

FAU In This Talk

Roadmap

- Background
- Signatures from Code Equivalence
- A New Formulation
- Conclusions

Roadmap

- Background
- Signatures from Code Equivalence
- A New Formulation
$>$ Conclusions

FAU Error-Correcting Codes

1 Background

$$
[n, k] \text { Linear Code over } \mathbb{F}_{q}
$$

A subspace of dimension k of \mathbb{F}_{q}^{n}. Value n is called length.

Hamming Metric

$w t(x)=\left|\left\{i: x_{i} \neq 0,1 \leq i \leq n\right\}\right|, d(x, y)=w t(x-y)$.
Minimum distance (of \mathfrak{C}): $\min \{d(x, y): x, y \in \mathfrak{C}\}$.

Generator Matrix

$G \in \mathbb{F}_{q}^{k \times n}$ defines the code as : $x \in \mathfrak{C} \Longleftrightarrow x=u G$ for $u \in \mathbb{F}_{q}^{k}$. Not unique: $S G, S \in \mathrm{GL}_{k}(q)$; Systematic form: $\left(I_{k} \mid M\right)$.

Parity-check Matrix

$H \in \mathbb{F}_{q}^{(n-k) \times n}$ defines the code as: $x \in \mathfrak{C} \Longleftrightarrow H x^{T}=0$ (syndrome).
Not unique: $S H, S \in \mathrm{GL}_{n-k}(q)$; Systematic form: $\left(M^{T} \mid I_{n-k}\right)$.
Information Set: set of columns carrying information symbols (G_{J} is invertible).
w-error correcting: \exists algorithm that corrects up to w errors.

FaUU Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: $G \in \mathbb{F}_{q}^{k \times n}, y \in \mathbb{F}_{q}^{n}$ and $w \in \mathbb{N}$.
Goal: find a word $e \in \mathbb{F}_{q}^{n}$ with $w t(e) \leq w$ such that $y-e=x \in \mathfrak{C}_{G}$.
Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: $H \in \mathbb{F}_{q}^{(n-k) \times n}, y \in \mathbb{F}_{q}^{(n-k)}$ and $w \in \mathbb{N}$.
Goal: find a word $e \in \mathbb{F}_{q}^{n}$ with $w t(e) \leq w$ such that $H e^{T}=y$.
NP-Complete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solution when w is below a certain threshold (GV Bound).
Very well-studied, solid security understanding Information-Set Decoding (ISD) solvers.

FAU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

Fad Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

FaU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter):
use change of basis S and permutation P to obtain equivalent code.

FaU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter):
use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

FâU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter):
use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

FaU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter):
use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)
...far less so for signature schemes.
(CFS, KKS,...)

FâU Traditional Code-Based Cryptography
 1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryption, one can obtain a trapdoor by masking the private code.

Example (McEliece/Niederreiter):
use change of basis S and permutation P to obtain equivalent code.

Hardness is an assumption which depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)
...far less so for signature schemes.
(CFS, KKS,...)

History suggest that we have to do things a little differently.

Roadmap

$>$ Background

$>$ Signatures from Code Equivalence
\rightarrow A New Formulation
$>$ Conclusions

FâU Cryptographic Group Actions

2 Signatures from Code Equivalence

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.

FaU Cryptographic Group Actions

2 Signatures from Code Equivalence

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.
The word cryptographic means that it has some properties of interest in cryptography, e.g.:

FâU Cryptographic Group Actions

2 Signatures from Code Equivalence

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.
The word cryptographic means that it has some properties of interest in cryptography, e.g.:

- Efficient evaluation, sampling and membership testing algorithms.

FâU Cryptographic Group Actions

2 Signatures from Code Equivalence

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.
The word cryptographic means that it has some properties of interest in cryptography, e.g.:

- Efficient evaluation, sampling and membership testing algorithms.
- A hard vectorization problem.

FâU Cryptographic Group Actions

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.
The word cryptographic means that it has some properties of interest in cryptography, e.g.:

- Efficient evaluation, sampling and membership testing algorithms.
- A hard vectorization problem.

Group Action Vectorization Problem

Given the pair $x_{1}, x_{2} \in \mathcal{X}$, find, if any, $g \in \mathcal{G}$ such that $g \star x_{1}=x_{2}$.

FAUU Cryptographic Group Actions

Group Action

Let \mathcal{X} be a set and (\mathcal{G}, \cdot) be a group. A group action is a mapping

$$
\begin{aligned}
\star: \mathcal{G} \times \mathcal{X} & \rightarrow \mathcal{X} \\
(g, x) & \mapsto g \star x
\end{aligned}
$$

such that, for all $x \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{G}, g_{2} \star\left(g_{1} \star x\right)=\left(g_{2} \cdot g_{1}\right) \star x$.
The word cryptographic means that it has some properties of interest in cryptography, e.g.:

- Efficient evaluation, sampling and membership testing algorithms.
- A hard vectorization problem.

Group Action Vectorization Problem

Given the pair $x_{1}, x_{2} \in \mathcal{X}$, find, if any, $g \in \mathcal{G}$ such that $g \star x_{1}=x_{2}$.

Most famous example: exactly DLP!

FAUU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

FaU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

FaU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

\widetilde{g} is a random element from \mathcal{G}.

FAU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

\widetilde{g} is a random element from \mathcal{G}.
If $c h=0$: reveal \widetilde{g}

FaU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

\widetilde{g} is a random element from \mathcal{G}.
If $c h=0$: reveal \widetilde{g}
If $c h=1$: reveal g^{\prime}

FaU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

\widetilde{g} is a random element from \mathcal{G}.
If $c h=0$: reveal \widetilde{g}
If $c h=1$: reveal g^{\prime}
This naturally yields signatures (via Fiat-Shamir) but, in the DLP setting, these are obviously not post-quantum.

FaU Zero-Knowledge from Group Actions

2 Signatures from Code Equivalence

There is a standard way to obtain a simple 3-pass Sigma protocol from group actions.

\widetilde{g} is a random element from \mathcal{G}.
If $c h=0$: reveal \widetilde{g}
If $c h=1$: reveal g^{\prime}

This naturally yields signatures (via Fiat-Shamir) but, in the DLP setting, these are obviously not post-quantum.

What about group actions from coding theory?

FaUU Isometries in the Hamming Metric
2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

FaUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear and semilinear equivalence, respectively.

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear and semilinear equivalence, respectively.
Can easily be described using representatives, i.e. generator (or parity-check) matrices. Clearly:

FAUU Isometries in the Hamming Metric

2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

- Permutations: $\pi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}\right)$.
- Monomials: permutations + scaling factors: $\mu=(v ; \pi)$, with $v \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

$$
\mu\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=\left(v_{1} \cdot a_{\pi(1)}, v_{2} \cdot a_{\pi(2)}, \ldots, v_{n} \cdot a_{\pi(n)}\right)
$$

Monomial matrix: permutation \times diagonal.

- Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.
We talk about permutation, linear and semilinear equivalence, respectively.
Can easily be described using representatives, i.e. generator (or parity-check) matrices. Clearly:

$$
\begin{gathered}
\mathfrak{C} \stackrel{\mathrm{PE}}{\sim} \mathfrak{C}^{\prime} \Longleftrightarrow \exists(S, P) \in \mathrm{GL}_{k}(q) \times \mathrm{S}_{n} \text { s.t. } G^{\prime}=S G P, \\
\mathfrak{C} \stackrel{\mathrm{LE}}{\sim} \mathfrak{C}^{\prime} \Longleftrightarrow \exists(S, Q) \in \mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q) \text { s.t. } G^{\prime}=S G Q,
\end{gathered}
$$

where P is a permutation matrix, and Q a monomial matrix.

FâU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

FâU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\text { *: } \begin{array}{ccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
((S, Q), G) & \mapsto & S G Q
\end{array}
$$

FâU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\left.\star: \begin{array}{ccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
& ((S, Q), G) & \mapsto
\end{array}\right) S G Q
$$

\mathcal{G} acts on the entire codes if we choose canonical representation, e.g. systematic form.

FâU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\text { 夫: } \begin{array}{ccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
((S, Q), G) & \mapsto & S G Q
\end{array}
$$

\mathcal{G} acts on the entire codes if we choose canonical representation, e.g. systematic form.
Note that here \mathcal{X} is not a group, and the action is also non-commutative, which prevents both Shor's and Kuperberg's algorithms.

FAU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\star: \begin{array}{ccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
& ((S, Q), G) & \mapsto
\end{array}
$$

\mathcal{G} acts on the entire codes if we choose canonical representation, e.g. systematic form.
Note that here \mathcal{X} is not a group, and the action is also non-commutative, which prevents both Shor's and Kuperberg's algorithms.

The problem of deciding if two codes are equivalent is well-known in coding theory; the computational version is the vectorization problem for our action.

FÂU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\star: \begin{array}{ccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
& ((S, Q), G) & \mapsto
\end{array}
$$

\mathcal{G} acts on the entire codes if we choose canonical representation, e.g. systematic form.
Note that here \mathcal{X} is not a group, and the action is also non-commutative, which prevents both Shor's and Kuperberg's algorithms.

The problem of deciding if two codes are equivalent is well-known in coding theory; the computational version is the vectorization problem for our action.

Linear Equivalence Problem (LEP)

Given $\mathfrak{C}, \mathfrak{C}^{\prime} \subseteq \mathbb{F}_{q}^{n}$, find μ such that $\mu(\mathfrak{C})=\mathfrak{C}^{\prime \prime} \Longleftrightarrow$ Given (systematic) generator matrices $G, G^{\prime} \in \mathbb{F}_{q}^{k \times n}$, find $Q \in M_{n}(q)$ such that $G^{\prime}=S F(G Q)$.

FAU Code-Based Group Actions

2 Signatures from Code Equivalence
Can be seen as a group action of $\mathcal{G}=\mathrm{GL}_{k}(q) \times \mathrm{M}_{n}(q)$ on full-rank matrices in $\mathbb{F}_{q}^{k \times n}$.

Code-based Group Action

$$
\text { 夫: } \begin{array}{cccc}
\mathcal{G} \times \mathcal{X} & \rightarrow & \mathcal{X} \\
& ((S, Q), G) & \mapsto & S G Q
\end{array}
$$

\mathcal{G} acts on the entire codes if we choose canonical representation, e.g. systematic form.
Note that here \mathcal{X} is not a group, and the action is also non-commutative, which prevents both Shor's and Kuperberg's algorithms.

The problem of deciding if two codes are equivalent is well-known in coding theory; the computational version is the vectorization problem for our action.

Linear Equivalence Problem (LEP)

Given $\mathfrak{C}, \mathfrak{C}^{\prime} \subseteq \mathbb{F}_{q}^{n}$, find μ such that $\mu(\mathfrak{C})=\mathfrak{C}^{\prime \prime} \Longleftrightarrow$ Given (systematic) generator matrices $G, G^{\prime} \in \mathbb{F}_{q}^{k \times n}$, find $Q \in M_{n}(q)$ such that $G^{\prime}=S F(G Q)$.

Note that the permutation case (PEP) is just a special case, and for practical applications, we are not interested in the semilinear version of the problem.

FAU The LESS ZKID

2 Signatures from Code Equivalence
A ZK protocol based exclusively on the hardness of the code equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

FAU The LESS ZKID

2 Signatures from Code Equivalence
A ZK protocol based exclusively on the hardness of the code equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

Key Generation

- Input public parameters, hash function \mathbf{H}.
- Choose random q-ary code \mathfrak{C}, given by generator matrix G.
- sk: monomial matrix Q.
- pk: matrix $G^{\prime}=S F(G Q)$.

FACU The LESS ZKID

2 Signatures from Code Equivalence
A ZK protocol based exclusively on the hardness of the code equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

Key Generation

- Input public parameters, hash function \mathbf{H}.
- Choose random q-ary code \mathfrak{C}, given by generator matrix G.
- sk: monomial matrix Q.
- pk: matrix $G^{\prime}=S F(G Q)$.

Prover

Verifier
Choose random monomial matrix $\tilde{Q} \in M_{n}(q)$.
Compute $\tilde{G}=S F(G \tilde{Q})$.
Set $c m t=\mathbf{H}(\tilde{G})$

If $c h=0$ set $r s p=\tilde{Q}$
$\xrightarrow{r s p}$
If $c h=1$ set $r s p=Q^{-1} \tilde{Q}$

Select random $c h \in\{0,1\}$.

Verify $\mathbf{H}(S F(G \cdot r s p))=c m t$.
Verify $\mathbf{H}\left(S F\left(G^{\prime} \cdot r s p\right)\right)=c m t$.

FAU LESS Signatures
 2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

FaU LESS Signatures
 2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge. Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.

FâU LESS Signatures

2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge. Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.

The protocol can be greatly improved with the following modifications:
("LESS-FM", Barenghi, Biasse, P., Santini, 2021)

FâU LESS Signatures

2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
("LESS-FM", Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.

FâU LESS Signatures

2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
("LESS-FM", Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.
- Use a challenge string with fixed weight ω.
+ Exploits imbalance in cost of response: seed vs monomial.
- Larger number of iterations.

FâU LESS Signatures

2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error $1 / 2 \Longrightarrow t=\lambda$ parallel repetitions.
The protocol can be greatly improved with the following modifications:
("LESS-FM", Barenghi, Biasse, P., Santini, 2021)

- Use multiple public keys and non-binary challenges.
+ Lower soundness error: $1 / 2 \rightarrow 1 / 2^{\ell}$.
- Rapid increase in public key size.
- Use a challenge string with fixed weight ω.
+ Exploits imbalance in cost of response: seed vs monomial.
- Larger number of iterations.

Such modifications do not affect security, only requiring small tweaks in proofs or switching to equivalent security assumptions.

FâU Design Considerations

2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP. (Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)

FAUU Design Considerations

2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

FAUU Design Considerations

2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category $1(\approx 128$ sec. bits) we have $(n, k, q)=(252,126,127)$.

FAUU Design Considerations

2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

FAU Design Considerations

2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

- $p k=(s-1) \underbrace{k(n-k)\left\lceil\log _{2}(q)\right\rceil}_{G} / 8+$ seed bytes

FAU Design Considerations

2 Signatures from Code Equivalence

Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot c_{\mathrm{ISD}}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

- $p k=(s-1) k(n-k)\left\lceil\log _{2}(q)\right\rceil / 8+$ seed bytes
- $\operatorname{sig}=\omega \cdot \underbrace{n\left(\left\lceil\log _{2}(n)\right\rceil+\left\lceil\log _{2}(q-1)\right\rceil\right)}_{\text {iso }} / 8+\{$ seeds, digest, salt $\}$ bytes

FAU Design Considerations

2 Signatures from Code Equivalence

Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)
Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

- $p k=(s-1) k(n-k)\left\lceil\log _{2}(q)\right\rceil / 8+$ seed bytes
- $\operatorname{sig}=\omega \cdot \underbrace{n\left(\left\lceil\log _{2}(n)\right\rceil+\left\lceil\log _{2}(q-1)\right\rceil\right)}_{\text {iso }} / 8+\{$ seeds, digest, salt $\}$ bytes

Runtime is dominated by SF computation, for both Keygen and Sign/Verify.

FaUU Design Considerations

2 Signatures from Code Equivalence

Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP. (Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)

Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

- $p k=(s-1) k(n-k)\left\lceil\log _{2}(q)\right\rceil / 8+$ seed bytes
- $\operatorname{sig}=\omega \cdot \underbrace{n\left(\left\lceil\log _{2}(n)\right\rceil+\left\lceil\log _{2}(q-1)\right\rceil\right)}_{\text {iso }} / 8+\{$ seeds, digest, salt $\}$ bytes

Runtime is dominated by SF computation, for both Keygen and Sign/Verify.
The protocol shows a high degree of flexibility, to cater for different priorities.

FaUU Design Considerations

2 Signatures from Code Equivalence

Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP. (Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2O23)

Code parameters chosen using according to this, following conservative criterion. Namely, pick n, k, q so that, for any d and any w :

$$
\sqrt{N_{d}(w)} \cdot C_{\text {ISD }}^{(d)}(n, k, q, w)>2^{\lambda} .
$$

For example for NIST Category 1 ($\approx 128 \mathrm{sec}$. bits) we have $(n, k, q)=(252,126,127)$.
Protocol parameters (t, ω, s) infer performance profile:

- $p k=(s-1) k(n-k)\left\lceil\log _{2}(q)\right\rceil / 8+$ seed bytes
- $\operatorname{sig}=\omega \cdot \underbrace{n\left(\left\lceil\log _{2}(n)\right\rceil+\left\lceil\log _{2}(q-1)\right\rceil\right)}_{\text {iso }} / 8+\{$ seeds, digest, salt $\}$ bytes

Runtime is dominated by SF computation, for both Keygen and Sign/Verify.
The protocol shows a high degree of flexibility, to cater for different priorities.
Can we compress signatures?

Roadmap

$>$ Background

> Signatures from Code Equivalence
\rightarrow A New Formulation
$>$ Conclusions

FAU Parsing the Information

3 A New Formulation

Let us consider for simplicity the permutation case.

FAU Parsing the Information

3 A New Formulation

Let us consider for simplicity the permutation case.
Information contained in P :

- which columns are moved to the k leftmost coordinates
- how the k columns on the left are sorted
- how the $n-k$ columns on the right are sorted

FâU Parsing the Information

3 A New Formulation

Let us consider for simplicity the permutation case.
Information contained in P :

- which columns are moved to the k leftmost coordinates
- how the k columns on the left are sorted
- how the $n-k$ columns on the right are sorted

Such information is represented by three permutation matrices:

- $n \times n$ permutation matrix $P_{\text {is }} \in S_{n, k}$
- $k \times k$ permutation matrix $P_{\text {rows }} \in S_{k}$
- $(n-k) \times(n-k)$ permutation matrix $P_{\text {cols }} \in S_{n-k}$

FâU Parsing the Information

3 A New Formulation

Let us consider for simplicity the permutation case.
Information contained in P :

- which columns are moved to the k leftmost coordinates
- how the k columns on the left are sorted
- how the $n-k$ columns on the right are sorted

Such information is represented by three permutation matrices:

- $n \times n$ permutation matrix $P_{\text {is }} \in S_{n, k}$
- $k \times k$ permutation matrix $P_{\text {rows }} \in S_{k}$
- $(n-k) \times(n-k)$ permutation matrix $P_{\text {cols }} \in S_{n-k}$

In particular, for any P :

$$
P=P_{\mathrm{is}} \cdot\left(\begin{array}{cc}
P_{\text {rows }}^{-1} & 0 \\
0 & P_{\text {cols }}
\end{array}\right)
$$

Fà Splitting the Action

3 A New Formulation
Let $J:=$ set of coordinates that are moved in first k positions; then

$$
G \cdot P_{\text {is }}=(\underbrace{G_{J}}_{k \text { columns }}, \underbrace{\mathcal{G}_{\{1, \cdots, n\} \backslash J}}_{n-k \text { columns }}) .
$$

FAUU Splitting the Action

3 A New Formulation

Let $J:=$ set of coordinates that are moved in first k positions; then

$$
G \cdot P_{\text {is }}=(\underbrace{G_{J}}_{k \text { columns }}, \underbrace{G_{\{1, \cdots, n\} \backslash J}}_{n-k \text { columns }}) .
$$

Applying P we get:

$$
\begin{aligned}
G \cdot P & =G \cdot P_{\text {is }} \cdot\left(\begin{array}{cc}
P_{\text {rows }}^{-1} & 0 \\
0 & P_{\text {cols }}
\end{array}\right) \\
& =\left(G_{J}, G_{\{1, \cdots, n\} \backslash J}\right) \cdot\left(\begin{array}{cc}
P_{\text {rows }}^{-1} & 0 \\
0 & P_{\text {cols }}
\end{array}\right)=\left(G_{J} \cdot P_{\text {rows }}^{-1}, G_{\{1, \cdots, n\} \backslash J} \cdot P_{\text {cols }}\right) .
\end{aligned}
$$

FâU Splitting the Action

3 A New Formulation

Let $J:=$ set of coordinates that are moved in first k positions; then

$$
G \cdot P_{\text {is }}=(\underbrace{G_{J}}_{k \text { columns }}, \underbrace{G_{\{1, \cdots, n\} \backslash J}}_{n-k \text { columns }}) .
$$

Applying P we get:

$$
\begin{aligned}
G \cdot P & =G \cdot P_{\text {is }} \cdot\left(\begin{array}{cc}
P_{\text {rows }}^{-1} & 0 \\
0 & P_{\text {cols }}
\end{array}\right) \\
& =\left(G_{J}, G_{\{1, \cdots, n\} \backslash J}\right) \cdot\left(\begin{array}{cc}
P_{\text {rows }}^{-1} & 0 \\
0 & P_{\text {cols }}
\end{array}\right)=\left(G_{J} \cdot P_{\text {rows }}^{-1}, G_{\{1, \cdots, n\} \backslash J} \cdot P_{\text {cols }}\right) .
\end{aligned}
$$

Then, for any $S \in \mathrm{GL}_{k}(q)$:

$$
\begin{aligned}
\operatorname{SF}(S G P) & =\operatorname{SF}\left(\left(S \cdot G_{J} \cdot P_{\text {rows }}^{-1}, S \cdot G_{\{1, \cdots, n\} \backslash J} \cdot P_{\text {cols }}\right)\right) \\
& =\left(I_{k},\left(S \cdot G_{J} \cdot P_{\text {rows }}^{-1}\right)^{-1} \cdot S \cdot G_{\{1, \cdots, n\} \backslash J} \cdot P_{\text {cols }}\right) \\
& =\left(I_{k}, P_{\text {rows }} \cdot G_{J}^{-1} \cdot G_{\{1, \cdots, n\} \backslash J} \cdot P_{\text {cols }}\right) .
\end{aligned}
$$

FAU Splitting the Action (cont.)

3 A New Formulation

Let $\tilde{G}=\operatorname{SF}(G \cdot \tilde{P})$ sent during commitment and \tilde{P} decomposed as before; then

$$
\begin{aligned}
\tilde{G} & =\left(I_{k}, \tilde{P}_{\text {rows }} \cdot G_{J}^{-1} \cdot G_{\{1, \cdots, n\} \backslash J} \cdot \tilde{P}_{\text {cols }}\right) \\
& =\left(I_{k}, A\right) .
\end{aligned}
$$

FAU Splitting the Action (cont.)

3 A New Formulation

Let $\tilde{G}=\operatorname{SF}(G \cdot \tilde{P})$ sent during commitment and \tilde{P} decomposed as before; then

$$
\begin{aligned}
\tilde{G} & =\left(I_{k}, \tilde{P}_{\text {rows }} \cdot G_{J}^{-1} \cdot G_{\{1, \cdots, n\} \backslash J} \cdot \tilde{P}_{\text {cols }}\right) \\
& =\left(I_{k}, A\right) .
\end{aligned}
$$

Consider $P^{*}=\tilde{P}_{\text {is }} \cdot\left(\begin{array}{cc}\tilde{P}_{\text {rows }}^{-1} & 0 \\ 0 & I_{n-k}\end{array}\right)$; then

$$
\begin{aligned}
\operatorname{SF}\left(G \cdot P^{*}\right) & =\left(I_{k}, \tilde{P}_{\text {rows }} \cdot \mathcal{G}_{J}^{-1} \cdot \mathcal{G}_{\{1, \cdots, n\} \backslash J}\right) \\
& =\left(I_{k}, A \cdot \tilde{P}_{\text {cols }}^{-1}\right) .
\end{aligned}
$$

FAU Splitting the Action (cont.)

3 A New Formulation

Let $\tilde{G}=\operatorname{SF}(G \cdot \tilde{P})$ sent during commitment and \tilde{P} decomposed as before; then

$$
\begin{aligned}
\tilde{G} & =\left(I_{k}, \tilde{P}_{\text {rows }} \cdot G_{J}^{-1} \cdot G_{\{1, \cdots, n\} \backslash J} \cdot \tilde{P}_{\text {cols }}\right) \\
& =\left(I_{k}, A\right) .
\end{aligned}
$$

Consider $P^{*}=\tilde{P}_{\text {is }} \cdot\left(\begin{array}{cc}\tilde{P}_{\text {rows }}^{-1} & 0 \\ 0 & I_{n-k}\end{array}\right)$; then

$$
\begin{aligned}
\operatorname{SF}\left(G \cdot P^{*}\right) & =\left(I_{k}, \tilde{P}_{\text {rows }} \cdot G_{J}^{-1} \cdot \mathcal{G}_{\{1, \cdots, n\} \backslash J}\right) \\
& =\left(I_{k}, A \cdot \tilde{P}_{\text {cols }}^{-1}\right) .
\end{aligned}
$$

Thus, we obtain an invariant up to a column permutation.

FAUU A New Notion of Equivalence

3 A New Formulation
We can modify the Commit procedure:

FaU A New Notion of Equivalence

3 A New Formulation

We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).

FaU A New Notion of Equivalence

3 A New Formulation

We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P^{*}.

FAUU A New Notion of Equivalence

3 A New Formulation

We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P^{*}.

Transmitting P^{*} only takes $k\left(\left\lceil\log _{2}(n)\right\rceil\right) \Longrightarrow \approx 1 / 2$ space saving.

FAUU A New Notion of Equivalence

3 A New Formulation
We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P^{*}.

Transmitting P^{*} only takes $k\left(\left\lceil\log _{2}(n)\right\rceil\right) \Longrightarrow \approx 1 / 2$ space saving.
Extends naturally to linear equivalence: remaining coordinates identical up to a monomial.

FAUU A New Notion of Equivalence

3 A New Formulation

We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P^{*}.

Transmitting P^{*} only takes $k\left(\left\lceil\log _{2}(n)\right\rceil\right) \Longrightarrow \approx 1 / 2$ space saving.
Extends naturally to linear equivalence: remaining coordinates identical up to a monomial.

Information Set Linear Equivalence Problem (IS-LEP)

Given $\mathfrak{C}, \mathfrak{C}^{\prime \prime} \subseteq \mathbb{F}_{q}^{n}$, find monomials μ, ζ and an information set J^{\prime} such that for every $c \in \widetilde{\mathfrak{C}}=\mu(\mathfrak{C})$ there exists $c^{\prime} \in \mathfrak{C}^{\prime}$ with $\widetilde{c}_{J^{\prime}}=c_{J^{\prime}}^{\prime}$ and $\widetilde{c}_{\{1, \cdots, n\} \backslash J^{\prime}}=\zeta\left(c_{\{1, \cdots, n\} \backslash J^{\prime}}^{\prime}\right)$. Equivalently, given generators $\widetilde{G}, G^{\prime} \in \mathbb{F}_{q}^{k \times n}$, it must be that

$$
\widetilde{G}_{J^{\prime}}^{-1} \widetilde{G}_{\{1, \cdots, n\} \bigvee^{\prime}}=\zeta\left(G_{J^{\prime}}^{\prime-1} G_{\{1, \cdots, n\} \backslash^{\prime}}^{\prime}\right) .
$$

FAUU A New Notion of Equivalence

3 A New Formulation

We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P^{*}.

Transmitting P^{*} only takes $k\left(\left\lceil\log _{2}(n)\right\rceil\right) \Longrightarrow \approx 1 / 2$ space saving.
Extends naturally to linear equivalence: remaining coordinates identical up to a monomial.

Information Set Linear Equivalence Problem (IS-LEP)

Given $\mathfrak{C}, \mathfrak{C}^{\prime \prime} \subseteq \mathbb{F}_{q}^{n}$, find monomials μ, ζ and an information set J^{\prime} such that for every $c \in \widetilde{\mathfrak{C}}=\mu(\mathfrak{C})$ there exists $c^{\prime} \in \mathfrak{C}^{\prime}$ with $\widetilde{c}_{J^{\prime}}=c_{J^{\prime}}^{\prime}$ and $\widetilde{c}_{\{1, \cdots, n\} \backslash J^{\prime}}=\zeta\left(c_{\{1, \cdots, n\} \backslash J^{\prime}}^{\prime}\right)$. Equivalently, given generators $\widetilde{G}, G^{\prime} \in \mathbb{F}_{q}^{k \times n}$, it must be that

$$
\widetilde{G}_{J^{\prime}}^{-1} \widetilde{G}_{\{1, \cdots, n\} \backslash J^{\prime}}=\zeta\left(G_{J^{\prime}}^{\prime-1} G_{\{1, \cdots, n\} \backslash J^{\prime}}^{\prime}\right) .
$$

We prove that this is equivalent to LEP (reduction in both ways).

Roadmap

- Background

> Signatures from Code Equivalence

- A New Formulation
- Conclusions

FAUU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

FAU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

FAUU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

FAUU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)

FAU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)

FAU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)
- ...

FAU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)
- ...

Our work is able to reduce signature size by half, compared to LESS-FM.

FAUU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2O22)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)
- ...

Our work is able to reduce signature size by half, compared to LESS-FM.
Current work: extend this result to generic notion of canonical forms, further compress to $\approx 1 / 3$ of reported sizes.

FAUU Conclusions, Current and Future Work

4 Conclusions
The introduction of the LESS scheme opened the way to a new, interesting approach for designing code-based cryptographic schemes.

The group action structure is particularly suitable to develop protocols with advanced functionalities, e.g.:

- Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2O22)
- Threshold signatures.
(Battagliola, Borin, Meneghetti, P., preprint)
- Blind signatures.
(Kuchta, LeGrow, P., preprint)
- ...

Our work is able to reduce signature size by half, compared to LESS-FM.
Current work: extend this result to generic notion of canonical forms, further compress to $\approx 1 / 3$ of reported sizes.

Future work includes more performance improvements (e.g. Gaussian elimination, pk size), implementation (e.g. AVX2, hardware) and other applications.

Thank you for listening!

Any questions?

https://www.less-project.com

FAU References

E. Berlekamp, R. McEliece, and H. Van Tilborg

On the inherent intractability of certain coding problems.
IEEE Transactions on Information Theory 24.3, 1978.
S. Barg

Some new NP-complete coding problems.
Problemy Peredachi Informatsii, 1994.
N N. Courtois, M. Finiasz and N. Sendrier
How to Achieve a McEliece-Based Digital Signature Scheme.
ASIACRYPT 2001.
G. Kabatianskii, E. Krouk and B. Smeets

A digital signature scheme based on random error-correcting codes.
Crytography and Coding: 6th IMA International Conference, 1997.
邫
J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini

LESS is More: Code-Based Signatures Without Syndromes.
AFRICACRYPT 2020.
A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini

LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.
PQCRYPTO 2021.

FAU References

J．Leon
Computing automorphism groups of error－correcting codes．
IEEE Transactions on Information Theory，28（3）：496－511， 1982.W．Beullens
Not Enough LESS：An Improved Algorithm for Solving Code Equivalence Problems over \mathbb{F}_{q} ． SAC 2020.

A．Barenghi，J．－F．Biasse，E．Persichetti，and P．Santini On the Computational Hardness of the Code Equivalence Problem in Cryptography． Advances in Mathematics of Communications，17（1）：23－55， 2023.

A．Barenghi，J．－F．Biasse，T．Ngo，E．Persichetti，and P．Santini Advanced Signature Functionalities from the Code Equivalence Problem． International Journal of Computer Mathematics：Computer Systems Theory， 2022.

M．Battagliola，G．Borin，A．Meneghetti and E．Persichetti Cutting the GRASS：Threshold GRoup Action Signature Schemes． preprint，available at https：／／eprint．iacr．org／2023／859．

V．Kuchta，J．LeGrow，and E．Persichetti
Code－Based Blind Signatures．
preprint，to appear．
T．Chou，E．Persichetti，and P．Santini
On Linear Equivalence，Canonical Forms，and Digital Signatures．
preprint，available at https：／／eprint．iacr．org／2023／1533．

