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In general, pseudorandom circuits such as PRGs, PRFs, etc have this 
requirement for simulation based MPC [Hubacek-Wichs’14]*.
*We give a slightly better lower bound for garbling schemes.
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Let’s look at an example application of DSIM, where we want to 
garble a length expanding cryptographic (encryption) circuit.
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*Randomness made implicit to avoid clutter
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2-Party DSE: Security

Key share k1Key share k2

OT
K

x = m||k2

Main idea: The Evaluator knows only as much as it 
would have when interacting with an ENC oracle!

Our new DSIM notion:



  

Summary of Results (Check out our paper! )😎

1. DSIM Definition
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3. Bootstrapping: We show that DSIM[NC0] → DSIM[P/Poly]!
 Idea: We can represent a circuit as a randomized encoding (REs), which itself is of constant 
depth. 

4. We observe that the online complexity of the Jafargholi-Scafuro-Wichs [JSW’17] construction 
for IND can be improved: O(|x|) instead of O(|x|+ d).

5.  Tighter online complexity lower bounds for SIM but for garbling schemes (improvement of the 
Hubacek-Wichs [HW’14] bound for MPC) via pseudo-entropy. 
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Open Questions

- Can we construct DSIM (from reasonable, standard assumptions)? 
   In particular can we construct DSIM[NC0]?

- Would DSIM have applications beyond MPC?
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