

Cryptanalysis of Elisabeth-4

Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, Jean-René Reinhard

Introduction

About Elisabeth-4
■ Stream cipher published at Asiacrypt 2022.

- Designed by Cosseron, Hoffman, Méaux, Standaert.
- Tailored for Fully Homomorphic Encryption (FHE) use cases.
- 128-bit security claim.

Our contribution

- Full break of Elisabeth-4.

■ Linearisation attack that exploits:

- Sparsity of the linear system;
- Rank defects;
- Filtering strategies.

Hybrid Homomorphic Encryption

Symmetric key K Hom. key (SK, PK)
Data D

- Encrypt D under K using symmetric enc algo E
- Encrypt K under $P K$ using homomorphic enc algo $E^{\text {hom }}$

$$
\left(E_{P K}^{h o m}(K), E_{K}(D)\right) \rightarrow
$$

- Transciphering:

Transform $E_{K}(D)$ into $E_{P K}^{\text {hom }}(D)$ using $E_{P K}^{\text {hom }}(K)$
■ Perform computations homomorphically. Obtain R.
R

■ Decrypt R using $S K$, and obtains the result of the computation

Symmetric cryptography for FHE

Encryption algorithms for FHE

■ Classical symmetric encryption algorithms (e.g. AES): not efficient in FHE.

- This led to the design of new algorithms:

Ex: LowMC [ARSTZ16], Kreyvium [CCFLNPS16], FLIP [CMJS16]

- The stream cipher Elisabeth-4 is a recent example (AC2022).

A classical cryptanalysis technique: Linearisation

A classical cryptanalysis technique: Linearisation

■ Consider non-linear equations $z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.

A classical cryptanalysis technique: Linearisation

■ Consider non-linear equations $z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.

- View them as linear equations: view each monomial in the key bits as an independant variable.

A classical cryptanalysis technique: Linearisation

■ Consider non-linear equations $z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.

- View them as linear equations: view each monomial in the key bits as an independant variable.
- Solve the linear system.

Elisabeth-4 FHE-friendly features

Elisabeth-4 has been 'conceived to take advantage of the efficient operations of the FHE scheme TFHE' [CGGI20].

- A slightly different structure as compared to other stream ciphers:

- Specified using operations over \mathbb{Z}_{q} with $q=2^{4}=16$.

■ Use of negacyclic look-up tables: $\forall X \in \mathbb{Z}_{16}, S\left[X+2^{3}\right]=S[-X]$.

Plan

1 Description of Elisabeth-4

2 Basic linearisation

3 Exploiting a rank defect phenomenon

4 Filtering collected equations

5 Small-scale experiments

Elisabeth-4: overall structure

The filtering function f

Structure of f

■ 12 parallel calls to a 5-to- 1 function g.

- $g\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=h\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+X_{5}$
- h is non-linear.
- ingredients: + and negacyclic look-up tables.

The non-linear function h

The non-linear function h

Sum of 4 'Antler functions'

1 Description of Elisabeth-4

2 Basic linearisation

3 Exploiting a rank defect phenomenon

4 Filtering collected equations

5 Small-scale experiments

Basic linearisation in \mathbb{F}_{2}

The filtering function f

Basic linearisation in \mathbb{F}_{2}

The filtering function f

We focus on the LSB of the output nibble \rightarrow On the LSB, the addition in \mathbb{Z}_{16} acts as an XOR.

How many monomials can appear in the ANF of the LSB regardless of the choice of subset/permutation/whitening ?

Bounding the number of monomials

1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, m}$ of h is bounded by 2^{16}.

Bounding the number of monomials

1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, m}$ of h is bounded by 2^{16}.

2 How many possible choices of ($K_{a}, K_{b}, K_{c}, K_{d}$) in the 256-nibble key register?

Bounding the number of monomials

1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, m}$ of h is bounded by 2^{16}.

2 How many possible choices of ($K_{a}, K_{b}, K_{c}, K_{d}$) in the 256-nibble key register?

$$
\binom{256}{4}
$$

Total number of monomials $\leq \mu=\binom{256}{4} 2^{16}$.

Building a linearisation matrix

At each iteration of the stream cipher:

- Build the ANF of the keystream nibble LSB z_{i} by combining the contribution of every h function.
$\binom{256}{4}$

Building a linearisation matrix

Linearisation matrix A

- Each column corresponds to a monomial: $\binom{256}{4} 2^{16} \approx 2^{43.4}$ columns.
- Each set of 2^{16} columns corresponds to the monomials in the bits of $\left(K_{a}, K_{b}, K_{c}, K_{d}\right), a<b<c<d$.

Building a linearisation matrix

At each iteration of the stream cipher, the XOF outputs a subset, a permutation, a whitening vector which determine:

- 12 subsets $\left\{K_{a}, K_{b}, K_{c}, K_{d}\right\}$ associated with a block of 2^{16} columns;
- the ANF for each of these 12 blocks.

Resulting linearisation attack

Basic linearisation attack

- Using $\mu=\binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ keystream elements' LSB, a solvable linear system is built.
- This linear system is solved in μ^{ω} operations.
- Straightforward Gaussian elimination, $\omega=3, T \approx 2^{131}$ operations.
- Data complexity is μ nibbles.

Resulting linearisation attack

Basic linearisation attack

■ Using $\mu=\binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ keystream elements' LSB, a solvable linear system is built.
■ This linear system is solved in μ^{ω} operations.

- Straightforward Gaussian elimination, $\omega=3, T \approx 2^{131}$ operations.
- Data complexity is μ nibbles.

First observation: \mathbf{A} is sparse.

- At most $s=12 \cdot 2^{16} \ll \mu$ non-zero bits on each row.
- Memory complexity: $s \cdot \mu \approx 2^{63}$ bits.

■ Sparse linear algebra: Coppersmith's Block-Wiedemann algorithm.
■ Main idea: only use matrix-vector multiplication, which costs $\mathcal{O}(s \cdot n)$ operations.
■ Improved time complexity: $\mu^{3} \rightarrow \frac{6}{64} \cdot s \cdot \mu^{2}$.
■ $T \approx 2^{103}$ operations.

1 Description of Elisabeth-4

2 Basic linearisation

3 Exploiting a rank defect phenomenon

4 Filtering collected equations

5 Small-scale experiments

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect.

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect. How?

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of $\left(K_{a}, K_{b}, K_{c}, K_{d}\right), a<b<c<d$.
$\binom{256}{4}$

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of $\left(K_{a}, K_{b}, K_{c}, K_{d}\right), a<b<c<d$.
$\binom{256}{4}$

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of $\left(K_{a}, K_{b}, K_{c}, K_{d}\right), a<b<c<d$.
$\binom{256}{4}$

Identification of a rank defect

Linearization matrix

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of $\left(K_{a}, K_{b}, K_{c}, K_{d}\right), a<b<c<d$.
$\binom{256}{4}$

Identification of a rank defect

We pre-computed and stored the ANF of $2^{16} \cdot 4$! variations $\tilde{h}_{\sigma, m}$ of h constructed by

- restricting the output to the LSB;
- considering the 4 ! possible orderings of the variables;
- and the 2^{16} possible masks.

We computed the rank and obtained

$$
\left.\left.\operatorname{dim}\left(<\tilde{h}_{I V, i}\right\rangle\right) \leq \operatorname{dim}\left(<\tilde{h}_{M, \sigma}\right\rangle\right)=\rho=2^{13.08} \ll 2^{16} .
$$

Exploiting the rank defect

Linearisation matrix

- Basic attack: Each column corresponds to a monomial.
- But, each vector in a block of size 2^{16} can be written in a basis of size ρ.

Exploiting the rank defect

Linearisation matrix

- A has now only $\mu^{\prime}=\binom{256}{4} \rho$ columns
- Each row has at most $s^{\prime}=12 \cdot \rho$ active bits.

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2}$
- Data complexity: μ
- Memory complexity: $s \cdot \mu$

■ Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.

- Data complexity: μ

■ Memory complexity: $s \cdot \mu$

■ Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.
■ Data complexity: $\mu \rightarrow \mu^{\prime}=2^{41}$ nibbles.

- Memory complexity: $s \cdot \mu$

■ Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.
■ Data complexity: $\mu \rightarrow \mu^{\prime}=2^{41}$ nibbles.
■ Memory complexity: $s \cdot \mu \rightarrow s^{\prime} \cdot \mu^{\prime}=2^{57}$ bits.

Explaining the defect (theoretically)

Our results

■ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.
■ We also identify and fully prove a degree defect:

$$
\text { For any } I V, i, \operatorname{deg}\left(\tilde{h}_{I V, i}\right) \leq 12<16
$$

Explaining the defect (theoretically)

Our results

■ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.
■ We also identify and fully prove a degree defect:

$$
\text { For any } I V, i, \operatorname{deg}\left(\tilde{h}_{I V, i}\right) \leq 12<16
$$

Our analysis (about $1 / 3$ of the article...)

- The rank and degree defects are caused by HHE-friendly features.
- Interaction between

■ Negacyclic look-up tables;

- Addition in \mathbb{Z}_{16}.

1 Description of Elisabeth-4

2 Basic linearisation

3 Exploiting a rank defect phenomenon

4 Filtering collected equations

5 Small-scale experiments

Considering only convenient XOF outputs

Total number of monomials: $\binom{256}{4} \rho$. .

Considering only convenient XOF outputs

Total number of monomials: $\mu_{N^{\prime}}=\binom{N^{\prime}}{4} \rho$.

Chosen-IV attack

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N^{\prime} with probability $p_{N^{\prime}} \approx\binom{N^{\prime}}{48} /\binom{256}{48} \rightarrow$ precomputation cost: $\mu_{N^{\prime}} / p_{N^{\prime}}$ nibbles.

■ Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \rightarrow\left\lceil\frac{256}{N^{\prime}}\right\rceil \cdot \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu_{N^{\prime}}\right)^{2}+\mu_{N^{\prime}} / p_{N^{\prime}}$ operations.

Chosen-IV attack

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N^{\prime} with probability $p_{N^{\prime}} \approx\binom{N^{\prime}}{48} /\binom{256}{48} \rightarrow$ precomputation cost: $\mu_{N^{\prime}} / p_{N^{\prime}}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \rightarrow\left\lceil\frac{256}{N^{\prime}}\right\rceil \cdot \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu_{N^{\prime}}\right)^{2}+\mu_{N^{\prime}} / p_{N^{\prime}}$ operations.

Trade-off: $N^{\prime}=137$.

Chosen-IV attack

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N^{\prime} with probability $p_{N^{\prime}} \approx\binom{N^{\prime}}{48} /\binom{256}{48} \rightarrow$ precomputation cost: $\mu_{N^{\prime}} / p_{N^{\prime}}$ nibbles.

■ Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \rightarrow\left\lceil\frac{256}{N^{\prime}}\right\rceil \cdot \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu_{N^{\prime}}\right)^{2}+\mu_{N^{\prime}} / p_{N^{\prime}}$ operations.
Trade-off: $N^{\prime}=137$. Thus:

- Time complexity: $2^{94} \rightarrow 2^{88}$ operations.

■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N^{\prime}}=2^{37}$ nibbles.
■ Memory complexity: $s^{\prime} \cdot \mu^{\prime}=2^{57} \rightarrow s^{\prime} \cdot \mu_{N^{\prime}}=2^{54}$ bits.

Chosen-IV attack

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N^{\prime} with probability $p_{N^{\prime}} \approx\binom{N^{\prime}}{48} /\binom{256}{48} \rightarrow$ precomputation cost: $\mu_{N^{\prime}} / p_{N^{\prime}}$ nibbles.

■ Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \rightarrow\left\lceil\frac{256}{N^{\prime}}\right\rceil \cdot \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu_{N^{\prime}}\right)^{2}+\mu_{N^{\prime}} / p_{N^{\prime}}$ operations.
Trade-off: $N^{\prime}=137$. Thus:

- Time complexity: $2^{94} \rightarrow 2^{88}$ operations.

■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N^{\prime}}=2^{37}$ nibbles.
■ Memory complexity: $s^{\prime} \cdot \mu^{\prime}=2^{57} \rightarrow s^{\prime} \cdot \mu_{N^{\prime}}=2^{54}$ bits.

Known-IV attack: Get keystream nibbles until you find enough convenient XOF outputs.
■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N^{\prime}} / p_{N^{\prime}}=2^{87}$ nibbles.

1 Description of Elisabeth-4

2 Basic linearisation

3 Exploiting a rank defect phenomenon

4 Filtering collected equations

5 Small-scale experiments

Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4
Toy Elisabeth-4

- Operates on \mathbb{Z}_{8} rather than \mathbb{Z}_{16}.
- Subset selects 2 sets of key elements among 32 rather than 12 among 256.
- Still has a rank defect, with $\rho=254 \ll 2^{12}$.

Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4
Toy Elisabeth-4

- Operates on \mathbb{Z}_{8} rather than \mathbb{Z}_{16}.

■ Subset selects 2 sets of key elements among 32 rather than 12 among 256.

- Still has a rank defect, with $\rho=254 \ll 2^{12}$.

Implemented attack

- Two main things we checked:

■ Block-Wiedemann allows to solve an Elisabeth-4 type linear system.
■ Solving the system allows to recover the key.
■ BW implem. from CADO-NFS project for integer factorization.
■ Our chosen IV attack using $N^{\prime}=12$ required about 35 minutes.

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger $r-1$ (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger $r-1$ (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

The authors proposed a patch, check out their paper! (to appear, Indocrypt 2023)

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger $r-1$ (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

The authors proposed a patch, check out their paper! (to appear, Indocrypt 2023)

Thank you for your attention!

