Injection-Secure Structured Encryption and Searchable Symmetric Encryption

Ghous Amjad, Seny Kamara, Tarik Moataz

Trusted client

Untrusted server

Overview

Trusted client

Untrusted server

Encrypted Search Algorithms

Fully-Homomorphic Encryption (FHE)

Property-Preserving Encryption (PPE)

Structured Encryption (STE)

Oblivious RAM (ORAM)

Functional Encryption (FE)

Fully-Homomorphic Encryption (FHE)

Property-Preserving Encryption (PPE)

Structured Encryption (STE)

Oblivious RAM (ORAM)

Functional Encryption (FE)

Fully-Homomorphic Encryption (FHE)

Property-Preserving Encryption (PPE)

Structured Encryption (STE)

Oblivious RAM (ORAM)

Functional Encryption (FE)

Structured Encryption

Definitions

Structured Encryption

Definitions

- An STE scheme is $(\mathscr{L}_S, \mathscr{L}_Q, \mathscr{L}_A, \mathscr{L}_D)$ -secure if
 - It reveals no information about the structure beyond $\mathscr{Z}_{\mathcal{S}}$
 - It reveals no information about the structure and queries beyond $\mathscr{L}_{\mathcal{Q}}$
 - It reveals no information about the structure and adds beyond \mathscr{Z}_A
 - It reveals no information about the structure and deletes beyond \mathscr{Z}_D

Structured Encryption

Data Structures

Encrypted Search Algorithms

Fully-Homomorphic Encryption (FHE)

Property-Preserving Encryption (PPE)

Structured Encryption (STE)

Oblivious RAM (ORAM)

Functional Encryption

Encrypted Arrays (ERAM)

Encrypted Dictionary (EDX)

Encrypted Multi-Map (EMM)

Encrypted Range Multi-Map (ERMM)

Encrypted Graphs (EG)

Background

Dictionary and Multi-Map data structures

DXs map labels to values

Get: DX[ℓ₃] returns v₂

MMs map labels to tuples

• Get: $MM[\mathcal{E}_3]$ returns (v_2, v_4)

Dynamic EMMs

- Dynamic sub-linear EMMs [KPR12, CKKKRS14, ...]
 - Optimal-time queries
 - \mathscr{L}_{Q} : query operations leak query equality (qeq)
 - If and when two queries are for the same label
 - \mathcal{L}_A : add operations leak add-query equality
 - If and when an add is for the same label as a query

Leakage Graphs

- \mathcal{L}_A : add operations leak add-query equality
- $\mathscr{L}_{\mathcal{Q}}$: query operations leak query equality

Injection Attacks [ZKP16]

• \mathcal{L}_A : add operations leak add-query equality

Forward-Privacy [SPS14]

Definitions

- Introduced in [SPS14] but not formalized
 - "adds & deletes not correlated with previous queries"
- Formalized in [Bost16] roughly as "adds & deletes leak add & delete size"
- Formalized in [KM18] as "adds & deletes leak nothing"
- [ZKP16] observed that
 - Forward-privacy protects pre-injection queries
 - But not post-injection queries

Injection Attacks [ZKP16]

- Forward-privacy
 - \mathcal{L}_A : add operations do not leak add-to-query equality but still leak query-to-add equality

Forward Privacy

- But what if scheme also leaks query equality?
 - \mathscr{L}_A : add operations leak query-to-add equality
 - \mathscr{L}_Q : query operations leak query equality (qeq)

What's Going on?

Injection attacks are only a subset of a larger class of attacks

Forward-privacy is only one security notion among a class of related notions

Correlation Attacks

- Learn labels of a subset of operations
 - using injections, inference attacks or known-data attacks etc...
- Use leakage to correlate known operations with unknown operations
- Operations here can be any of queries, adds, deletes, ...

- Special case of injection attacks
 - execute add operations with known label
 - use add-query leakage to correlate adds to unknown queries

Correlation Security

- A leakage profile $(\mathscr{L}_S, \mathscr{L}_O, \mathscr{L}_A, \mathscr{L}_D)$ is correlation-secure
 - "if it doesn't reveal correlations between certain types of operations"
 - "if the leakage graph has no paths between certain types of operations"
 - Formalized using a (complex) parametrizable game-based definition

Injection Security

- Special case of correlation security
- A leakage profile $(\mathscr{L}_S, \mathscr{L}_Q, \mathscr{L}_A, \mathscr{L}_D)$ is injection-secure
 - "if there are no correlations between adds and pre- & post-injection queries"
 - "if no paths exist between adds and pre- and post-injection queries"
 - Formalized by parameterizing the definition of correlation security

Other Approaches

- ORAM-based
 - Store multi-map in an ORAM
 - but in a volume-hiding manner (see paper for more)
- SWiSSSE [GPPW20]
 - argument of security against injection attacks

Contributions

Theorem 1

Theorem 1. If a leakage profile is such that $\mathscr{L}_Q = \text{qeq}$ and $\mathscr{L}_A = \mathscr{L}_D = \bot$ then it is injection-secure.

New Constructions

FIX, FixSSE and DVLH

- FIX is the first (dynamic) injection-secure multi-map encryption scheme
- FixSSE is the first (dynamic) injection-secure searchable symmetric encryption scheme
- DVLH is a dynamic volume-hiding multi-map encryption scheme
 - DVLH is based on the dynamic pseudo-random transform (DPRT)
- All schemes above can achieve sub-linear search overhead under some assumptions

^{*} existing schemes from the literature

^{*} existing schemes from the literature

Design Techniques

Randomized but Fixed Schedule

- Adds, deletes etc are stored in local stash…
 - ...and pushed to server-side encrypted structures following a randomly sampled but fixed schedule
 - Scheduled defined by a random permutation π
- Every label ℓ has a scheduled push time/epoch defined by $\pi(\ell)$
 - Add, erase or edit tokens for ℓ are stored in stash until ℓ 's scheduled push epoch
 - Once we reach the last epoch, we go back to the first one
- The client-side state can grow as a function of the distribution of adds, deletes etc.

Building Blocks

- A static volume-hiding multi-map encryption scheme
 - Can be instantiated using VLH [KM19], AVLH [KM19] or dprfMM [PPYY19]
 - In this talk we use VLH as the underlying instantiation.
 - Hides volume (response length) and reveals query equality
- A dynamic volume-hiding multi-map encryption scheme
 - Can be instantiated using the DVLH (<u>this work</u>) or 2ch [APPYY23]
 - In this talk, we use DVLH as the underlying instantiation.
 - Hides volume and reveals the query equality

Setup

- Sample a random permutation π
- Create two empty multi-map MMn and MMst and a counter cnt

Setup
$$\begin{bmatrix} 1^k, & MM \end{bmatrix}$$
: $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ Compute $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ Compute $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ VLH.Setup $\begin{bmatrix} 1^k, & MM \end{bmatrix}$ $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ DVLH.Setup $\begin{bmatrix} 1^k, & MM \end{bmatrix}$

The client receives $K=(K_o,K_n)$ and $st=st_o$, st_n , $st_$

Append

- For all v in \overline{v} , add $v \mid | add$ to $MM_{st}[\mathcal{E}]$

Client outputs the updated state st' Server outputs the updated multi-map EMM'

FIX Erase

- For all v in \overline{v} ,
 - O if $V \mid add \in MM_{st}[\ell]$,
 - Remove v | add from MMst[L]
 - Else
 - o Add v | del to MMst[ℓ]
- Erase K, st , \mathcal{V} , \mathcal{V} ; EMM : 2 Compute

Client outputs the updated state st' Server outputs the updated multi-map EMM'

Get

- Initialize an empty set Result
- The client and server execute

$$\begin{bmatrix} \mathsf{R}_{\mathsf{o}}; \bot \end{bmatrix} \longleftarrow \mathsf{VLH}.\mathsf{Get} \begin{bmatrix} \mathsf{K}_{\mathsf{o}}, \mathsf{st}_{\mathsf{o}}, & & \\ \mathsf{EMM}_{\mathsf{o}} \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{R}_{\mathsf{n}}; \bot \end{bmatrix} \longleftarrow \mathsf{DVLH}.\mathsf{Get} \begin{bmatrix} \mathsf{K}_{\mathsf{n}}, \mathsf{st}_{\mathsf{n}}, & & \\ \mathsf{EMM}_{\mathsf{n}} \end{bmatrix}$$

- Get K, st , \mathcal{C} ; EMM:
- The client computes the following sets

$$R_{st}^+ = v : v || add \in MM_{st}[\mathcal{E}]$$

$$R_{st}^- = \left[v : v | | del \in MM_{st}[\ell] \right]$$

$$\mathsf{R}_{\mathsf{st}}^{+} = \left[v:v | \mathsf{add} \in \mathsf{MM}_{\mathsf{st}}[\mathscr{E}]\right] \quad \mathsf{R}_{\mathsf{st}}^{-} = \left[v:v | \mathsf{del} \in \mathsf{MM}_{\mathsf{st}}[\mathscr{E}]\right] \quad \mathsf{R}_{\mathsf{0}}^{-} = \left[v:v | \mathsf{del} | \mathsf{old} \in \mathsf{MM}_{\mathsf{st}}[\mathscr{E}]\right]$$

(4) The client outputs

Result =
$$\left[R_{o} \bigcup R_{n} \bigcup R_{st}^{+}\right] \setminus \left[R_{st}^{-} \bigcup R_{0}^{-}\right]$$

Push (Part 1)

Push
$$K$$
, st , μ ; EMM :

- For all i in $\{1, \dots, \mu\}$,
 - Compute $j = \operatorname{cnt} + i \mod \# \mathbb{L}_{\text{MM}}$
 - Compute

$$\begin{bmatrix} \mathsf{R}_{\mathsf{o}}; \bot \end{bmatrix} \longleftarrow \mathsf{VLH.Get} \begin{bmatrix} K_{o}, \mathsf{st}_{\mathsf{o}}, \ell_{\pi(j)}; \mathsf{EMM}_{\mathsf{o}} \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{R}_{\mathsf{n}}; \bot \end{bmatrix} \longleftarrow \mathsf{DVLH.Get} \begin{bmatrix} K_{n}, \mathsf{st}_{\mathsf{n}}, \ell_{\pi(j)}; \mathsf{EMM}_{\mathsf{n}} \end{bmatrix}$$

- For all $v \mid flag \in MM_{st}[l]$,
 - If flag = add, $R_{st}^+ := R_{st}^+ \bigcup V$
 - If flag = del,
 - If $v \in R_o$, set $R_{st}^+ := R_{st}^+ \bigcup v | del | | old |$
 - Else, set $R_{st}^- := R_{st}^- \bigcup V$

Push (Part 2)

- Remove the tuple of $\ell_{\pi(j)}$ from MMst
- Set $\overline{v}_n := R_n \bigcup R_{st}^+ R_{st}^-$
- (4) Compute

Push
$$\left[K, \operatorname{st}, \mu ; \operatorname{\mathsf{EMM}} \right]$$
 :

- Increment the counter $\frac{\ }{\ }$ by μ
- Client outputs the updated state st'

 Server outputs the updated multi-map EMM'

Leakage

- Setup leakage
 - The size of the input multi-map
 - The size of the label space
- Get leakage
 - The query equality pattern
- Inserts and Erases leakage
 - None

Efficiency when $\mu = O(\log N)$

- Get complexity $O(\log N)$
- Insert/Erase complexity $O(\log^3 N)$
- Storage complexity $O(\log N \cdot \# \mathbb{L}_{\mathsf{MM}})$
- Interactive
 - 2 rounds
- Stateful
- Lossy

Client Stash Analysis

Theorem 2. If the update labels are sampled uniformly at random and if their update lengths are sampled uniformly at random from U, then the expected stash size of FIX is at most $H_m \cdot s_{\rm max}/2\mu$ where

$$U = \left\{ \frac{s_0}{1^s \cdot H_{m,s}}, \frac{s_0}{2^s \cdot H_{m,s}}, \dots, \frac{s_0}{m^s \cdot H_{m,s}} \right\}$$

Theorem 3. If the update labels sampled uniformly at random and if their tuple lengths are sampled from a Zipf $\mathcal{Z}_{m,1}$ distribution, then, with probability at least $1 - \epsilon$ the stash size is at most

$$\frac{H_m \cdot s_{\text{max}}}{2\mu} + s_{\text{max}} \cdot \sqrt{\frac{(m-2\mu) \cdot \ln(1/\epsilon)}{2\mu}}$$

Thank you

https://eprint.iacr.org/2023/533