Correlation Cube Attack Revisited

Improved Cube Search and Superpoly Recovery Techniques

Jianhua Wang¹ Lu Qin^{2,3} Baofeng Wu^{4,5}

¹Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

²China UnionPay Co., Ltd., Shanghai, China

³School of electronic information and electrical engineering, Shanghai Jiao Tong University, Shanghai, China

⁴Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

⁵School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Asiacrypt 2023

イロト イポト イヨト イヨト

Cube attack[DS09]

An output bit of symmetric cipher could be written as a Boolean function of IV (plaintext) $\mathbf{x} \in \mathbb{F}_2^n$ and key $\mathbf{k} \in \mathbb{F}_2^m$. Given $I = \{i_0, \dots, i_{d-1}\} \subset \{0, 1, \dots, n-1\}$, one can write f as

$$f(\boldsymbol{x},\boldsymbol{k}) = f_I(\boldsymbol{x}_{I^c},\boldsymbol{k}) \cdot \boldsymbol{x}_I^1 + q_I(\boldsymbol{x},\boldsymbol{k}).$$

Summing f over all 2^d possible values of x_I , one has

$$\bigoplus_{C_I = \{\boldsymbol{x} | \boldsymbol{x}_I \in \mathbb{F}_2^d\}} f(\boldsymbol{x}, \boldsymbol{k}) = f_I(\boldsymbol{x}_{I^c}, \boldsymbol{k}).$$

Cube attack

Preprocessing phase: Recover the expressions of f_I for multiple *I*.

Online phase: Calculate the values of f_I s, and solve the system of equations about key.

<ロト <四ト < 三ト < 三ト = 三

Let $f_I(\mathbf{x}_J, \mathbf{k}) = \bigoplus_{i=1}^r h_i q_i$, and $Q_I = \{h_i\}_i$ is called the basis of f_I .

• Preprocessing Phase

- **1** Obtain the basis Q_{IS} for f_{IS} .
- **2** Add tuples (I, h_i, b) to Ω where $Pr(h_i = b | f_I) > p$.

• Online Phase

- 1 Randomly selects α values of x_J , checks if f_I is zero constant
- **2** Construct equations according to the element in Ω .

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Motivation

Assume $f_I(\mathbf{x}_J, \mathbf{k}) = \bigoplus_{i=1}^r h_i q_i$.

The case of constructing an erroneous equation: (for a fixed key)

- $(I, h_i, 1) \in \Omega$: If $h_i = 0$, $\bigoplus_{j \neq i} h_j q_j = 1$ hold for certain values of x_J .
- $(I, h_i, 0) \in \Omega$: If $h_i = 1, q_i = \bigoplus_{j \neq i} h_j q_j$ hold for all values of x_J .

Note that the occurrence of the first case is possible only when r > 1.

strategies:

- Only use "special" *ISoC I* that satisfy $f_I = hq$.
- Infer the value of h using multiple "special" ISoC I_i that satisfy $f_{I_i} = hq_i$.

◆□ ▶ ◆□ ▶ ★ 三 ▶ ★ 三 ● ● ● ●

Preprocessing phase:

- a. Identify special ISoCs.
- b. For each h, let $T_h = \{I : h | f_I\}$.
- c. Let $\mathcal{T}_1 = \{T_h : \Pr(h = 0 | \forall I \in T_h : f_I = 0) \le p\}.$
- d. Let $\mathcal{T} = \{T_h : \Pr(h = 0 | \forall I \in T_h : f_I = 0) > p\}.$

Online phase:

- a. Computes the value of f_I for each *ISoC I*.
- b. For every T_h in \mathcal{T} , make a guess on the value of h based on f_l 's value for all I in T_h .
- c. For any T_h in \mathcal{T}_1 , if $\exists I \in T_h$ satisfies $f_I = 1$, then h = 1. Otherwise, no guess is made for h.
- d. Store the equations h = 1 in to a set G_1 , while store the other equations into a set G_0 .
- e. Using these derived equations along with partial key guesses, we can try to obtain a candidate of the key.
 - » If verifications for all partial key guesses do not yield a valid key, modify some equations from G_0 and solve again until a valid key is obtained.

▲□▶▲□▶★□▶★□▶ = のへで

• To acquire a significant number of special *ISoCs*.

- Introduce a "vector numeric mapping" technique.
- Propose an algorithm for fast search of lots of good *ISoCs*.
- To decompose a complicated Boolean polynomial.
 - Propose "variable substitution" technique to recover superpolys.

- Search good ISoC.
 - 1 Numeric mapping technique [Liu17]
 - 2 Division property + heuristic algorithms [YT21, CT22]
- Recover superpolys.
 - Linearity tests [DS09]
 - 2 Degree tests [FV14]
 - 3 Division property [TIHM17, WHT⁺18, WHG⁺19, HLM⁺20, HSWW20, HST⁺21, HHPW22]

Vector Degree

$$f(\mathbf{x}) = \bigoplus_{\mathbf{u} \in \mathbb{F}_2^d} g_{\mathbf{u}}(\mathbf{x}_{l^c}) \mathbf{x}_{l}^{\mathbf{u}}$$
$$\mathbf{vdeg}_{[l,\mathbf{x}]}(f) = \deg(g_{\mathbf{u}_0}, g_{\mathbf{u}_1}, \dots, g_{\mathbf{u}_{2^d-1}})_{\mathbf{x}_{l^c}} = \left(\deg(g_{\mathbf{u}_0})_{\mathbf{x}_{l^c}}, \dots, \deg(g_{\mathbf{u}_{2^d-1}})_{\mathbf{x}_{l^c}}\right)$$

-
$$\deg(f) = \max_{0 \le j < 2^{|I|}} \{ \mathbf{vdeg}_I(f)[j] + \mathrm{wt}(j) \}.$$

- $\operatorname{\mathbf{vdeg}}_{[I,x]}(f) \preccurlyeq \operatorname{\mathbf{v}} \quad \Rightarrow \quad \operatorname{deg}(f) \leq \max_{0 \leq j < 2^{|I|}} \left\{ \min \left\{ \operatorname{\mathbf{v}}[j], n |I| \right\} + \operatorname{wt}(j) \right\}.$
- $\ \mathrm{If} \ I_1 \subset I_2, \quad \mathbf{vdeg}_{I_1}(f)[j] = \max_{0 \le j' < 2^{|I_2| |I_1|}} \big\{ \mathbf{vdeg}_{I_2}(f)[j' \cdot 2^{|I_1|} + j] + \mathrm{wt}(j') \big\}.$

Example

$$f = x_0 + x_0 x_2 + x_1 x_2 x_3 + x_0 x_1$$

•
$$I_2 = \{0, 1\}, f = 0 \cdot 1 + (1 + x_2) \cdot x_0 + x_2 x_3 \cdot x_1 + 1 \cdot x_0 x_1$$

$$\mathbf{vdeg}_{[I_2,\mathbf{x}]}(f) = [-\infty, 1, 2, 0] \Rightarrow \deg(f) = \max\{-\infty + 0, 1 + 1, 2 + 1, 0 + 2\} = 3$$

•
$$I_1 = \{0\}, f = x_1 x_2 x_3 \cdot 1 + (1 + x_1 + x_2) \cdot x_0$$

$$\mathbf{vdeg}_{[l_1, \mathbf{x}]}(f) = [3, 1] \Rightarrow \operatorname{deg}(f) = \max\{3 + 0, 1 + 1\} = 3$$

•
$$\mathbf{vdeg}_{[I_1,\mathbf{x}]}(f)[0] = \max{\{\mathbf{vdeg}_{[I_2,\mathbf{x}]}[0] + 0, \mathbf{vdeg}_{[I_2,\mathbf{x}]}[2] + 1\}} = \max{\{\infty + 0, 2 + 1\}} = 3$$

 $\mathbf{vdeg}_{[I_1,\mathbf{x}]}(f)[1] = \max{\{\mathbf{vdeg}_{[I_2,\mathbf{x}]}[1] + 0, \mathbf{vdeg}_{[I_2,\mathbf{x}]}[3] + 1\}} = \max{\{1 + 0, 0 + 1\}} = 1$

A new method for vector degree evaluation

Let
$$f: \mathbb{F}_2^n \to \mathbb{F}_2, \quad f = \bigoplus_{u} a_{u} y^{u}, \qquad g: \mathbb{F}_2^m \to \mathbb{F}_2^n$$

Vector numeric mapping

$$\begin{aligned} \text{VDEG}_d : \quad \mathbb{B}_n \times \mathbb{Z}^{n \times 2^d} \to \mathbb{Z}^2 \\ (f, V) \mapsto \mathbf{v} \end{aligned}$$

where $v[j] = \max_{\substack{a_u \neq 0 \\ j \in \mathcal{V}_{i=0}^{n-1} u[i](2^d - 1) \\ j = \mathcal{V}_{i=0}^{n-1} u[i]j_i}} \left\{ \sum_{\substack{i=0 \\ i=0}}^{n-1} u[i]V[i][j_i] \right\} \end{aligned}$

Vector degree evaluation

 $\mathbf{vdeg}_{I}(\boldsymbol{g}) \preccurlyeq V \implies \mathbf{vdeg}_{I}(f \circ \boldsymbol{g}) \preccurlyeq \mathbf{VDEG}_{|I|}(f, V)$

Let $f(\mathbf{x}) = f_{r-1} \circ f_{r-2} \circ \cdots \circ f_0(\mathbf{x})$. We denoted the upper bound of the vector degree of f w.r.t. \mathbf{x} and I by

$$\widehat{\mathbf{vdeg}}_{[I,\mathbf{x}]}(f) = \mathtt{VDEG}(f_{r-1}, V_{r-2}),$$

where $V_i = \text{VDEG}(f_i, V_{i-1}), 0 < i \le r-2$, and $V_0 = \text{vdeg}_{[I,x]}(f_0)$.

Mode 1.
$$\widehat{\deg}_{[I,\mathbf{x}]}(f) = \max_{0 \le j < 2^{|I|}} \{ \min\{\widehat{\operatorname{vdeg}}_{[I,\mathbf{x}]}(f)[j], n - |I| \} + \operatorname{wt}(j) \}.$$

Mode 2. $\widehat{\deg}_{[I,\mathbf{x}]}(f) = \widehat{\operatorname{vdeg}}_{[I,\mathbf{x}]}(f)[2^{|I|} - 1] + |I|.$
Mode 3. $\widehat{\deg}_{[I,\mathbf{x}]}(f) = \max_{0 \le j < 2^{|I|}} \{ \widehat{\operatorname{vdeg}}_{[I,\mathbf{x}]}(f)[j] + \operatorname{wt}(j) \}.$

Degree evaluation [Mode 1]

$$\operatorname{vdeg}(f) \preccurlyeq \widehat{\operatorname{vdeg}}_{[I,x]}(f) \Rightarrow \operatorname{deg}(f) \leq \widehat{\operatorname{deg}}_{[I,x]}(f)$$

◆□ ▶ ◆□ ▶ ★ 三 ▶ ★ 三 ● ● ● ●

Estimatation comparison between inclusion-based index set

$$I_1 \subset I_2 \quad \Rightarrow \quad \widehat{\operatorname{deg}}_{[I_2, \mathbf{x}]}(f) \leq \widehat{\operatorname{deg}}_{[I_1, \mathbf{x}]}(f)$$

Example

Let
$$f = y_0 y_1$$
, $\mathbf{g} = [x_0 x_2 + x_1, x_0 x_1 + x_3]$. deg $(f \circ \mathbf{g})$? $(f \circ \mathbf{g} = x_0 x_1 + x_0 x_1 x_2 + x_0 x_2 x_3 + x_1 x_3)$
• $I_1 = \{1\}, V = \begin{bmatrix} \mathbf{vdeg}_{I_1}(g_0) \\ \mathbf{vdeg}_{I_1}(g_1) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$
 $\widehat{\mathbf{vdeg}}_{I_1}(f \circ \mathbf{g}) = [3, 3] \Rightarrow$
Mode 1. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 4$, Mode 2. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 4$, Mode 3. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 4$
• $I_2 = \{0, 1\}, V = \begin{bmatrix} \mathbf{vdeg}_{I_2}(g_0) \\ \mathbf{vdeg}_{I_2}(g_1) \end{bmatrix} = \begin{bmatrix} -\infty & 1 & 0 & -\infty \\ 1 & -\infty & -\infty & 0 \end{bmatrix}$
 $\widehat{\mathbf{vdeg}}_{I_2}(f \circ \mathbf{g}) = [-\infty, 2, 1, 1] \Rightarrow$
Mode 1. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 3$, Mode 2. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 3$, Mode 3. $\widehat{\mathbf{deg}}(f \circ \mathbf{g}) = 3$

э

*ロト *部 * * ほ * * ほ * .

Theorem 5. [This work]

Let $J \subset K \subset I$. Then we have

$$\widehat{\mathbf{vdeg}}_{[J,\mathbf{x}_{k}]}(f|_{\mathbf{x}_{k^{c}}=0}) \preccurlyeq \widehat{\mathbf{vdeg}}_{[J,\mathbf{x}_{l}]}(f|_{\mathbf{x}_{l^{c}}=0}).$$

If
$$\widehat{\deg}_{[J,\mathbf{x}_{K}]}(f|_{\mathbf{x}_{K}c}=0) \geq d$$
, then $\widehat{\deg}_{[J,\mathbf{x}_{I}]}(f|_{\mathbf{x}_{K}}=0) \geq d$ for all *ISoC*s *I* satisfying $K \subset I$.

- If *ISoC I* satisfies that $\widehat{\operatorname{deg}}_{[J,\mathbf{x}_l]}(f|_{\mathbf{x}_{l^c}=0}) \ge d$, iteratively choose a series of *ISoCs* $I \supseteq I_1 \supseteq \cdots \supseteq I_q \supset J$ such that $\widehat{\operatorname{deg}}_{[J,\mathbf{x}_{l_i}]}(f|_{\mathbf{x}_{l^c}=0}) \ge d$ for all $1 \le i \le q$ and $\widehat{\operatorname{deg}}_{[J,\mathbf{x}_{l'}]}(f|_{\mathbf{x}_{l^c}=0}) < d$ for any $I' \subsetneq I_q$.
- Delete all the supersets of I_q .

Let *J* be a given index set, Ω be the set of all subsets of [n] containing *J* and with size *k*, *d* be a threshold of degree, and *a* be the number of repeating times. The main steps are:

- **1** Prepare an empty set \mathcal{I} .
- **2** Select an element *I* from Ω as an *ISoC*.
- **3** Compute $\widehat{\operatorname{deg}}_{[J, \mathbf{x}_l]}(f|_{\mathbf{x}_{l^c}=0});$
 - a. If $\widehat{\operatorname{deg}}_{[J,x_I]}(f|_{x_{I^c}=0}) < d$, then add *I* to \mathcal{I} and goto Step 5;
 - b. otherwise, set count = 0 and go o Step 4.

④ count = count + 1. Let I' = I, randomly remove an element $i \in I' \setminus J$ from I' and let $x_i = 0$. Compute $\widehat{\deg}_{[J, \mathbf{x}'_i]}(f|_{\mathbf{x}_{I'^c}=0})$.

- a. If $\widehat{\operatorname{deg}}_{[J, x'_l]}(f|_{x_{l'c}=0}) < d$ and *count* < *a*, then goto Step 4;
- b. If $\widehat{\operatorname{deg}}_{[J,x_l']}(f|_{x_{l'}c=0}) < d$ and $count \ge a$, then go o Step 5;
- c. If $\widehat{\operatorname{deg}}_{[J,x_I']}(f|_{x_{I'^c}=0}) \ge d$, then let I = I' and goto Step 3.b;

S Remove all the sets containing *I* from Ω . If $\Omega \neq \emptyset$, goto Step 2; otherwise, output \mathcal{I} .

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の � ♡

MILP model for searching good *ISoCs*.

$$b_i = \begin{cases} 1, & i \in I \\ 0, & \text{otherwise} \end{cases}$$

• To describe that the size of each element of Ω is equal to k, we use

$$\sum_{i=0}^{n-1} b_i = k.$$

• To describe that each element of Ω includes the set J, we use

 $b_j = 1$ for $\forall j \in J$.

• To describe removing all the sets that contain I from Ω , we use

$$\sum_{i \in I} b_i < |I|.$$

callback function in Gurobi + degree evaluation

< ロ > < 四 > < 臣 > < 臣 ><</p>

Let $f(\mathbf{x}, \mathbf{k}) = f_{r-1} \circ f_{r-2} \circ \cdots \circ f_0(\mathbf{x}, \mathbf{k})$ and denote the input and output of f_i by y_i and y_{i+1} , respectively.

$$\operatorname{Coe}(f, \mathbf{x}^{u}) = \bigoplus_{\pi_{u_{r_{m}}}(\mathbf{y}_{r_{m}}) \in \operatorname{VT}_{r_{m}}} \operatorname{Coe}(\pi_{u_{r_{m}}}(\mathbf{y}_{r_{m}}), \mathbf{x}^{u}).$$

The specific steps of recovering a superpoly requires two steps:

1 Try to obtain VT_{r_m} . If the model is solved within an acceptable time, goto Step 2.

2 For each term $\pi_{\boldsymbol{u}_{r_m}}(\boldsymbol{y}_{r_m})$ in VT_{r_m} , compute $Coe(\pi_{\boldsymbol{u}_{r_m}}(\boldsymbol{y}_{r_m}), \boldsymbol{x}^{\boldsymbol{u}})$ with our new techniques and sum them.

Variable substitution technique for coefficient recovery

Let $f(\mathbf{x}, \mathbf{k}) = f_{r-1} \circ f_{r-2} \circ \cdots \circ f_0(\mathbf{x}, \mathbf{k})$ Let $\overleftarrow{f_{r_m}}$ denote $f_{r_m-1} \circ \cdots \circ f_0$, i.e., $\mathbf{y}_{r_m} = \overleftarrow{f_{r_m}}(\mathbf{x}, \mathbf{k})$. Assume the algebraic normal form of $\overleftarrow{f_{r_m}}$ in \mathbf{x} is

$$\overleftarrow{f_{r_m}} = \bigoplus_{m{
u} \in \mathbb{F}_2^n} m{h}_{m{
u}}(m{k}) x^{m{
u}}.$$

Introduce new intermediates z to substitute these nonzero $h_{v}[j]$'s. From the ANF of f_{r_m} , it is natural to derive the new representation g_{r_m} such that $y_{r_m} = g_{r_m}(x, z)$, whose ANF in x and z can be written as

$$\boldsymbol{g}_{r_m}[j] = \bigoplus_{\boldsymbol{\nu}} a_{\boldsymbol{\nu},j} \boldsymbol{z}^{\boldsymbol{c}_{\boldsymbol{\nu},j}} \boldsymbol{x}^{\boldsymbol{\nu}}.$$

The process of recovering $\text{Coe}(\pi_{u_{r_m}}(y_{r_m}), x^u)$ is as follows:

- **1** Compute the ANF of y_{r_m} in x.
- 2 Substitute all different non-constant $h_{v}[j]$ for all v and j by new variables z.
- **3** Recover $\text{Coe}(\pi_{u_{r_m}}(y_{r_m}), x^u)$ in z by monomial prediction.

(ロ) (部) (注) (注) (注) (の)

Example

Assume $\mathbf{y}_{r_m} = \mathbf{f}_{r_m}(\mathbf{x}, \mathbf{k}) = [(k_0k_1 \oplus k_2k_5 \oplus k_9 + k_{10})x_0x_2 \oplus (k_3 \oplus k_6)x_5, (k_2k_7 \oplus k_8)x_3 \oplus x_6x_7].$

Variable substitution: $k_0k_1 \oplus k_2k_5 \oplus k_9 + k_{10} \rightarrow z_0$, $k_3 \oplus k_6 \rightarrow z_1$, $k_2k_7 \oplus k_8 \rightarrow z_2$

 $\Rightarrow \boldsymbol{y}_{r_m} = \boldsymbol{g}_{r_m}(\boldsymbol{x}, \boldsymbol{z}) = [z_0 x_0 x_2 \oplus z_1 x_5, z_2 x_3 \oplus x_6 x_7].$

- To compute $\text{Coe}(y_{r_m}[0]y_{r_m}[1], x_0x_2x_3)$, at least 4 * 2 = 8 monomial trails $k^{w}x_0x_2x_3 \rightsquigarrow y_{r_m}[0]y_{r_m}[1]$ to form $(k_0k_1 \oplus k_2k_5 \oplus k_9 + k_{10})(k_2k_7 \oplus k_8)x_0x_2x_3$.
- After variable substitution, there remains only one trail $z_0 z_2 x_0 x_2 x_3$, which means we have consolidated 8 monomial trails into a single one.
- Reduce the number of monomial trails.
- Make the superpoly more concise and easy to factorize.

$$(s_0, s_1, \dots, s_{92}) \leftarrow (k_0, k_1, \dots, k_{79}, 0, \dots, 0)$$

Padding: $(s_{93}, s_{94}, \dots, s_{176}) \leftarrow (v_0, v_1, \dots, v_{79}, 0, \dots, 0)$
 $(s_{177}, s_{178}, \dots, s_{287}) \leftarrow (0, 0, \dots, 0, 1, 1, 1).$

 $s_{92} \leftarrow s_{65} \oplus s_{90} \cdot s_{91} \oplus s_{92} \oplus s_{170}$ Update: $s_{176} \leftarrow s_{161} \oplus s_{174} \cdot s_{175} \oplus s_{176} \oplus s_{263}$ $s_{287} \leftarrow s_{242} \oplus s_{285} \cdot s_{286} \oplus s_{287} \oplus s_{68}$

Output: $z = s_{65} \oplus s_{92} \oplus s_{161} \oplus s_{176} \oplus s_{242} \oplus s_{287}$

Structure diagram of Trivium stream cipher

Practical Key Recovery Attacks against 820-/825-/830- round Trivium

Parameter settings:

- Search *ISoCs*: Mode = 2;
 - **1** 820 rounds: $J = \{0, 1, 2, i, i + 1\}$, where $3 \le i \le 26$; $\Omega = \{I \supset J : |I| = 38\}$; d = 41.
 - **2** 825 rounds: $J = \{0, 1, \dots, 10\} \setminus \{j_0, j_1, j_2\}$, where $j_0 > 2, j_1 > j_0 + 1$ and $j_1 + 1 < j_2 < 11$; $\Omega = \{I \supset J : |I| = 41\}; d = 44.$
 - **3** 830 rounds: $J = \{0, 1, \dots, 10\} \setminus \{j_0, j_1, j_2\}$, where $j_0 > 2, j_1 > j_0 + 1$ and $j_1 + 1 < j_2 < 11$; $\Omega = \{I \supset J : |I| = 41\}; d = 45.$
- Recover superpolys: $r_m = 200$.
- New correlation cube attack: p = 0.77

# of Rounds	size of <i>ISoC</i>	# of <i>ISoC</i> s	Total time	# of keys	Ref.
820	38	2^{13}	2^{52}	$2^{79.2}$	This work
820	38	2^{13}	2^{60}	$2^{79.8}$	This work
825	41	2^{12}	2^{54}	$2^{79.3}$	This work
825	41	2^{12}	2^{60}	$2^{79.7}$	This work
830	41	2^{13}	2^{55}	$2^{78.9}$	This work
830	41	2^{13}	2^{60}	$2^{79.4}$	This work

▲口 ▶ ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの

- We give a generalized definition of degree of Boolean function and give out a degree evaluation method with the vector numeric mapping technique.
- We introduce a pruning technique to fast filter the *ISoCs* and describe it into an MILP model to search automatically.
- Propose a variable substitution technique for cube attacks, which makes great improvement to the computational complexity of superpoly recovery and can provide more concise expression in new variables.
- We perform practical key recovery attacks on 820-, 825- and 830-round Trivium cipher, promoting up to 10 more rounds than previous best practical attacks as we know.

A D F A B F A B F A B F

Thanks for your attention!

Reference I

Cheng Che and Tian Tian.

An experimentally verified attack on 820-round trivium.

In Yi Deng and Moti Yung, editors, *Information Security and Cryptology - 18th International Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised Selected Papers,* volume 13837 of *Lecture Notes in Computer Science*, pages 357–369. Springer, 2022.

Christophe De Cannière.

Trivium: A stream cipher construction inspired by block cipher design principles. pages 171–186, 2006.

Itai Dinur and Adi Shamir.

Cube attacks on tweakable black box polynomials.

pages 278–299, 2009.

・ロト ・四ト ・ヨト ・ヨト

Pierre-Alain Fouque and Thomas Vannet.

Improving key recovery to 784 and 799 rounds of Trivium using optimized cube attacks. pages 502–517, 2014.

🧾 Jiahui He, Kai Hu, Bart Preneel, and Meiqin Wang.

Stretching cube attacks: Improved methods to recover massive superpolies. In Shweta Agrawal and Dongdai Lin, editors, *Advances in Cryptology – ASIACRYPT 2022*, pages 537–566, Cham, 2022. Springer Nature Switzerland.

Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
 Modeling for three-subset division property without unknown subset - improved cube attacks against Trivium and Grain-128AEAD.
 pages 466–495, 2020.

Reference III

- Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang.
 Massive superpoly recovery with nested monomial predictions.
 pages 392–421, 2021.
- 🔋 Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang.

An algebraic formulation of the division property: Revisiting degree evaluations, cube attacks, and key-independent sums.

pages 446–476, 2020.

Meicheng Liu.

Degree evaluation of NFSR-based cryptosystems.

```
pages 227-249, 2017.
```

 Meicheng Liu, Jingchun Yang, Wenhao Wang, and Dongdai Lin.
 Correlation cube attacks: From weak-key distinguisher to key recovery. pages 715–744, 2018.

Reference IV

Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier.

Cube attacks on non-blackbox polynomials based on division property.

In Jonathan Katz and Hovav Shacham, editors, *CRYPTO 2017, Part III*, volume 10403 of *LNCS*, pages 250–279. Springer, Heidelberg, August 2017.

- SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi.
 MILP-aided method of searching division property using three subsets and applications.
 pages 398–427, 2019.
- Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier. Improved division property based cube attacks exploiting algebraic properties of superpoly.

pages 275-305, 2018.

Chen-Dong Ye and Tian Tian.

A practical key-recovery attack on 805-round trivium.

pages 187-213, 2021.