Injection-Secure
Structured Encryption and
Searchable Symmetric Encryption

Ghous Amjad, Seny Kamara, Tarik Moataz

Encrypted Search Algorithms

Trusted client Untrusted server

HL
I

Encrypted Search Algorithms

Overview

Trusted client Untrusted server

Encrypted Search Algorithms

Encrypted Search
Algorithms

Fully-Homomorphic
Encryption (FHE)

Property-Preserving
Encryption (PPE)

Structured Encryption
(STE)

Oblivious RAM (ORAM)

Functional Encryption
(FE)

Encrypted Search Algorithms

0 MongoDB.

Client Side Field Level

% /\ Encryption [2019]

Encrypted Relational Encrypted NoSQL
Microsoft® " DBs UBs aWS
SQL Server
Searchable Symmetric Encrypted Search |
Always Encrypted [20715] Encryption (SSE) Engines Document Encryption SDK

[2023]

Encrypted Blockchain
DBs

Property-Preserving
Encryption (PPE)

Encrypted Search Algorithms

e 0 MongoDB.

Encrypted Relational Encrypted NoSQL Queryable Encryption
DBs DBs [2023]
Searchable Symmetric Encrypted Search
Encryption (SSE) Engines

Encrypted Blockchain
DBs

Structured Encryption
(STE)

Structured Encryption
Definitions
Setup leakage L q

————————————————————————————>
| . ‘
—>

dns

Query leakage A 0

[%] — Setup[1 ‘] ans —— Query [tk,]

tk —Token[% ,q]

Structured Encryption

Definitions

« An STE schemeis (<, SZQ, <, L r)-secure if
+ It reveals no information about the structure beyond £’
* It reveals no information about the structure and queries beyond & 0
e It reveals no information about the structure and adds beyond & A

* It reveals no information about the structure and deletes beyond & D

Structured Encryption

Data Structures

Encrypted Search
Algorithms

Structured Encryption
(STE)

Encrypted Arrays Encrypted Dictionary Encrypted Multi-Map | | Encrypted Range Multi- Encrypted
(ERAM) (EDX) (EMM) Map (ERMM) Graphs (EG)

Background

Dictionary and Multi-Map data structures

* DXs map labels to values * MMs map labels to tuples
Dictionary DX Multi-map MM

» Get: DX[Z5] returns v, . Get: MM[Z5] returns (v, , V)

Dynamic EMMs

 Dynamic sub-linear EMMs [KPR12, CKKKRS14, ..]

* Optimal-time queries
o &/ o : duery operations leak query equality (qeq)
* |f and when two queries are for the same label

° QA . add operations leak add-query equality

* |f and when an add is for the same label as a query

Leakage Graphs

- £, : add operations leak add-query equality

o o : query operations leak query equality

Injection Attacks [ZKP16]

pre-injection queries

injection post-injection queries

o £, :add operations leak add-query equality

Forward-Privacy [SPS14]

Definitions

e |Introduced in [SPS14] but not formalized
 “adds & deletes not correlated with previous queries”
 Formalized in [Bost16] roughly as “adds & deletes leak add & delete size”
 Formalized in [KM18] as “adds & deletes leak nothing”
o [/KP16] observed that
* Forward-privacy protects pre-injection queries

 But not post-injection queries

Injection Attacks [ZKP16]

@ O

* Forward-privacy

o 4 - add operations do not leak add-to-query equality but still leak query-
to-add equality

Forward Privacy

Limitations

pre-injection queries injection post-injection queries
* But what if scheme also leaks query equality?

o 4 - add operations leak query-to-add equality

o o - query operations leak query equality (geq)

What’s Going on?

* |njection attacks are only a subset of a larger class of attacks

 Forward-privacy is only one security notion among a class of related notions

Correlation Attacks

* | earn labels of a subset of operations
* using injections, inference attacks or known-data attacks etc...
 Use leakage to correlate known operations with unknown operations

* Operations here can be any of queries, adds, deletes, ...

* Special case of injection attacks
e execute add operations with known label

* use add-query leakage to correlate adds to unknown queries

Correlation Security

A leakage profile (<, SZQ, <, &) is correlation-secure

* “If it doesn’t reveal correlations between certain types of operations”
* "If the leakage graph has no paths between certain types of operations™

 Formalized using a (complex) parametrizable game-based definition

Injection Security

* Special case of correlation security
» A leakage profile (g, £), £ 4, Z'p) is injection-secure

e “If there are no correlations between adds and pre- & post-injection
queries”

e “If no paths exist between adds and pre- and post-injection queries”

 Formalized by parameterizing the definition of correlation security

Other Approaches

 ORAM-based

e Store multi-map in an ORAM

* but in a volume-hiding manner (see paper for more)
o SWISSSE [GPPW20]

* argument of security against injection attacks

Contributions

Theorem 1

Theorem 1. If a leakage profile is such that £, = qeqand £, = £, = L then it
IS Injection-secure.

New Constructions
FIX, FIXSSE and DVLH

* FIX is the first (dynamic) injection-secure multi-map encryption scheme

* FiXSSE is the first (dynamic) injection-secure searchable symmetric encryption
scheme

 DVLH is a dynamic volume-hiding multi-map encryption scheme
 DVLH is based on the dynamic pseudo-random transform (DPRT)

* All schemes above can achieve sub-linear search overhead under some assumptions

New Constructions "

Standard multi-map
encryption scheme

x
Pseudo-random
Volume-hiding multi- PRT transform
map encryption
scheme
*

Standard dynamic

Injection secure Injection secure " "
searchable symmetric multi-map encryption mu t"malir)] encryption
encryption scheme scheme scheme

. Dynamic pseudo-
Dynamic volume- DPRT ra3|f1dom trznsform
hiding multi-map

encryption scheme
* existing schemes from the literature

Proposed Schemes *

Standard multi-map
encryption scheme

x
Focus of the talk Pseudo-random
Volume-hiding multi- PRT transform
map encryption
scheme
*

Standard dynamic
multi-map encryption
scheme

. Dynamic pseudo-
Dynamic volume- DPRT ra}édom trznsform
hiding multi-map

encryption scheme

Injection secure
searchable symmetric
encryption scheme

Injection secure
multi-map encryption
scheme

* existing schemes from the literature

Design Techniques
Randomized but Fixed Schedule

e Adds, deletes etc are stored in local stash...

e ...and pushed to server-side encrypted structures following a randomly sampled but fixed
schedule

e Scheduled defined by a random permutation
« Every label £ has a scheduled push time/epoch defined by 7(£)

» Add, erase or edit tokens for £ are stored in stash until £’s scheduled push epoch

* Once we reach the last epoch, we go back to the first one

* The client-side state can grow as a function of the distribution of adds, deletes etc.

FIX
Building Blocks

* A static volume-hiding multi-map encryption scheme

* Can be instantiated using VLH [KM19], AVLH [KM19] or dprfMM [PPYY19]
* |n this talk we use VLH as the underlying instantiation.
* Hides volume (response length) and reveals query equality

* A dynamic volume-hiding multi-map encryption scheme

* Can be instantiated using the DVLH (this work) or 2ch [APPYY?23]

* |n this talk, we use DVLH as the underlying instantiation.

 Hides volume and reveals the query equality

Setup

O Sample a random permutation 7

O Create two empty multi-map MM, and MM and a counter cnt

Setup| 1%, MM |. O compute))
y Ko, 5 sto s, EMMo <—VLHSGtup 1k5 MM

Ky y sthy, EMMy 4+ DVLHSetUp 1k, MMy

O The client receives K = (K,, K,,)and st =| sto, stn, MMst , cnt , 7T

The server recelvesS EMM =| EMM, , EMM,

Appenad

O For all v In , add to MM«[Z]

Append |K, st | - EMM

st ; EMMW | «— Push (K, st [l EMM

O Client outputs the updated state st

Server outputs the updated multi-map EMm’

OForaIIvin |
®

Frase if E MM[C]
o Remove from MMs[Z]
O Else
B _ o Add 10 MM[£]
Erase |K, st [7], : EMM | O Compute

st' ; EMW | «— Push (K, st [l EMM

O Client outputs the updated state st’

Server outputs the updated multi-map EMm’

Get

Get

- EMM

Q Initialize an empty set Result

O The client and server execute

Ro; 1 |«— VLH.Get

R,.: | |[«— DVLH.Get

; EMMO

K., stn, : EMMq

| O The client computes the following sets

v :vl|ladd € MM«[£]

R —

v :v||del € MMs[£]

O The client outputs

Result =

RO_= U .

v||del|lold € MM«[£]

\[Rs URs.

FIX

Push (Part 1)

Push

K st

5 EMM

() Foralliin {1, ...,u},

O Compute J=cnt+¢ mod #Lum

O Compute

RO;J_ +«— VLH.Get

R.: | |e— DVLH.Get

O For all E MM«[]
o If flag = add, R;; - R;; U
o If flag = del,

° Ifve Ry, setRY =R

i EMMO

n(j)

- EMMn

o Else, set R, = R

FIX

Push (Part 2)

Push

K st

5 EMM

O Remove the tuple of [, from MM

_Rn L Rjt: \ Ry

N
S
||

| - EMw |«—DVLH.Delete|k,, sto , [€xnl: EMMo

1 - Emw |«—DVLH.Insert K, stn, Gty , [D,

O Increment the counter cnt by U

O Client outputs the updated state st’

Server outputs the updated multi-map EMm’

FIX

| eakage

e Setup leakage
* The size of the input multi-map
 The size of the label space
 Get leakage
 [he query equality pattern
* |nserts and Erases leakage

e None

FIX

Efficiency when 1 = O(log N)

* Get complexity O(log N)
» Insert/Erase complexity O(log® N)
» Storage complexity O(log N - #Lym)
* Interactive
e 2 rounds
o Stateful

* Lossy

FIX

Client Stash Analysis

Theorem 2. If the update labels are sampled uniformly at random and it their
update lengths are sampled uniformly at random from U, then the expected stash
size of FIX is at most H,, - smax/21 Where

[7 — S0 S0 S0
B 1S'Hm,s,QS’Hm,SV.WmS'Hm,S

Theorem 3. If the update labels sampled uniformly at random and if their tuple
lengths are sampled from a Zipf Z2m,1 distribution, then, with probability at least

] — € the stash size is at most
Hy o Smax \/(mzm-ln(l/@

21 | 21

Thank you

https://eprint.iacr.org/2023/533

https://eprint.iacr.org/2023/533

