.0	1.5	2.1
(convolved Gaussians)	G+G	1.7	2.1	2.8	1.5	1.9	2.3

Performances of the resulting Fiat-Shamir signature

		Signature size (kB)		Public-key size (kB)			
	Security	120-bit	180-bit	260-bit	120-bit	180-bit	260-bit
(flooding)	Raccoon	12	14	20.5	2.3	3.2	4.1
(aborts, unimodal, hypercubes)	Dilithium	2.4	3.3	4.6	1.3	1.9	2.6
(aborts, unimodal, hyperballs)	DF P S22	1.9	2.5	3.4	0.8	1.1	1.8
(aborts, bimodal, hyperballs)	HAETAE	1.5	2.3	2.9	1.0	1.5	2.1
(convolved Gaussians)	G+G	1.7	2.1	2.8	1.5	1.9	2.3

Conclusion

More in the paper:

- Detailed analysis (SD and RD) in the ROM and QROM
- Parameters (asymptotic and concrete)
- Optimizations
- NTRU instantiation

Open problems:

- Extension to ZK proofs
- Extension to advanced signatures (e.g., threshold signatures)

Thanks! eprint/2023/1477

