Hidden Stabilizers, the Isogeny To Endomorphism Ring Problem and the Cryptanalysis of pSIDH Asiacrypt 2023, Guangzhou

Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin Leroux, Christophe Petit

University of Birmingham

December 6, 2023

Outline

Introducing the IsERP

Theoretical background

Roadmap

Reductions and the resolution of the IsERP

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

Given E, compute End (E).

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

Given E, compute $\operatorname{End}(E)$.
B. Path-finding problem:

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

$$
\text { Given } E \text {, compute End }(E)
$$

B. Path-finding problem:

Given a small prime ℓ and E, E^{\prime}, find a path from E to E^{\prime} on the supersingular ℓ-isogeny graph.

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

$$
\text { Given } E \text {, compute End }(E)
$$

B. Path-finding problem:

Given a small prime ℓ and E, E^{\prime}, find a path from E to E^{\prime} on the supersingular ℓ-isogeny graph.

Problems A, B are equivalent.

Hard problems in isogeny-based cryptography

Let E, E^{\prime} denote supersingular elliptic curves over $\mathbb{F}_{p^{2}}$.
A. Endomorphism ring problem:

$$
\text { Given } E \text {, compute End }(E)
$$

B. Path-finding problem:

Given a small prime ℓ and E, E^{\prime}, find a path from E to E^{\prime} on the supersingular ℓ-isogeny graph.

Problems A, B are equivalent.

Question: what if we consider a more general version of Problem B where we know (the isogeny representation of) an isogeny between E and E^{\prime} ?

Isogeny representation

An isogeny representation is a way to effectively represent the isogeny so that there is an efficient algorithm for evaluating the isogeny on given points.

Isogeny representation

An isogeny representation is a way to effectively represent the isogeny so that there is an efficient algorithm for evaluating the isogeny on given points.

Examples:

- Rational maps - can only be used for small degree isogenies.

Isogeny representation

An isogeny representation is a way to effectively represent the isogeny so that there is an efficient algorithm for evaluating the isogeny on given points.

Examples:

- Rational maps - can only be used for small degree isogenies.
- Isogeny chain

$$
\phi=\phi_{n} \circ \phi_{n-1} \circ \cdots \circ \phi_{2} \circ \phi_{1}
$$

- can only be used for smooth degree isogenies.

Isogeny representation

An isogeny representation is a way to effectively represent the isogeny so that there is an efficient algorithm for evaluating the isogeny on given points.

Examples:

- Rational maps - can only be used for small degree isogenies.
- Isogeny chain

$$
\phi=\phi_{n} \circ \phi_{n-1} \circ \cdots \circ \phi_{2} \circ \phi_{1}
$$

- can only be used for smooth degree isogenies.
- Suborder representation - introduced in pSIDH key exchange [Leroux 2022], can be used to represent isogenies of large prime degrees.

Isogeny representation

An isogeny representation is a way to effectively represent the isogeny so that there is an efficient algorithm for evaluating the isogeny on given points.

Examples:

- Rational maps - can only be used for small degree isogenies.
- Isogeny chain

$$
\phi=\phi_{n} \circ \phi_{n-1} \circ \cdots \circ \phi_{2} \circ \phi_{1}
$$

- can only be used for smooth degree isogenies.
- Suborder representation - introduced in pSIDH key exchange [Leroux 2022], can be used to represent isogenies of large prime degrees.
- High dimension representation - introduced after the SIDH attacks [Robert 2022], can be used for arbitrary degree isogeny.

The IsERP

Problem (IsERP)

Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

The IsERP

> Problem (IsERP)
> Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

In the context of pSIDH key exchange:

The IsERP

Problem (IsERP)

Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

In the context of pSIDH key exchange:

The IsERP

Problem (IsERP)

Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

In the context of pSIDH key exchange:
$>E_{0}$ is the public curve whose endomorphism ring is known

The IsERP

Problem (IsERP)

Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

In the context of pSIDH key exchange:
$>E_{0}$ is the public curve whose endomorphism ring is known

$$
E_{B}, s_{B}
$$

$>\varphi: E_{0} \rightarrow E$ is the secret isogeny of large prime degree N that Alice (or Bob) computes

The IsERP

Problem (IsERP)

Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}\left(E_{0}\right)$ and an isogeny representation of φ, compute $\operatorname{End}(E)$.

In the context of pSIDH key exchange:
$>E_{0}$ is the public curve whose endomorphism ring is known

$>\varphi: E_{0} \rightarrow E$ is the secret isogeny of large prime degree N that Alice (or Bob) computes
$>s$ is the suborder representation of φ which is the embedding of $\mathbb{Z}+N \operatorname{End}\left(E_{0}\right)$ into $\operatorname{End}(E)$ induced by φ that allows Bob (or Alice) to compute $E_{A, B}$.

Deuring Correspondence

Supersingular elliptic curve VS Quaternion algebra

Deuring Correspondence

Supersingular elliptic curve VS Quaternion algebra

Supersingular j-invariants over $\mathbb{F}_{p^{2}}$	Maximal orders in $\mathcal{B}_{p, \infty}$
$j(E)$ (up to Galois conjugacy)	$\mathcal{O} \cong$ End (E) (up to isomorphism)
$\left(E_{1}, \varphi\right)$ with $\varphi: E_{0} \rightarrow E_{1}$	I_{φ} integral left \mathcal{O}_{0}-ideal
	and right \mathcal{O}_{1}-ideal
$\theta \in \operatorname{End}\left(E_{0}\right)$	Principal ideal $\mathcal{O}_{0} \theta$
$\operatorname{deg}(\varphi)$	$n\left(I_{\varphi}\right)$

Roadmap

Roadmap

- Isogeny to Endomorphism Ring Problem (IsERP)

Roadmap

- Isogeny to Endomorphism Ring Problem (IsERP)
- Group Action Evaluation Problem (GAEP)

Roadmap

- Isogeny to Endomorphism Ring Problem (IsERP)
- Group Action Evaluation Problem (GAEP)
- Powersmooth Quaternion Lifting Problem (PQLP)

1 st reduction

- the group action evaluation problem (GAEP)

$$
\begin{aligned}
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) & \curvearrowright\{\text { cyclic order } N \text { subgroups of } \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}\} \\
\binom{a b}{c d} & \star\langle(m, n)\rangle=\langle(a m+b n, c m+d n)\rangle \\
& \curvearrowright\left\{\text { cyclic subgroups of order } N \text { of } E_{0}[N]\right\} \\
& \curvearrowright\left\{\text { cyclic isogenies } \varphi: E_{0} \rightarrow \cdot \text { of degree } N\right\}
\end{aligned}
$$

1 st reduction

- the group action evaluation problem (GAEP)

$$
\begin{aligned}
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) & \curvearrowright\{\text { cyclic order } N \text { subgroups of } \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}\} \\
\binom{a b}{c d} & \star\langle(m, n)\rangle=\langle(a m+b n, c m+d n)\rangle \\
& \curvearrowright\left\{\text { cyclic subgroups of order } N \text { of } E_{0}[N]\right\} \\
& \curvearrowright\left\{\text { cyclic isogenies } \varphi: E_{0} \rightarrow \cdot \text { of degree } N\right\}
\end{aligned}
$$

Problem (GAEP)
Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and let
$\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given End $\left(E_{0}\right)$ and its corresponding quaternion order \mathcal{O}_{0}, a representation of φ and $g \in G L_{2}(\mathbb{Z} / N \mathbb{Z})$, find an isogeny representation of $g \star \varphi$.

1 st reduction

- the group action evaluation problem (GAEP)
$\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \curvearrowright\{$ cyclic order N subgroups of $\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}\}$

$$
\binom{a b}{c d} \star\langle(m, n)\rangle=\langle(a m+b n, c m+d n)\rangle
$$

$\curvearrowright\left\{\right.$ cyclic subgroups of order N of $\left.E_{0}[N]\right\}$
$\curvearrowright\left\{\right.$ cyclic isogenies $\varphi: E_{0} \rightarrow \cdot$ of degree $\left.N\right\}$
Problem (GAEP)
Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and let
$\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given End $\left(E_{0}\right)$ and its corresponding quaternion order \mathcal{O}_{0}, a representation of φ and $g \in G L_{2}(\mathbb{Z} / N \mathbb{Z})$, find an isogeny representation of $g \star \varphi$.

In the context of pSIDH key exchange:

1st reduction

- the group action evaluation problem (GAEP)
$\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \curvearrowright\{$ cyclic order N subgroups of $\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}\}$

$$
\binom{a b}{c d} \star\langle(m, n)\rangle=\langle(a m+b n, c m+d n)\rangle
$$

$\curvearrowright\left\{\right.$ cyclic subgroups of order N of $\left.E_{0}[N]\right\}$
$\curvearrowright\left\{\right.$ cyclic isogenies $\varphi: E_{0} \rightarrow \cdot$ of degree $\left.N\right\}$
Problem (GAEP)
Let E_{0}, E be supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ and let
$\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Given End $\left(E_{0}\right)$ and its corresponding quaternion order \mathcal{O}_{0}, a representation of φ and $g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, find an isogeny representation of $g \star \varphi$.

In the context of pSIDH key exchange:
Given the embedding of $\mathbb{Z}+N \operatorname{End}\left(E_{0}\right)$ into $\operatorname{End}(E)$, compute the embedding of $\mathbb{Z}+N \operatorname{End}\left(E_{0}\right)$ into the endomorphism ring of the codomain curve of $g \star \varphi$.

1st reduction

- introducing the Stabilizer Subgroup

Consider the action

$$
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \curvearrowright\left\{\text { cyclic isogenies } \varphi: E_{0} \rightarrow \cdot \text { of degree } N\right\} .
$$

1st reduction

- introducing the Stabilizer Subgroup

Consider the action

$$
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \curvearrowright\left\{\text { cyclic isogenies } \varphi: E_{0} \rightarrow \cdot \text { of degree } N\right\} .
$$

Define

$$
\operatorname{Stab}_{\varphi}=\left\{g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \mid g \star \varphi=\varphi\right\}
$$

1st reduction

— introducing the Stabilizer Subgroup

Consider the action

$$
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \curvearrowright\left\{\text { cyclic isogenies } \varphi: E_{0} \rightarrow \cdot \text { of degree } N\right\} .
$$

Define

$$
\operatorname{Stab}_{\varphi}=\left\{g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \mid g \star \varphi=\varphi\right\}
$$

Proposition
Let $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. The stabilizer subgroup Stab_{φ} is conjugate of the subgroup of upper triangular matrices (i.e., a Borel subgroup).

1st reduction

- another look at the Stabilizer Subgroup

Question: how is $\operatorname{Stab}_{\varphi}$ related to φ ?

1st reduction

- another look at the Stabilizer Subgroup

Question: how is $\operatorname{Stab}_{\varphi}$ related to φ ?

Upon fixing a basis of $E_{0}[N]$, we have an isomorphism

$$
\begin{aligned}
\left(\operatorname{End}\left(E_{0}\right) / N \operatorname{End}\left(E_{0}\right)\right)^{\times} & \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \\
\theta & \mapsto g_{\theta}
\end{aligned}
$$

1st reduction

- another look at the Stabilizer Subgroup

$$
\text { Question: how is } \mathrm{Stab}_{\varphi} \text { related to } \varphi \text { ? }
$$

Upon fixing a basis of $E_{0}[N]$, we have an isomorphism

$$
\begin{aligned}
\left(\operatorname{End}\left(E_{0}\right) / N \operatorname{End}\left(E_{0}\right)\right)^{\times} & \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \\
\theta & \mapsto g_{\theta}
\end{aligned}
$$

Proposition
Let $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Stab $_{\varphi}$ is made of the matrices g_{θ} such that θ is in the Eichler order $\mathbb{Z}+I_{\varphi}$ where I_{φ} is the ideal associated to φ under the Deuring correspondence.

1st reduction

- another look at the Stabilizer Subgroup

Question: how is $\operatorname{Stab}_{\varphi}$ related to φ ?

Upon fixing a basis of $E_{0}[N]$, we have an isomorphism

$$
\begin{aligned}
\left(\operatorname{End}\left(E_{0}\right) / N \operatorname{End}\left(E_{0}\right)\right)^{\times} & \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \\
\theta & \mapsto g_{\theta}
\end{aligned}
$$

Proposition
Let $\varphi: E_{0} \rightarrow E$ be an isogeny of degree N. Stab $_{\varphi}$ is made of the matrices g_{θ} such that θ is in the Eichler order $\mathbb{Z}+I_{\varphi}$ where I_{φ} is the ideal associated to φ under the Deuring correspondence.

Note that here we are abusing notations by viewing $\theta \in \mathcal{O}_{0}$ under the isomorphism $\mathcal{O}_{0} \cong \operatorname{End}\left(E_{0}\right)$.

1st reduction

- reducing IsEPR to GAEP

Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

1st reduction

- reducing IsEPR to GAEP

Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

1st reduction

- reducing IsEPR to GAEP

Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab $_{\varphi}$ in polynomial time.

1st reduction

— reducing IsEPR to GAEP
Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab in polynomial time.- Borel HSP in general linear group:

1st reduction

— reducing IsEPR to GAEP
Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab $_{\varphi}$ in polynomial time.-Borel HSP in general linear group:
$>\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ [Denney-Moore-Russell 2010]

1st reduction

— reducing IsEPR to GAEP
Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab in polynomial time.-Borel HSP in general linear group:
$>\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ [Denney-Moore-Russell 2010]
$>\mathrm{GL}_{n}\left(\mathbb{F}_{p^{k}}\right)$ [Ivanyos 2012]

1st reduction

— reducing IsEPR to GAEP
Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab in polynomial time. - Borel HSP in general linear group:
$>\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ [Denney-Moore-Russell 2010]
> $\mathrm{GL}_{n}\left(\mathbb{F}_{p^{k}}\right)$ [Ivanyos 2012]
$>$ we generalize the result to $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for any $N>1$

1st reduction

- reducing IsEPR to GAEP

Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab in polynomial time. - Borel HSP in general linear group:
$>\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ [Denney-Moore-Russell 2010]
> $\mathrm{GL}_{n}\left(\mathbb{F}_{p^{k}}\right)$ [Ivanyos 2012]
> we generalize the result to $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for any $N>1$
II: Recover I_{φ} from $\operatorname{Stab}_{\varphi}=\mathbb{Z}+I_{\varphi}$.

1st reduction

— reducing IsEPR to GAEP
Theorem
The IsERP reduces to the GAEP in quantumpolynomial time.

Proof Sketch

Knowing how to evaluate the action of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $\varphi: E_{0} \rightarrow E$ of degree N, the goal is to compute the endomorphism ring of E.

I: Use a quantum algorithm to compute Stab in polynomial time. - Borel HSP in general linear group:
$>\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ [Denney-Moore-Russell 2010]
> $\mathrm{GL}_{n}\left(\mathbb{F}_{p^{k}}\right)$ [Ivanyos 2012]
> we generalize the result to $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for any $N>1$
II: Recover I_{φ} from $\operatorname{Stab}_{\varphi}=\mathbb{Z}+I_{\varphi}$.
III: Compute the right order of I_{φ}.

1st reduction

— reducing GAEP to IsERP

Theorem
The GAEP reduces to the IsERP in classical polynomial-time.

Proof Sketch
Knowing $\operatorname{End}\left(E_{0}\right), \operatorname{End}(E), N, \varphi$ and $g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, we need to compute a representation of $g \star \varphi$.

1st reduction

— reducing GAEP to IsERP

Theorem
The GAEP reduces to the IsERP in classical polynomial-time.

Proof Sketch
Knowing $\operatorname{End}\left(E_{0}\right), \operatorname{End}(E), N, \varphi$ and $g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, we need to compute a representation of $g \star \varphi$.

I: Compute the ideal I_{φ} corresponding to φ.

1st reduction

— reducing GAEP to IsERP

Theorem
The GAEP reduces to the IsERP in classical polynomial-time.

Proof Sketch
Knowing $\operatorname{End}\left(E_{0}\right), \operatorname{End}(E), N, \varphi$ and $g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, we need to compute a representation of $g \star \varphi$.

I: Compute the ideal I_{φ} corresponding to φ.
II: Find $\theta \in \operatorname{End}(E)$ such that $g_{\theta}=g$.

1st reduction

— reducing GAEP to IsERP

Theorem
The GAEP reduces to the IsERP in classical polynomial-time.

Proof Sketch
Knowing $\operatorname{End}\left(E_{0}\right), \operatorname{End}(E), N, \varphi$ and $g \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, we need to compute a representation of $g \star \varphi$.

I: Compute the ideal I_{φ} corresponding to φ.
II: Find $\theta \in \operatorname{End}(E)$ such that $g_{\theta}=g$.
III: $I_{g \star \varphi}=\sigma\left(I_{\phi} \cap \mathcal{O} \sigma\right) \sigma^{-1}+N \mathcal{O}$ (where we take $\mathcal{O} \cong \operatorname{End}(E)$ and $\sigma \in \mathcal{O}$ corresponds to $\theta)$.

2nd reduction

- the powersmooth quaternion lifting problem (PQLP)

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

2nd reduction

- the powersmooth quaternion lifting problem (PQLP)

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Fix a curve E_{0} and let $\mathcal{O}_{0} \cong \operatorname{End}\left(E_{0}\right)$:

2nd reduction

- the powersmooth quaternion lifting problem (PQLP)

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Fix a curve E_{0} and let $\mathcal{O}_{0} \cong \operatorname{End}\left(E_{0}\right)$:

2nd reduction

- reducing GAEP to PQLP

Note that $\operatorname{ker}(g \star \varphi)=\theta(\operatorname{ker} \varphi)$.

2nd reduction

— reducing GAEP to PQLP
Note that $\operatorname{ker}(g \star \varphi)=\theta(\operatorname{ker} \varphi)$.
Consider the commutative diagram

$$
\begin{aligned}
& E_{0} \xrightarrow{\theta} E_{0} \\
& \downarrow_{\varphi}^{\varphi}{ }^{[\theta]^{*} \theta} \|^{[\theta]^{*} \varphi} \\
& E \xrightarrow{\left[\varphi E^{\prime}\right.}
\end{aligned}
$$

2nd reduction

— reducing GAEP to PQLP
Note that $\operatorname{ker}(g \star \varphi)=\theta(\operatorname{ker} \varphi)$.
Consider the commutative diagram

$$
\begin{aligned}
& E_{0} \xrightarrow{\theta} E_{0} \\
& \left.\downarrow_{\varphi}^{\varphi}\right|^{[\theta]^{*} \varphi} \\
& E \xrightarrow{[\varphi]^{*} \theta} E^{\prime}
\end{aligned}
$$

where $\operatorname{ker}\left([\theta]^{*} \varphi\right)=\theta(\operatorname{ker} \varphi)$ and $\operatorname{ker}\left([\varphi]^{*} \theta\right)=\varphi(\operatorname{ker} \theta)$.

2nd reduction

- reducing GAEP to PQLP

Note that $\operatorname{ker}(g \star \varphi)=\theta(\operatorname{ker} \varphi)$.
Consider the commutative diagram

where $\operatorname{ker}\left([\theta]^{*} \varphi\right)=\theta(\operatorname{ker} \varphi)$ and $\operatorname{ker}\left([\varphi]^{*} \theta\right)=\varphi(\operatorname{ker} \theta)$.
To compute the curve E^{\prime} and evaluate $g \star \varphi$, it suffices to know the isogeny $[\varphi]^{*} \theta$. And this is possible when $\operatorname{deg}(\theta)$ is powersmooth.

2nd reduction

- reducing GAEP to PQLP

Note that $\operatorname{ker}(g \star \varphi)=\theta(\operatorname{ker} \varphi)$.
Consider the commutative diagram

$$
\begin{aligned}
& E_{0} \xrightarrow{\theta} E_{0} \\
& \downarrow_{\varphi}^{\varphi} \quad \downarrow^{[\theta]^{*} \varphi} \\
& E \xrightarrow{[\varphi]^{*} \theta} \longrightarrow E^{\prime}
\end{aligned}
$$

where $\operatorname{ker}\left([\theta]^{*} \varphi\right)=\theta(\operatorname{ker} \varphi)$ and $\operatorname{ker}\left([\varphi]^{*} \theta\right)=\varphi(\operatorname{ker} \theta)$.
To compute the curve E^{\prime} and evaluate $g \star \varphi$, it suffices to know the isogeny $[\varphi]^{*} \theta$. And this is possible when $\operatorname{deg}(\theta)$ is powersmooth.

Theorem
The GAEP reduces to the PQLP in classical polynomial time.

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.
> When $p \equiv 3 \bmod 4$, we take $\mathcal{O}=\mathbb{Z}\left\langle i, \frac{j+1}{2}\right\rangle$ where $i^{2}=-1, j^{2}=-p$ as an example. Let $R=\mathbb{Z}[i]$, WLOG, we can work with the suborder $R+R j \subseteq \mathcal{O}$.

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.
> When $p \equiv 3 \bmod 4$, we take $\mathcal{O}=\mathbb{Z}\left\langle i, \frac{j+1}{2}\right\rangle$ where $i^{2}=-1, j^{2}=-p$ as an example. Let $R=\mathbb{Z}[i]$, WLOG, we can work with the suborder $R+R j \subseteq \mathcal{O}$.
> Elements in $R j$ have powersmooth lifts as desired by a result in [Kohel-Lauter-Petit-Tignol 2014].

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.
> When $p \equiv 3 \bmod 4$, we take $\mathcal{O}=\mathbb{Z}\left\langle i, \frac{j+1}{2}\right\rangle$ where $i^{2}=-1, j^{2}=-p$ as an example. Let $R=\mathbb{Z}[i]$, WLOG, we can work with the suborder $R+R j \subseteq \mathcal{O}$.
$>$ Elements in $R j$ have powersmooth lifts as desired by a result in [Kohel-Lauter-Petit-Tignol 2014].
$>$ How to lift a general element $\sigma_{0} \in R+R j$?

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.
> When $p \equiv 3 \bmod 4$, we take $\mathcal{O}=\mathbb{Z}\left\langle i, \frac{j+1}{2}\right\rangle$ where $i^{2}=-1, j^{2}=-p$ as an example. Let $R=\mathbb{Z}[i]$, WLOG, we can work with the suborder $R+R j \subseteq \mathcal{O}$.
> Elements in $R j$ have powersmooth lifts as desired by a result in [Kohel-Lauter-Petit-Tignol 2014].
$>$ How to lift a general element $\sigma_{0} \in R+R j$?
$>$ Find $\gamma \in R+R j$ such that $n(\gamma)$ is powersmooth.

Resolution of the PQLP

Problem (PQLP)

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p, \infty}$. Given an integer N and an element $\sigma_{0} \in \mathcal{O}$ such that $\left(n\left(\sigma_{0}\right), N\right)=1$, find $\sigma=\lambda \sigma_{0} \bmod N \mathcal{O}$ of powersmooth norm with some λ coprime to N.

Observation: it suffices to solve this problem for one maximal order \mathcal{O} for each given prime p.
> When $p \equiv 3 \bmod 4$, we take $\mathcal{O}=\mathbb{Z}\left\langle i, \frac{j+1}{2}\right\rangle$ where $i^{2}=-1, j^{2}=-p$ as an example. Let $R=\mathbb{Z}[i]$, WLOG, we can work with the suborder $R+R j \subseteq \mathcal{O}$.
$>$ Elements in $R j$ have powersmooth lifts as desired by a result in [Kohel-Lauter-Petit-Tignol 2014].
$>$ How to lift a general element $\sigma_{0} \in R+R j$?
$>$ Find $\gamma \in R+R j$ such that $n(\gamma)$ is powersmooth.
$>$ Find $\alpha_{1}, \alpha_{2}, \alpha_{3} \in R j$ such that $\sigma_{0}=\alpha_{1} \gamma \alpha_{2} \gamma \alpha_{3} \bmod N \mathcal{O}$.

Conclusion:

1. We resolve the PQLP and thus quantumly resolve the IsERP through the reductions established earlier.

Conclusion:

1. We resolve the PQLP and thus quantumly resolve the IsERP through the reductions established earlier.
2. We need that N to be an odd integer with at most $O(\log \log p)$ many factors.

Conclusion:

1. We resolve the PQLP and thus quantumly resolve the IsERP through the reductions established earlier.
2. We need that N to be an odd integer with at most $O(\log \log p)$ many factors.
3. As an application, we break pSIDH key exchange quantumly.

Conclusion:

1. We resolve the PQLP and thus quantumly resolve the IsERP through the reductions established earlier.
2. We need that N to be an odd integer with at most $O(\log \log p)$ many factors.
3. As an application, we break pSIDH key exchange quantumly.

Thank you!

