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Error-Correc�ng Codes1 Background
[n, k] Linear Code over Fq

A subspace of dimension k of Fn
q. Value n is called length.

Hamming Metric
wt(x) = |{i : xi 6= 0, 1 ≤ i ≤ n}|, d(x, y) = wt(x− y).Minimum distance (of C): min{d(x, y) : x, y ∈ C}.

Generator Matrix
G ∈ Fk×n

q defines the code as : x∈C⇐⇒ x = uG for u ∈ Fk
q.Not unique: SG, S ∈ GLk(q); Systema�c form: (Ik | M).

Parity-check Matrix

H ∈ F(n−k)×n
q defines the code as: x∈C⇐⇒ HxT = 0 (syndrome).Not unique: SH, S ∈ GLn−k(q); Systema�c form: (MT | In−k).

Informa�on Set: set of columns carrying informa�on symbols (GJ is inver�ble).
w-error correc�ng: ∃ algorithm that corrects up to w errors.
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Decoding Problems1 Background

In general, it is hard to decode random codes.
General Decoding Problem (GDP)

Given: G ∈ Fk×n
q , y ∈ Fn

q and w ∈ N.Goal: find a word e ∈ Fn
q with wt(e) ≤ w such that y− e = x ∈ CG.

Easy to see this is equivalent to the following.
Syndrome Decoding Problem (SDP)

Given: H ∈ F(n−k)×n
q , y ∈ F(n−k)

q and w ∈ N.Goal: find a word e ∈ Fn
q with wt(e) ≤ w such that HeT = y.

NP-Complete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solu�on when w is below a certain threshold (GV Bound).
Very well-studied, solid security understanding Informa�on-Set Decoding (ISD) solvers.
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Tradi�onal Code-Based Cryptography1 Background

Use hard problems from coding theory, such as SDP in the Hamming metric.

For encryp�on, one can obtain a trapdoor by masking the private code.
Example (McEliece/Niederreiter):use change of basis S and permuta�on P to obtain equivalent code.
Hardness is an assump�on which depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS,...)

History suggest that we have to do things a li�le differently.
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Cryptographic Group Ac�ons2 Signatures from Code Equivalence

Group Ac�on
Let X be a set and (G, ·) be a group. A group ac�on is a mapping

? : G × X → X
(g, x) 7→ g ? x

such that, for all x ∈ X and g1, g2 ∈ G, g2 ? (g1 ? x) = (g2 · g1) ? x.

The word cryptographic means that it has some proper�es of interest in cryptography,e.g.:
• Efficient evalua�on, sampling and membership tes�ng algorithms.
• A hard vectoriza�on problem.

Group Ac�on Vectoriza�on Problem
Given the pair x1, x2 ∈ X , find, if any, g ∈ G such that g ? x1 = x2.
Most famous example: exactly DLP!
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Zero-Knowledge from Group Ac�ons2 Signatures from Code Equivalence
There is a standard way to obtain a simple 3-pass Sigma protocol from group ac�ons.

Public x Public x′

g

g̃ is a random element from G.
If ch = 0: reveal g̃

If ch = 1: reveal g′

This naturally yields signatures (via Fiat-Shamir) but, in the DLP se�ng, these areobviously not post-quantum.
What about group ac�ons from coding theory?
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Isometries in the Hamming Metric2 Signatures from Code Equivalence
Maps which preserve the distances (weights).

• Permuta�ons: π( (a1, a2, . . . , an)
)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear and semilinear equivalence, respec�vely.
Can easily be described using representa�ves, i.e. generator (or parity-check) matrices.Clearly:

C
PE∼ C′ ⇐⇒ ∃(S, P) ∈ GLk(q)× Sn s.t. G′ = SGP,

C
LE∼ C′ ⇐⇒ ∃(S,Q) ∈ GLk(q)×Mn(q) s.t. G′ = SGQ,

where P is a permuta�on matrix, and Q a monomial matrix.
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Code-Based Group Ac�ons2 Signatures from Code Equivalence
Can be seen as a group ac�on of G = GLk(q)×Mn(q) on full-rank matrices in Fk×n

q .

Code-based Group Ac�on
? : G × X → X

((S,Q),G) 7→ SGQ

G acts on the en�re codes if we choose canonical representa�on, e.g. systema�c form.
Note that here X is not a group, and the ac�on is also non-commuta�ve, which preventsboth Shor’s and Kuperberg’s algorithms.
The problem of deciding if two codes are equivalent is well-known in coding theory; thecomputa�onal version is the vectoriza�on problem for our ac�on.

Linear Equivalence Problem (LEP)
Given C,C′ ⊆ Fn

q, find µ such that µ(C) = C′⇐⇒ Given (systema�c) generator matrices
G,G′ ∈ Fk×n

q , find Q ∈ Mn(q) such that G′ = SF(GQ).

Note that the permuta�on case (PEP) is just a special case, and for prac�cal applica�ons,we are not interested in the semilinear version of the problem.
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The LESS ZKID2 Signatures from Code Equivalence
A ZK protocol based exclusively on the hardness of the code equivalence problem.
(Biasse, Micheli, P., San�ni, 2020)

Key Genera�on
• Input public parameters, hash func�on H.
• Choose random q-ary code C, given by generator matrix G.
• sk: monomial matrix Q.
• pk: matrix G′ = SF(GQ).

Prover Verifier
Choose random monomial matrix Q̃ ∈ Mn(q).Compute G̃ = SF(GQ̃).
Set cmt = H(G̃) cmt−−−→

b←−−− Select random ch ∈ {0, 1}.

If ch = 0 set rsp = Q̃
rsp−−−→ Verify H(SF(G · rsp)) = cmt.If ch = 1 set rsp = Q−1Q̃ Verify H(SF(G′ · rsp)) = cmt.
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LESS Signatures2 Signatures from Code Equivalence

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.

Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(“LESS-FM”, Barenghi, Biasse, P., San�ni, 2021)
• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a challenge string with fixed weight ω.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security assump�ons.
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Design Considera�ons2 Signatures from Code Equivalence
Best generic LEP solvers (i.e. no weak instances) are combinatorial and reduce to SDP.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., San�ni, 2023)

Code parameters chosen using according to this, following conserva�ve criterion. Namely,pick n, k, q so that, for any d and any w:√
Nd(w) · C(d)ISD(n, k, q,w) > 2λ.

For example for NIST Category 1 (≈ 128 sec. bits) we have (n, k, q) = (252, 126, 127).
Protocol parameters (t, ω, s) infer performance profile:
• pk = (s− 1) k(n− k)dlog2(q)e

G

/8 + seed bytes
• sig = ω · n(dlog2(n)e+ dlog2(q− 1)e)

iso

/8 + {seeds, digest, salt} bytes
Run�me is dominated by SF computa�on, for both Keygen and Sign/Verify.
The protocol shows a high degree of flexibility, to cater for different priori�es.
Can we compress signatures?
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Parsing the Informa�on3 A New Formula�on

Let us consider for simplicity the permuta�on case.

Informa�on contained in P:
• which columns are moved to the k le�most coordinates
• how the k columns on the le� are sorted
• how the n− k columns on the right are sorted

Such informa�on is represented by three permuta�on matrices:
• n× n permuta�on matrix Pis ∈ Sn,k

• k× k permuta�on matrix Prows ∈ Sk

• (n− k)× (n− k) permuta�on matrix Pcols ∈ Sn−k

In par�cular, for any P:
P = Pis ·

(
P−1

rows 0
0 Pcols

)
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Spli�ng the Ac�on3 A New Formula�on
Let J := set of coordinates that are moved in first k posi�ons; then

G · Pis =
(

GJ

k columns
, G{1,··· ,n}\J

n− k columns
)
.

Applying P we get:
G · P = G · Pis ·

(
P−1

rows 0
0 Pcols

)
= (GJ , G{1,··· ,n}\J) ·

(
P−1

rows 0
0 Pcols

)
= (GJ · P−1

rows , G{1,··· ,n}\J · Pcols).

Then, for any S ∈ GLk(q):
SF(SGP) = SF((S · GJ · P−1

rows , S · G{1,··· ,n}\J · Pcols)
)

=
(

Ik , (S · GJ · P−1
rows)

−1 · S · G{1,··· ,n}\J · Pcols
)

=
(

Ik , Prows · G−1
J · G{1,··· ,n}\J · Pcols

)
.
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0 Pcols

)
= (GJ · P−1

rows , G{1,··· ,n}\J · Pcols).

Then, for any S ∈ GLk(q):
SF(SGP) = SF((S · GJ · P−1

rows , S · G{1,··· ,n}\J · Pcols)
)

=
(

Ik , (S · GJ · P−1
rows)

−1 · S · G{1,··· ,n}\J · Pcols
)

=
(

Ik , Prows · G−1
J · G{1,··· ,n}\J · Pcols

)
.
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Spli�ng the Ac�on (cont.)3 A New Formula�on

Let G̃ = SF(G · P̃) sent during commitment and P̃ decomposed as before; then
G̃ =

(
Ik , P̃rows · G−1

J · G{1,··· ,n}\J · P̃cols
)

=
(

Ik , A
)
.

Consider P∗ = P̃is ·
(

P̃−1
rows 0
0 In−k

)
; then

SF(G · P∗) = (Ik , P̃rows · G−1
J · G{1,··· ,n}\J

)
=
(

Ik , A · P̃−1
cols

)
.

Thus, we obtain an invariant up to a column permuta�on.
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A New No�on of Equivalence3 A New Formula�on
We can modify the Commit procedure:

1. Agree on an ordering (e.g. lexicographic).
2. Respond to challenge using P∗.

Transmi�ng P∗ only takes k
(
dlog2(n)e

)
=⇒ ≈ 1/2 space saving.

Extends naturally to linear equivalence: remaining coordinates iden�cal up to a monomial.
Informa�on Set Linear Equivalence Problem (IS-LEP)

Given C,C′ ⊆ Fn
q, find monomials µ, ζ and an informa�on set J′ such that for every

c ∈ C̃ = µ(C) there exists c′ ∈ C′ with c̃J′ = c′J′ and c̃{1,··· ,n}\J′ = ζ
(

c′{1,··· ,n}\J′
).

Equivalently, given generators G̃,G′ ∈ Fk×n
q , it must be that

G̃−1
J′ G̃{1,··· ,n}\J′ = ζ

(
G′−1

J′ G′{1,··· ,n}\J′
)
.

We prove that this is equivalent to LEP (reduc�on in both ways).
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Conclusions, Current and Future Work4 Conclusions
The introduc�on of the LESS scheme opened the way to a new, interes�ng approach fordesigning code-based cryptographic schemes.

The group ac�on structure is par�cularly suitable to develop protocols with advancedfunc�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., preprint)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Our work is able to reduce signature size by half, compared to LESS-FM.
Current work: extend this result to generic no�on of canonical forms, further compress to
≈ 1/3 of reported sizes.
Future work includes more performance improvements (e.g. Gaussian elimina�on, pksize), implementa�on (e.g. AVX2, hardware) and other applica�ons.
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Thank you for listening!
Any ques�ons?

<

h�ps://www.less-project.com
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