

Cryptanalysis of Elisabeth-4

Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, Jean-René Reinhard Asiacrypt 2023

Introduction

About Elisabeth-4

- Stream cipher published at Asiacrypt 2022.
- Designed by Cosseron, Hoffman, Méaux, Standaert.
- Tailored for Fully Homomorphic Encryption (FHE) use cases.
- 128-bit security claim.

Our contribution

- Full break of Elisabeth-4.
- Linearisation attack that exploits:
 - Sparsity of the linear system;
 - Rank defects;
 - Filtering strategies.

Symmetric key *K*Hom. key (*SK*, *PK*)
Data *D*

Hybrid Homomorphic Encryption

User

Server

- Encrypt *D* under *K* using symmetric enc algo *E*
- Encrypt K under PK using homomorphic enc algo E^{hom}

$$(E_{PK}^{hom}(K), E_K(D)) \xrightarrow{}$$

■ Transciphering: Transform $E_K(D)$ into $E_{PK}^{hom}(D)$ using $E_{PK}^{hom}(K)$

Perform computations homomorphically.
 Obtain R.

■ Decrypt R using SK, and obtains the result of the computation

 \leftrightarrow R

Symmetric cryptography for FHE

Encryption algorithms for FHE

- Classical symmetric encryption algorithms (e.g. AES): not efficient in FHE.
- This led to the design of **new algorithms**: Ex: LowMC [ARSTZ16], Kreyvium [CCFLNPS16], FLIP [CMJS16]
- The stream cipher Elisabeth-4 is a recent example (AC2022).

■ Consider non-linear equations $z_i = F_i(K_0, \dots, K_{n-1})$.

- Consider non-linear equations $z_i = F_i(K_0, \dots, K_{n-1})$.
- View them as linear equations: view each **monomial** in the key bits as an independent variable.

- Consider non-linear equations $z_i = F_i(K_0, \dots, K_{n-1})$.
- View them as linear equations: view each **monomial** in the key bits as an independent variable.
- Solve the linear system.

Elisabeth-4 FHE-friendly features

Elisabeth-4 has been 'conceived to take advantage of the efficient operations of the FHE scheme TFHE' [CGGI20].

■ A slightly different **structure** as compared to other stream ciphers:

- Specified using operations over \mathbb{Z}_q with $q = 2^4 = 16$.
- Use of *negacyclic look-up tables*: $\forall X \in \mathbb{Z}_{16}$, $S[X+2^3] = S[-X]$.

Plan

- 1 Description of Elisabeth-4
- 2 Basic linearisation
- 3 Exploiting a rank defect phenomenon
- 4 Filtering collected equations
- 5 Small-scale experiments

Elisabeth-4: overall structure

The filtering function f

Structure of f

- 12 parallel calls to a 5-to-1 function g.
- $g(X_1, X_2, X_3, X_4, X_5) = h(X_1, X_2, X_3, X_4) + X_5$
- h is non-linear.
 - ingredients: + and negacyclic look-up tables.

The non-linear function h

The non-linear function h

Sum of 4 'Antler functions'

Plan

- 1 Description of Elisabeth-4
- 2 Basic linearisation
- 3 Exploiting a rank defect phenomenon
- 4 Filtering collected equations
- 5 Small-scale experiments

Basic linearisation in \mathbb{F}_2

The filtering function f

Basic linearisation in \mathbb{F}_2

The filtering function f

We focus on the LSB of the output nibble

 \rightarrow On the LSB, the addition in \mathbb{Z}_{16} acts as an XOR.

Basic linearisation in \mathbb{F}_2

How many monomials can appear in the ANF of the LSB regardless of the choice of subset/permutation/whitening?

Bounding the number of monomials

I For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,m}$ of h is bounded by 2^{16} .

Bounding the number of monomials

- I For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,m}$ of h is bounded by 2^{16} .
- 2 How many possible choices of (K_a, K_b, K_c, K_d) in the 256-nibble key register?

$$\binom{256}{4}$$

Bounding the number of monomials

- I For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,m}$ of h is bounded by 2^{16} .
- 2 How many possible choices of (K_a, K_b, K_c, K_d) in the 256-nibble key register?

$$\binom{256}{4}$$

Total number of monomials $\leq \mu = {256 \choose 4} 2^{16}$.

Building a linearisation matrix

At each iteration of the stream cipher:

■ Build the ANF of the keystream nibble LSB z_i by combining the contribution of every h function.

Building a linearisation matrix

- Each column corresponds to a monomial: $\binom{256}{4} 2^{16} \approx 2^{43.4}$ columns.
- Each set of 2^{16} columns corresponds to the monomials in the bits of (K_a, K_b, K_c, K_d) , a < b < c < d.

Building a linearisation matrix

At each iteration of the stream cipher, the XOF outputs a subset, a permutation, a whitening vector which determine:

- 12 subsets $\{K_a, K_b, K_c, K_d\}$ associated with a block of 2^{16} columns;
- the ANF for each of these 12 blocks.

Resulting linearisation attack

Basic linearisation attack

- Using $\mu = \binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ keystream elements' LSB, a solvable linear system is built.
- This linear system is solved in μ^{ω} operations.
 - Straightforward Gaussian elimination, $\omega = 3$, $T \approx 2^{131}$ operations.
- Data complexity is μ nibbles.

Resulting linearisation attack

Basic linearisation attack

- Using $\mu = \binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ keystream elements' LSB, a solvable linear system is built.
- This linear system is solved in μ^{ω} operations.
 - Straightforward Gaussian elimination, $\omega = 3$, $T \approx 2^{131}$ operations.
- Data complexity is μ nibbles.

First observation: A is sparse.

- At most $s = 12 \cdot 2^{16} \ll \mu$ non-zero bits on each row.
- Memory complexity: $s \cdot \mu \approx 2^{63}$ bits.
- Sparse linear algebra: Coppersmith's Block-Wiedemann algorithm.
 - Main idea: only use matrix-vector multiplication, which costs $O(s \cdot n)$ operations.
- Improved time complexity: $\mu^3 \rightarrow \frac{6}{64} \cdot s \cdot \mu^2$.
- $T \approx 2^{103}$ operations.

Plan

- 1 Description of Elisabeth-4
- 2 Basic linearisation
- 3 Exploiting a rank defect phenomenon
- 4 Filtering collected equations
- 5 Small-scale experiments

Linearization matrix

■ We show that the linearization matrix has a rank defect.

Linearization matrix

■ We show that the linearization matrix has a rank defect. How?

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of (K_a, K_b, K_c, K_d) , a < b < c < d.

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of (K_a, K_b, K_c, K_d) , a < b < c < d.

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of (K_a, K_b, K_c, K_d) , a < b < c < d.

- We show that the linearization matrix has a rank defect. How?
- We computed the maximum possible rank of any of the $\binom{256}{4}$ submatrixes corresponding to a choice of (K_a, K_b, K_c, K_d) , a < b < c < d.

We pre-computed and stored the ANF of $2^{16} \cdot 4!$ variations $\tilde{h}_{\sigma,m}$ of h constructed by

- restricting the output to the LSB;
- considering the 4! possible orderings of the variables;
- and the 2¹⁶ possible masks.

We computed the rank and obtained

$$\dim\left(<\tilde{h}_{IV,i}>\right)\leq\dim\left(<\tilde{h}_{M,\sigma}>\right)=\rho=2^{13.08}\ll 2^{16}\,.$$

Exploiting the rank defect

- Basic attack: Each column corresponds to a monomial.
- But, each vector in a block of size 2^{16} can be written in a basis of size ρ .

Exploiting the rank defect

- **A** has now only $\mu' = \binom{256}{4} \rho$ columns
- Each row has at most $s' = 12 \cdot \rho$ active bits.

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2$
- Data complexity: μ
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- Data complexity: μ
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- Data complexity: $\mu \rightarrow \mu' = 2^{41}$ nibbles.
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- Data complexity: $\mu \rightarrow \mu' = 2^{41}$ nibbles.
- Memory complexity: $s \cdot \mu \rightarrow s' \cdot \mu' = 2^{57}$ bits.

Explaining the defect (theoretically)

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- We also identify and *fully prove* a **degree** defect:

For any
$$IV, i, \ \deg\left(ilde{h}_{IV,i}
ight) \leq 12 < 16$$
 .

.

Explaining the defect (theoretically)

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- We also identify and *fully prove* a **degree** defect:

For any
$$IV, i, \ \deg\left(\tilde{h}_{IV,i}\right) \leq 12 < 16$$
 .

Our analysis (about 1/3 of the article...)

- The rank and degree defects are caused by HHE-friendly features.
- Interaction between
 - Negacyclic look-up tables;
 - Addition in \mathbb{Z}_{16} .

within Antler functions

Plan

- 1 Description of Elisabeth-4
- 2 Basic linearisation
- 3 Exploiting a rank defect phenomenon
- 4 Filtering collected equations
- 5 Small-scale experiments

Considering only convenient XOF outputs

Total number of monomials: $\binom{256}{4}\rho$.

Considering only convenient XOF outputs

Total number of monomials: $\mu_{N'} = \binom{N'}{4} \rho$.

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N' with probability $p_{N'} \approx {N' \choose 48}/{256 \choose 48} \rightarrow$ precomputation cost: $\mu_{N'}/p_{N'}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 \rightarrow \left\lceil \frac{256}{N'} \right\rceil \cdot \frac{6}{64} \cdot s' \cdot (\mu_{N'})^2 + \mu_{N'}/p_{N'}$ operations.

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N' with probability $p_{N'} \approx {N' \choose 48}/{256 \choose 48} \rightarrow$ **precomputation cost**: $\mu_{N'}/p_{N'}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 \to \lceil \frac{256}{N'} \rceil \cdot \frac{6}{64} \cdot s' \cdot (\mu_{N'})^2 + \mu_{N'}/p_{N'}$ operations.

Trade-off: N' = 137.

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N' with probability $p_{N'} \approx {N' \choose 48}/{256 \choose 48} \rightarrow$ **precomputation cost**: $\mu_{N'}/p_{N'}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 \to \lceil \frac{256}{N'} \rceil \cdot \frac{6}{64} \cdot s' \cdot (\mu_{N'})^2 + \mu_{N'}/p_{N'}$ operations.

Trade-off: N' = 137. Thus:

- Time complexity: $2^{94} \rightarrow 2^{88}$ operations.
- Data complexity: $\mu' = 2^{41} \rightarrow \mu_{N'} = 2^{37}$ nibbles.
- Memory complexity: $s' \cdot \mu' = 2^{57} \rightarrow s' \cdot \mu_{N'} = 2^{54}$ bits.

- Pre-compute convenient IVs, then query these IVs only.
- The nibbles are all selected in a subset of size N' with probability $p_{N'} \approx {N' \choose 48} / {256 \choose 48} \rightarrow$ precomputation cost: $\mu_{N'}/p_{N'}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 \to \lceil \frac{256}{N'} \rceil \cdot \frac{6}{64} \cdot s' \cdot (\mu_{N'})^2 + \mu_{N'}/p_{N'}$ operations.

Trade-off: N' = 137. Thus:

- Time complexity: $2^{94} \rightarrow 2^{88}$ operations.
- Data complexity: $\mu' = 2^{41} \rightarrow \mu_{N'} = 2^{37}$ nibbles.
- Memory complexity: $s' \cdot \mu' = 2^{57} \rightarrow s' \cdot \mu_{N'} = 2^{54}$ bits.

Known-IV attack: Get keystream nibbles until you find enough convenient XOF outputs.

■ Data complexity: $\mu' = 2^{41} \rightarrow \mu_{N'}/p_{N'} = 2^{87}$ nibbles.

Plan

- 1 Description of Elisabeth-4
- 2 Basic linearisation
- 3 Exploiting a rank defect phenomenon
- 4 Filtering collected equations
- 5 Small-scale experiments

Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

Toy Elisabeth-4

- Operates on \mathbb{Z}_8 rather than \mathbb{Z}_{16} .
- Subset selects 2 sets of key elements among 32 rather than 12 among 256.
- Still has a rank defect, with $\rho = 254 \ll 2^{12}$.

Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

Toy Elisabeth-4

- Operates on \mathbb{Z}_8 rather than \mathbb{Z}_{16} .
- Subset selects 2 sets of key elements among 32 rather than 12 among 256.
- Still has a rank defect, with $\rho = 254 \ll 2^{12}$.

Implemented attack

- Two main things we checked:
 - Block-Wiedemann allows to solve an Elisabeth-4 type linear system.
 - Solving the system allows to recover the key.
- BW implem. from CADO-NFS project for integer factorization.
- Our chosen IV attack using N' = 12 required about 35 minutes.

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger r-1 (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger r-1 (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

The authors proposed a patch, check out their paper! (to appear, Indocrypt 2023)

Conclusion

While we did not attempt to patch Elisabeth-4, we believe some tweaks would suffice to prevent our attacks, e.g.:

- larger r-1 (larger number of inputs to the h function);
- and/or larger S-box size;
- and/or larger key size.

The authors proposed a patch, check out their paper! (to appear, Indocrypt 2023)

Thank you for your attention!