2022/839

Threshold Structure-Preserving Signatures

Elizabeth Crites¹, Markulf Kohlweiss², Bart Preneel³, <u>Mahdi Sedaghat³ and Daniel Slamanig⁴</u>

Web3 Foundation
 University of Edinburgh, Edinburgh, UK
 COSIC, KU Leuven, Leuven, Belgium
 CODE, Universität der Bundeswehr München, Munich, Germany

Asiacrypt 2023, December 5 (Guangzhou, China)

KU LEUVEN

Outline:

Threshold Structure-Preserving Signatures

Threshold Signatures

Structure-Preserving Signatures

Threshold Signatures [DY90]: To tolerate some fraction of corrupt signers

Threshold Signatures [DY90]: To tolerate some fraction of corrupt signers

Threshold Signatures [DY90]: To tolerate some fraction of corrupt signers

Non-Interactive Threshold Signatures: Not one-time signature

BLS signature [BLS04]: A simple not one-time NI-TS over bilinear groups*

KeyGen

BLS signature [BLS04]: A simple not one-time NI-TS

BLS signature [BLS04]: A simple not one-time NI-TS

Threshold BLS signature [Bol03]: A simple example of NI-TS

Threshold BLS signature [Bol03]: A simple example of NI-TS

Threshold BLS signature [Bol03]: A simple example of NI-TS

• A general framework for efficient generic constructions of cryptographic primitives over bilinear groups*.

- Straight-line extraction.
- Standard Model.

> Applications: group signatures, blind signatures, etc.

2 Enabling Modular Design in complex systems
 > Makes easy to combine building blocks.

Structure-Preserving Signatures [AFG+10]:

Structure-Preserving Signatures [AFG+10]:

There is NO Threshold Structure-Preserving Signature Scheme (TSPS).

3- Proof of unforgeability in the AGM+ROM under the hardness of a new assumption called GPS3.

4- The shortest possible signature and the least #PPE in the verification.

Treasure map: To look for a Non-Interactive TSPS

Threshold Signatures

Structure-Preserving Signatures

Structure-Preserving Signatures and Commitments to Group Elements

Masayuki Abe¹, Georg Fuchsbauer², Jens Groth³, Kristiyan Haralambiev^{4,*}, and Miyako Ohkubo^{5,*}

¹ Information Sharing Platform Laboratories, NTT Corporation, Japan abe.masyuki@lab.ntt.co.jp
² École normale supérieure, CNRS-INRIA, Paris, France http://www.di.ens.fr/~fuchsbau
³ University College London, UK j.groth@ucl.ac.uk
⁴ Computer Science Department, New York University, USA kkh@cs.nyu.edu
⁵ National Institute of Information and Communications Technology, Japan m.ohkubo@nict.go.jp

Linearly Homomorphic Structure-Preserving Signatures and Their Applications

Benoît Libert¹, Thomas Peters^{2*}, Marc Joye¹, and Moti Yung³

¹ Technicolor (France)
 ² Université catholique de Louvain, Crypto Group (Belgium)
 ³ Google Inc. and Columbia University (USA)

Short Structure-Preserving Signatures

Essam Ghadafi*

University College London, London, UK e.ghadafi@ucl.ac.uk

Linearly Homomorphic Structure-Preserving Signatures and Their Applications

Benoît Libert¹, Thomas Peters^{2*}, Marc Joye¹, and Moti Yung³

¹ Technicolor (France)
 ² Université catholique de Louvain, Crypto Group (Belgium)
 ³ Google Inc. and Columbia University (USA)

One-time Threshold SPS *

Short Structure-Preserving Signatures

Essam Ghadafi*

University College London, London, UK e.ghadafi@ucl.ac.uk Interactive Threshold SPS * At least two rounds of communication

* This has not been discussed in any previous research or studies.

Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme Alexandra Boldyreva Dept. of Computer Science & Engineering, University of California at San Diego http://www-cse.ucsd.edu/users/aboldyre

Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme Alexandra Boldyreva Dept. of Computer Science & Engineering, University of California at San Diego, http://www-cse.ucsd.edu/users/aboldyre Practical Threshold Signatures

Victor Shoup

IBM Zürich Research Lab Säumerstr. 4, 8803 Rüschlikon, Switzerland sho@zurich.ibm.com

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Short Structure-Preserving Signatures

Essam Ghadafi*

University College London, London, UK e.ghadafi@ucl.ac.uk

Interactive TSPS

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Short Structure-Preserving Signatures

Essam Ghadafi*

University College London, London, UK e.ghadafi@ucl.ac.uk

Interactive TSPS

SPS Impossibility Results [AGHO11]:

No unilateral SPS (respectively TSPS) exists!*

Both message and Signature components belong to the same source group.

SPS Impossibility Results [AGHO11]:

No unilateral SPS (respectively TSPS) exists!*

Both message and Signature components belong to the same source group.

No SPS with signature of fewer than 3 group elements exists!<mark>*</mark> 2 group elements

No SPS with fewer than 2 pairing product equations to be verified exists!

Indexed Diffie-Hellman Message Spaces:

Indexed Diffie-Hellman (iDH) message spaces: $(id, M_1, M_2): e(H(id), M_2) = e(M_1, G_2)$ i.e., $\exists m \in \mathbb{Z}_p: dlog_{H(id)}(M_1) = dlog_{G_2}(M_2) = m$

Our proposed message-indexed SPS (iSPS): A Threshold-Friendly SPS

Our proposed message-indexed SPS (iSPS): A Threshold-Friendly SPS

Our proposed message-indexed SPS (iSPS): A Threshold-Friendly SPS

q-EUF-Chosen Message Attack (EUF-CMA): standard definition

→ vk,params

q-EUF-Chosen Message Attack (EUF-CMA): standard definition

Is this scheme EUF-CMA secure?

Partial Re-randomizability

The resulting iSPS is partially re-randomizable.

 $e(\mathbf{h}, \mathbf{v}\mathbf{k}_1)e(M_1, \mathbf{v}\mathbf{k}_2) = e(\mathbf{s}, G_2)$ (i) $e(M_1, g_2) = e(\mathbf{h}, M_2)$

Is this scheme EUF-CMA secure?

Partial Re-randomizability

The resulting iSPS is partially re-randomizable.

$e(\mathbf{h}, vk_1)e(M_1, vk_2) = e(\mathbf{s}, G_2)$
$e(M_1, g_2) = e(\mathbf{h}, M_2)$

Repeated Index:

The index should not repeat.

$$M^{1} := (id, M_{1}^{1}, M_{2}^{1}) \qquad M^{2} := (id, M_{1}^{2}, M_{2}^{2}) (h, s^{1}) := (h, h^{x} M_{1}^{1^{y}}) \qquad (h, s^{2}) := (h, h^{x} M_{1}^{2^{y}})$$

$$\widetilde{M}^* = \left((M_1^1 M_1^2)^{\frac{1}{2}}, (M_2^1 M_2^2)^{\frac{1}{2}} \right)$$
$$\sigma^* = (h^*, s^*) = \left(h, (s^1 s^2)^{1/2} \right)$$

q-EUF-Chosen indexed Message Attack (CiMA): Unique index

$$EQ(M_1, M_2) = \{ (M_1^r, M_2) \mid r \in \mathbb{Z}_p \}$$

q-EUF-Chosen indexed Message Attack (CiMA): Unique index

Motivated by EUF-CMA definition of SPS on Equivalence Classes [FHS19].

 $EQ(M_1, M_2) = \{ (M_1^r, M_2) \mid r \in \mathbb{Z}_p \}$

Generalized Pointcheval-Sanders 3 (GPS3) assumption: Inspired by [KSAP22]

Theorem 1: *GPS*₃ assumption is hard in the <u>Algebraic Group model</u> and <u>random oracle model</u> as long as (2,1)-DL assumption is hard.

(Definition) (2,1)-DL assumption [BFL20]: Let $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G_1, G_2, p, e)$ be a type-III bilinear group. Given $(G_1^z, G_1^{z^2}, G_2^z)$, for all PPT adversaries it is infeasible to return z.

Generalized Pointcheval-Sanders 3 (GPS3) assumption: Inspired by [KSAP22]

Generalized Pointcheval-Sanders 3 (GPS3) assumption: Inspired by [KSAP22]

Our proposed TSPS:

Our proposed TSPS:

Our proposed TSPS:

Signature Aggregation

$$\sigma = \left(h, \prod_{i \in T} s_i^{L_i^T(0)}\right) = \left(h, h^x M_1^y\right), \forall |T| \ge t$$

Threshold EUF-CiMA: For static adversaries based on TS-UF-0 security [BCK+22]

 $EQ(M_1, M_2) = \{ (M_1^r, M_2) \mid r \in \mathbb{Z}_p \}$

Threshold EUF-CIMA: For static adversaries based on TS-UF-0 security [BCK+22]

According to Bellare et al. [BCK+22], T-UF-0 implies that the adversary cannot query the partial signing oracle under challenge message.

$$EQ(M_1, M_2) = \{ (M_1^r, M_2) \mid r \in \mathbb{Z}_p \}$$

Application: Anonymous Credentials [Cha84]

Conclusion:

- Threshold signatures tolerate some fraction of of corrupted signers.
- SPS enable a modular framework to design complex systems more efficiently.
- No Threshold SPS exists.
- We proposed the first (Non-Interactive) TSPS over indexed Diffie-Hellman message spaces.
- We proved its EUF-CiMA security under the hardness of GPS3 assumption in AGM+ROM.
- We discussed TIAC as a primary application of this scheme.

Conclusion:

- Threshold signatures tolerate some fraction of of corrupted signers.
- SPS enable a modular framework to design complex systems more efficiently.
- No Threshold SPS exists.
- We proposed the first (Non-Interactive) TSPS over indexed Diffie-Hellman message spaces.
- We proved its EUF-CiMA security under the hardness of GPS3 assumption in AGM+ROM.
- We discussed TIAC as a primary application of this scheme.

Potential open questions and subsequent works:

- 1) Improve the space of messages from indexed DH message spaces to arbitrary.
- 2) Remove the indexing method and achieve EUF-CMA security.
- 3) Prove the security of the scheme based on Non-Interactive assumptions.
- 4) Prove the threshold EUF-CiMA security with adaptive adversaries and under TS-UF-1

References

- [Cha84] David Chaum. "A new paradigm for individuals in the information age." In *IEEE Symposium on Security and Privacy* 1984. [BLS04] Boneh et al. "Short signatures from the Weil pairing.", Journal of Cryptology, 2004.
- [Sha79] Adi Shamir. "How to share a secret.", Communications of the Association for Computing Machinery, November 1979.
- [Bol03] Alexandra Boldyreva. "Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme.", PKC 2003.
- [GMR89] Goldwasser et al. "The knowledge complexity of interactive proof-systems."
- [AFG+10] Abe et al. "Structure-preserving signatures and commitments to group elements.", CRYPTO 2010.
- [AGHO11] Abe et al. "Optimal structure-preserving signatures in asymmetric bilinear groups.", CRYPTO 2011.
- [Fuc09] Georg Fuchsbauer. "Automorphic signatures in bilinear groups and an application to round-optimal blind signatures." Cryptology ePrint Archive, Report 2009/320, 2009.
- [PS16] David Pointcheval and Olivier Sanders. "Short randomizable signatures.", CT-RSA 2016.
- [Gha16] Essam Ghadafi. "Short structure-preserving signatures", CT-RSA 2016.
- **[GS08]** Jens Groth and Amit Sahai. "Efficient non-interactive proof systems for bilinear groups.", EUROCRYPT 2008.
- **[FHS19]** Fuchsbauer et al. "Structure-preserving signatures on equivalence classes and constant-size anonymous credentials.", AC'14, JoC'19.
- **[BFL20]** Bauer et al. "A classification of computational assumptions in the algebraic group model.", CRYPTO 2020.
- **[SAB+19]** Sonnino et al. "Coconut: Threshold issuance selective disclosure credentials with applications to distributed ledgers.", NDSS 2019.
- [BCK+22] Bellare et al. "Better than advertised security for non-interactive threshold signatures.", CRYPTO 2022.
- **[KSAP22]** Kim et al. "Practical Dynamic Group Signatures Without Knowledge Extractors". Designs, Codes and Cryptography, Oct 2022.

Thank You!

KU LEUVEN

ssedagha@esat.kuleuven.be

The illustrations are credited to Disneyclips.

Backup slides

Bilinear Pairings:

- It is symmetric
- Any line intersects the curve no more than 3 points.
- Dot function:

BN-254

- To verify a message does really come from real person.
- The verifier accpets if the handwriting signature matchs previously seen signatures of the signer.

Digital Signatures are everywhere on the internet.

Technical Challenges:

Sharing:

- To share a secret $s \in \mathbb{Z}_p$ amongst *n* parties:
 - Sample random $f(x) = s + \sum_{k=1}^{t-1} r_k x^k$
 - Give $\lambda_i = f(i)$ to P_i

Trusted Dealer

Reconstruction (in the exponent):

Given
$$|T| \ge t$$
 shares:
 $G_{\zeta}^{s} = \prod_{i \in T} \left(G_{\zeta}^{\lambda_{i}} \right)^{L_{i}^{T}(0)}, \quad \zeta \in \{1, 2\}$
Where,
 $L_{i}^{T}(x) = \prod_{i \in T, i \neq i} \frac{j - x}{j - i}$

Diffie-Hellman Message Spaces [Fuc09]:

Diffie-Hellman message spaces: $(M_1, M_2): e(G_1, M_2) = e(M_1, G_2)$ i.e., $\exists m \in \mathbb{Z}_p: dlog_{G_1}(M_1) = dlog_{G_2}(M_2) = m$

Pointcheval-Sanders (PS) assumption [PS16]:

Given params: = (\mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T , p, e, G_1 , G_2):

Security Reductions:

(Definition) (2,1)-DL assumption [BFL20]: Let $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G_1, G_2, p, e)$ be a type-III bilinear group. Given $(G_1^Z, G_1^{Z^2}, G_2^Z)$, for all PPT adversaries it is infeasible to return z.

Theorem 1:

 GPS_3 assumption is hard in the <u>Algebraic adversary model</u> and <u>random</u> <u>oracle model</u> as long as (2,1)-DL assumption is hard.

Theorem 2: The proposed iSPS is <u>EUF-CiMA secure</u> under the hardness of GPS_3 assumption.

Theorem 3: The proposed TSPS is <u>Threshold EUF-CiMA</u> secure under the security of iSPS.

Generalized Pointcheval-Sanders 3 (GPS3) Assumption:

PS Assumption

\mathbf{G}^{PS}	\mathcal{O}^{1}	
1:	$pp = (\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, p, e, g, \hat{g}) \leftarrow \mathcal{BG}(1^\kappa)$	1
2:	$x,y \leftarrow \mathbb{Z}_p^*$	2
3:	$(m^*,h^*,s^*) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathrm{PS}}}(pp,\hat{g}^x,\hat{g}^y)$	3
4:	return ((1) $h^* \neq 1_{\mathbb{G}_1} \land m^* \neq 0 \land$	
5:	$(2) \ s^* = {h^*}^{x+m^*y} \ \wedge$	
6:	$(3) m^* \not\in \mathcal{Q})$	

$\frac{\mathcal{O}^{\mathrm{PS}}(m) / / m \in \mathbb{Z}_{p}}{1: \quad h \leftarrow \$ \mathbb{G}_{1}} \\ 2: \quad \mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\} \\ 3: \quad \mathbf{return} \ (h, h^{x+my})$

GPS3 Assumption

$\mathbf{G}^{\mathrm{GPS}_3}(1^\kappa)$					
1:	$pp = (\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, p, e, g, \hat{g}) \leftarrow \mathcal{BG}(1^\kappa)$				
2:	$x,y \leftarrow \mathbb{Z}_p^*$				
3:	$(M_1^*, M_2^*, h^*, s^*) \leftarrow \mathcal{A}^{\mathcal{O}_0^{\mathrm{GPS}_3}, \mathcal{O}_1^{\mathrm{GPS}_3}}(pp, \hat{g}^x, \hat{g}^y)$				
4:	: return ((1) $M_1^* \neq 1_{\mathbb{G}_1} \land h^* \neq 1_{\mathbb{G}_1} \land$				
5:	(2) $s^* = {h^*}^x {M_1^*}^y \wedge$				
6:	$(3) \operatorname{dlog}_{h^*}(M_1^*) = \operatorname{dlog}_{\hat{g}}(M_2^*) \wedge \\$				
7:	$(4) (\star, M_2^*) \not\in \mathcal{Q}_1)$				
$\mathcal{O}_0^{\mathrm{GP}}$	^{S₃} ()	$\mathcal{O}_1^{\mathrm{GP}}$	$^{S_3}(h, M_1, M_2) / / M_1 \in \mathbb{G}_1, M_2 \in \mathbb{G}_2$		
1:	$r \leftarrow \mathbb{Z}_p^*$	1:	if $(h \notin \mathcal{Q}_0 \lor \operatorname{dlog}_h(M_1) \neq \operatorname{dlog}_{\hat{g}}(M_2))$:		
2:	$\mathcal{Q}_0 \gets \mathcal{Q}_0 \cup \{g^r\}$	2:	$\mathbf{return} \perp$		
3:	$\mathbf{return} g^r$	3:	$\mathbf{if} \ (h,\star) \in \mathcal{Q}_1:$		
4: return ot					
		5:	$\mathcal{Q}_1 \leftarrow \mathcal{Q}_1 \cup \{(h, M_2)\}$		
		6:	$\mathbf{return} \ (h^x M_1^y)$		

Our Main Objective and Technical Challenges:

Technical Challenges: Forbidden Operations in Partial Signatures

An SPS is said threshold friendly, if it avoids all these non-linear operations.

