
NEV: Faster and Smaller NTRU Encryption
using Vector Decoding

Jiang Zhang, Dengguo Feng, Di Yan

State Key Laboratory of Cryptology

Asiacrypt 2023

Content

Background

Technical Overview
Original NTRU
Our NEV
Optimized NEV’

Performance

Content

Background

Technical Overview
Original NTRU
Our NEV
Optimized NEV’

Performance

NTRU

I NTRU, the first practical lattice-based encryption scheme [HPS98]

I One of the four PKEs/KEMs in NIST PQC Round 3 Finalist, but
was not selected for standardization in the end [NIST-Round3].

NTRU

I One main reason is that it is neither the fastest nor the smallest
among the lattice KEM finalists [NIST-Status Report].

I Compared to Kyber, NTRU has 8.3∼18.6% larger public key and
ciphertext sizes and is 8.21∼45.34× slower in key generation.

Recent Works: NTTRU

I Lyubashevsky and Seiler proposed NTTRU [LS19] over the specific
cyclotomic ring Z7681[x]/(x768 − x384 + 1) that supports NTT, and
obtained significant speedup.

Zq[x]/(x768 − x384 + 1)

Zq[x]/(x384 − ζ1)

...
...

Zq[x]/(x384 − ζ2)

...
...

Recent Works: NTRU-A

I Duman et al. [DHK+21] extend the idea to other NTT-friendly rings
of the same form Zq[x]/(xn − xn/2 + 1).

I Apply error-reducing transform to obtain 3 efficient NTRU designs
NTRU-A/B/C with flexible parameter choices.

Recent Works: BAT

Despite of the efficiency improvement, the sizes of NTTRU and NTRU-A
are still larger than that of Kyber at the same security levels.

I Fouque et al. [FKPY22] proposed BAT, with a GGH-like encryption
and decryption over the power of 2 cyclotomic ring Zq[x]/(xn + 1).

I BAT has the smallest size among all known lattice-based KEMs.

I It also enjoys fast encap/decap as Kyber and NTRU, but still suffers
from a relatively slow key generation than Kyber and NTRU.

Recent Works: BAT

Despite of the efficiency improvement, the sizes of NTTRU and NTRU-A
are still larger than that of Kyber at the same security levels.

I Fouque et al. [FKPY22] proposed BAT, with a GGH-like encryption
and decryption over the power of 2 cyclotomic ring Zq[x]/(xn + 1).

I BAT has the smallest size among all known lattice-based KEMs.

I It also enjoys fast encap/decap as Kyber and NTRU, but still suffers
from a relatively slow key generation than Kyber and NTRU.

Our Scheme: NEV-PKE

NEV: a faster and smaller NTRU Encryption using Vector decoding over
the power of 2 cyclotomic ring Rq = Zq[X]/(Xn + 1).1

I Encode each plaintext bit into the most significant bits of multiple
coefficients of the message polynomial;

I Use a vector of noised coefficients to decode each plaintext bit;

I Use (partial) NTT multiplications/inversions in Rq and precompute
the inversion table to accelerate the scheme.

Reduce the size of q while keeping a reasonably negligible decryption
failure and achieve faster implementation.

1One possible limitation: we cannot find a proper parameter for NIST L3 security.

Our Scheme: NEV-KEM

By applying the FO transformation, we obtain IND-CCA secure KEM.

For small modulus q = 769,

I NEV-512: |pk| = |ct| = 615 bytes, decryption failure ≤ 2−138

I NEV-1024: |pk| = |ct| = 1229 bytes, decryption failure ≤ 2−152

I 33 ∼ 48% (resp. 21%) more compact than NTRU (resp. Kyber)

In the round-trip time of ephemeral key exchange,

I NEV is 5.03 ∼ 29.94× faster than NTRU

I NEV is 1.42 ∼ 1.74× faster than Kyber

Optimized NEV’

NEV’: better noise tolerance, smaller decryption failure and slightly
better efficiency than NEV

I Based on a variant of RLWE problem, called Subset-Sum Parity
RLWE (sspRLWE) problem;

I We show sspRLWE is polynomially equivalent to decisional RLWE
for different parameters.

NEV’ achieves decryption failure ≤ 2−200 at NIST L1 and L5 security.

Content

Background

Technical Overview
Original NTRU
Our NEV
Optimized NEV’

Performance

Hardness Assumptions for NTRU Encryption

Definition (Decisional NTRU Assumption)

The quotient h = g/f of two randomly chosen small polynomials g, f is
pseudorandom.

Definition (RLWE Assumption)

It is hard to recover e from (h, hr + e) when h is uniformly random, and
r, e are randomly chosen small polynomials.

Original NTRU Encryption

Original NTRU Encryption
I KeyGen: for small integer p and small polynomials f, g, output

public key h = pg/f ∈ Rq and keep secret key (f, g);

I Enc: compute c = hr +m;

I Dec: compute u = fc = pgr + fm ∈ Rq and then m = f−1u ∈ Rp.

Alternative Form
I To simplify the decryption, f is usually set to have the form of
f = pf ′ + 1 s.t. f−1 mod p = 1;

I Then for decryption, we have u = pgr + pf ′m+m ∈ Rq.

Disadvantages

u = fc = pgr + pf ′m︸ ︷︷ ︸
noise ‖ẽ‖∞≤ q−1

2

+m = ẽ+m

Two main reasons why NTRU has larger public keys and ciphertexts sizes
than its RLWE-based counterparts,

1. The decryption noise with p = 3 in NTRU is 1.5× larger than that
of its RLWE counterparts where p = 2 is typically used;

2. With a purposefully chosen “bad” message m, the noise term pf ′m
may be utilized in a decryption failure attack2 ; The näıve way to
keep decryption error small is to increase q, which increases the sizes
and weakens the security;

2This is why NTRU submitted to NIST sets its paras. to have no decryption failure.

Main idea

Using the plaintext encoding and vector decoding mechanism to increase
the noise tolerance of NTRU and decrease the decryption failure.

I Our construction crucially relies on the power of 2 cyclotomic ring
Rq = Zq[X]/(Xn + 1).

I The small polynomial v = (1− xn/k) has a nice inverse polynomial
v−1 = q+1

2 (1 + xn/k + · · ·+ x(k−1)n/k) ∈ Rq s.t.,

v · v−1 = (1− xn/k) · q + 1

2
· (1 + xn/k + · · ·+ x(k−1)n/k)

= 1 mod q

I We replace small integer p in NTRU with small polynomial v, and
using v−1 as our plaintext encoding polynomial, i.e., v−1m copies k
times the first n/k coefficients of m to obtain n coefficients.

Comparision

NTRU NEV

I Public-key:
h = g/f = g/(pf ′ + 1)

I Encryption: c = phr +m

I Decryption:
fc = pgr + pf ′m+m

I Public-key:
h = g/f = g/(vf ′ + 1)

I Encryption: c = hr + e+ v−1m

I Decryption: fc =
gr + vf ′e+ f ′m+ e+ v−1m

I NTRU encode the plaintext into the least significant bits of the
coefficients of a message polynomial;

I NEV encode each plaintext bit into the most significant bits of
multiple coefficients of the message polynomial;

I In decryption, a vector of noised coefficients can be used to decode
each plaintext bit.

Noise Analysis

u = fc = gr + vf ′e+ f ′m+ e︸ ︷︷ ︸
noise ẽ s.t. ‖ẽ‖∞≤ q−1

4

+v−1m = ẽ+ v−1m

The major reason that we can obtain a reasonably negligible decryption
failure with very small modulus q is because,

1. The contribution of gr is much less than that of vf ′e;

2. The size of f ′m is far smaller than that of gr because m only has
non-zero binary coefficients at the first l ≤ n/k bits;

3. The magnitude of the major noise term vf ′e is at least
√

2 times
smaller than that of using p = 2, 3 or x+ 2;

4. The use of vector decoding will lower the decryption failure by
roughly k times in the exponent.

Using v instead of p

We clarify that this slight modification will not require a stronger NTRU
assumption because for publicly known fixed ring element v,

I The use of a polynomial v = x+ 2 was recommended by the authors
of NTRU as early as 2000 [HS00] and was investigated for years;

I The proof for the public key uniformity mainly depends on the
properties of the distributions of g and f ′;

I The currently concrete security estimation also only cares about the
distributions of g and f ′.

Optimized NEV’-PKE

I When using PKE as KEM, the session key is randomly chosen and
not necessarily known in advance;

I We can merge the sampling of encryption noise and random session
key in a single step.

NEV’-PKE
I KeyGen: for random small polynomials f ′, g s.t f = f ′ + v−1 ∈ R∗q ,

output public key h = g/f ∈ Rq and keep secret key (f, g);

I Enc: for random small polynomials r, e, output c = hr + e;

I Dec: compute u = fc = gr + f ′e+ v−1e ∈ Rq and perform vector
decoding m′ = Poly2Pt(u).

Optimized NEV’-PKE

In decryption algorithm where u = fc = gr + f ′e+ v−1e,

I Let v̄ = 1 + xn/k + · · ·+ x(k−1)n/k, let e0 = v̄e mod 2 and we have
2e1 = v̄e− e0;

I Since v−1 = q+1
2 v̄, then v−1e = e1 + q+1

2 e0 ∈ Rq and we have

u = fc = gr + f ′e+ v−1e

= gr + f ′e+ e1 +
q + 1

2
e0︸︷︷︸

v̄e mod 2

∈ Rq

I Let m be a polynomial only having n/k non-zero coefficients that
are equal to the first n/k coefficients of e0;

I Easy to check that e0 is essentially a polynomial which copies k
times the first n/k coefficients of m to obtain n coefficients;

I And we can use vector decoding again to recover m from u.

Binomial Noise Distribution

I To obtain an IND-CCA KEM, we have to convert NEV’ into a PKE
where m (or equivalently v̄e mod 2) is determined before e.

I Since v̄e essentially adds k coefficients of e to a single coefficient, we
can easily achieve this goal by using binomial noise distribution Bη.

Bη =

{
η−1∑
i=0

(ai − bi) : (a0, . . . , aη−1, b0, . . . , bη−1)← {0, 1}2η
}

Example

For η = 1 and k = 2, we can “invert” a random bit b∗ to 2 samples from B1:

I Randomly choose b1, b2, b3 ← {0, 1};
I Set b0 = b∗ ⊕ b1 ⊕ b2 ⊕ b3;

I Output e0 = b0 − b1, e1 = b2 − b3.

Easy to check that e0 ± e1 mod 2 = b∗, and e0, e1 ∼ B1 if b∗ is random.

Comparision

NTRU NEV’

I Public-key: h = pg/(pf ′ + 1)

I Encryption: c = hr +m

I Decryption:
fc = pgr + pf ′m+m

I Public-key: h = vg/(vf ′ + 1)

I Encryption: c = hr + e

I Decryption:
fc = gr + f ′e+ v−1e

NEV NEV’

I Public-key: h = g/(vf ′ + 1)

I Encryption: c = hr+ e+ v−1m

I Decryption: fc =
gr + vf ′e+ f ′m+ e+ v−1m

I Public-key: h = g/(f ′ + v−1)

I Encryption: c = hr + e

I Decryption: fc =
gr + f ′e+ e1 + q+1

2
(v̄e mod 2)

sspRLWE Assumption

In order to prove the security of NEV’, we introduce a variant of RLWE
problem, called Subset-Sum Parity RLWE problem (sspRLWE).

Definition (sspRLWE Assumption)

It is hard to compute ve mod 2 for some fixed ring element v ∈ R2 given
an RLWE tuple (h, hr + e) as input.

The name comes from the fact that, the ith coefficient of ve mod 2 is
essentially equal to the parity of the subset sum

∑
vj=1 e(i−j) mod n of

the coefficient vector e = (e0, · · · , en−1).

Hardness of sspRLWE

Theorem
If there is a PPT algorithm A solving the sspRLWE problem with
probability negligibly close to 1, then there is another PPT algorithm A′
solving the DRLWE problem.

I For a DRLWE instance (h, b = hr + e1), A′ can convert it to an
sspRLWE instance (h′ = 2h, b′ = 2b+ e0) with some noise e0;

I Since v(2e1 + e0) = ve0 mod 2, then by running algorithm A with
input (h′, b′), A′ can obtain some w ∈ R2 from A.

I After checking w
?
= ve0 mod 2, A′ returns 1 if w = ve0 mod 2, and

otherwise returns 0.

Hardness of sspRLWE

C′ A′/C A
(h, b)

(h,b)−−−−−→

h′ = 2h, b′ = 2b+ e0
(h′,b′)−−−−−−−→
w←−−−−−−−

0/1←−−−−− w
?
= ve0 mod 2

I If (h, b) is a real DRLWE tuple, any PPT sspRLWE solver A will
return w = ve0 mod 2 with high probability;

I If (h, b) is randomly chosen, (h′, b′) is also randomly distributed and
the adversary A can obtain no information.

Content

Background

Technical Overview
Original NTRU
Our NEV
Optimized NEV’

Performance

Practical Parameter Set

We present two parameter sets for NEV and NEV’ aiming at NIST levels
1 and 5 security, respectively.

Parameters (n, q)
Key Dist.
(χf , χg)

Enc Dist.
(χr, χe)

Size in Byte
(|pk|, |ct|) Dec Failure

NEV-512 (512,769) (B1, B1) (B1, τ1/6) (615,615) 2−138

NEV’-512 (512,769) (B1, B1) (B1, B1) (615,615) 2−200

NEV-1024 (1024,769) (B1, B1) (B1, τ1/6) (1229,1229) 2−152

NEV’-1024 (1024,769) (B1, B1) (B1, B1) (1229,1229) 2−200

Comparison with NTRU and Kyber

Comparison between our NEV, NTRU and Kyber in sizes and efficiency.

Schemes
Size in Byte
(|pk|, |ct|)

Total in Byte
|pk|+ |ct|

Improv.
Ratio

Speedup
Ref/AVX2

NIST
Security

Kyber-512 (800,768) 1568 21.56%↓ 1.67/1.42↑

Level 1

NTRU-HPS2048677 (930,930) 1860 33.87%↓ 18.46/5.74↑
NTRU-HRSS701 (1138,1138) 2276 45.96%↓ 19.92/5.03↑
NEV-512 (615,615) 1230 - -

NEV’-512 (615,615) 1230 - -

Kyber-768 (1184,1088) 2272 −8.19%† 1.21/1.19†
Level 3

NTRU-HPS4096821 (1230,1230) 2460 0.08%† 11.05/4.10†

Kyber-1024 (1568,1568) 3136 21.62%↓ 1.74/1.62↑

Level 5

NTRU-HPS40961229 (1842,1842) 3684 33.28%↓ 24.76/- ↑
NTRU-HRSS1373 (2401,2401) 4802 48.81%↓ 29.94/- ↑
NEV-1024 (1229,1229) 2458 - -

NEV’-1024 (1229,1229) 2458 - -

†Note that we obtain figures for Kyber-768 and NTRUHPS-4096821 at Level 3
security by dividing that of our NEV-1024 at Level 5 security.

Comparison with State-of-the-Art

Comparison with recent NTRU variants in sizes and efficiency.

Schemes
Size in Byte
(|pk|, |ct|)

Total in Byte
|pk|+ |ct|

Improv.
Ratio

Speedup
Ref/AVX2

LWE
Estimator

NIST
Security

NTRU-A576
2593 (864,864) 1728 28.82%↓ 154

Level 1

BAT-512 (521,473) 994 19.19%↑ 140/973↑ 144

NTTRU-768 (1248,1248) 2496† 170

NEV-512 (615,615) 1230 141

NEV’-512 (615,615) 1230 145

NTRU-A1152
3457 (1728,1728) 3456 28.88%↓ 305

Level 5
BAT-1024 (1230,1006) 2236 9.03%↑ 334/2648↑ 273

NEV-1024 (1229,1229) 2458 281

NEV’-1024 (1229,1229) 2458 292

†Note that our NEV-1024 at NIST L5 Security is slightly more compact than
NTTRU-768 at NIST L1 Security with comparable computational efficiency.

Conclusion

We present NEV, a faster and smaller NTRU Encryption using Vector
Decoding

I 33% ∼ 48% more compact and 5.03 ∼ 29.94× faster than NTRU

I 21% more compact and 1.42 ∼ 1.74× faster than Kyber

Thank You!

Full version: https://eprint.iacr.org/2023/1298

References

Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman

NTRU: A ring-based public key cryptosystem.

Algorithmic Number Theory. pp. 267C288. Springer, Berlin, Heidelberg (1998).

NIST Selected Algorithms 2022

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-
2022.

NIST.IR.8413 2022

Status Report on the Third Round of the NIST Post-Quantum Cryptography
Standardization Process (2022).

Vadim Lyubashevsky, Gregor Seiler

NTTRU: Truly fast NTRU using NTT.

Cryptology ePrint Archive, https://eprint.iacr.org/2019/040 (2019).

Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor
Seiler, Dominique Unruh

A thorough treatment of highly-efficient NTRU instantiations.

Cryptology ePrint Archive, https://eprint.iacr.org/2021/1352 (2021).

References (cont.)

Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, Yang Yu

BAT: Small and fast kem over NTRU lattices.

IACR Transactions on CHES 2022(2), 240-265.

Jeffrey Hoffstein, Joseph H. Silverman

Optimizations for NTRU.

Public-Key Cryptography and Computational Number Theory, 2000: 77-88.

	Background
	Technical Overview
	Original NTRU
	Our NEV
	Optimized NEV'

	Performance

