
Zero-Knowledge Functional

Elementary Databases

Xinxuan Zhang Yi Deng

December 5, 2023

State Key Laboratory of Information Security, Institute of Information Engineering, CAS

School of Cyber Security, University of Chinese Academy of Sciences

Backgroud

Zero-Knowledge Elementary Databases

Consider the following scenario:

Let D = {(x , v)} be an elementary database ((x , v) ∈ D, (x , v ′) ∈ D ⇒
v = v ′).

• The database owner cannot answer the queries inconsistently.

• The client cannot learn extra knowledge.

1

Zero-Knowledge Elementary Databases

Zero-Knowledge Elementary Databases (ZK-EDB):

A ZK-EDB consists of four algorithms (Setup, Com, Prove, Verify):

• Soundness: The database owner/committer cannot answer the same

queries inconsistently.

• Zero-knowledge: The commitment and proof will not reveal any

extra knowledge, including the size of D. The size of D is not

contained in the input of simulator.

2

Zero-Knowledge Elementary Databases

Zero-Knowledge Elementary Databases (ZK-EDB):

Application: End-to-end encrypted communication (E2EE) systems

Provide an auditable and queryable directory of their users’ public keys

(Key Transparent system).

3

The Quries of ZK-EDB

Most constructions:

• Follow the paradigm of Chase et al.

• Only support membership queries.

Libert et al.’s zero-knowledge expressive elementary databases:

• Modify Chase et al.’s paradigm.

• Support range queries over keys and/or values.

Question:
Can we construct ZK-EDB supporting richer queries?

4

Difficulties

A naive attempt:

However, this attempt would fail due to the potential revelation of the

database size.

• Almost all zk-SNARKs expose the length of the witness.

• For generalize functional query, the witness must include all records

in database to ensure the correctness of query.

5

Difficulties

A naive attempt:

However, this attempt would fail due to the potential revelation of the

database size.

• Almost all zk-SNARKs expose the length of the witness.

• For generalize functional query, the witness must include all records

in database to ensure the correctness of query.

5

Our Contributions

Our Contributions

Zero-Knowledge Functional Elementary Databases (ZK-FEDB)

• Allow the most generalize functional queries: For any Boolean

circuit f , clients can query that: “Send me all records (x , v) ∈ D

satisfying f (x , v) = 1.”

• Function Binding (Soundness) and Zero-Knowledge.

6

Our Contributions

Zero-Knowledge Functional Elementary Databases (ZK-FEDB)

Construction based on unknown-order group.

• Proof size: O(|(x , v)|+ |f |) (independent of |D|)
• Secure in the random oracle model and generic group model.

7

Technique Contributions

Our technical constribution is two-fold.

• A new variant of zero-knowledge sets (ZKS): Support combined

operations queries on committed sets.

• A new transformation technique: Transform the query of Boolean

circuit into a query of combined operations on related sets.

Note.

ZKS: the “set” version of ZK-EDB, committing sets rather than

databases.

Combined operation: a “circuit” with gates “intersection”, “union” and

“set-difference”.

8

Zero-Knowledge Sets with

Set-Operation Queries

Start from RSA Accumulators

RSA Accumulator

• g: The ganerator of an unknown-order group.

• Commitment of set S = {xi}i∈[m]:

C = gΠi∈[m]pi

where pi = Hprime(xi) is a prime.

• Membership proof of xj ∈ S : gj satisfying g
pj
j = C.

• Non-membership proof of x /∈ S : (a, b) satisfying CagbHprime(x) = g.

A pair of membership proof and non-membership proof of same element

can be used to break strong RSA assumption.

9

Basic Set Operations

Basic Set Relation:

“Intersection, Union,

Set-Defference”

⇓

Simpler set relations:

• Disjoint relation

{(J0, J1)|J0 ∩ J1 = ∅}
• Union among disjoint relation{

(U, J0, J1)

∣∣∣∣∣U = J0 ∪ J1 ∧
J0 ∩ J1 = ∅

}
.

Basic Set Relation on

Commitments:

“Intersection, Union,

Set-Defference”

⇓

Group Element Relations:

• Co-prime relation(C1,C2)

∣∣∣∣∣∣∣∣
∃a, b ∈ Z s.t.

gcd(a, b) = 1∧
(C1,C2) = (ga, gb)

 .

• DDH tuples relation

10

Zero-Knowledge Sets

RSA accumulators can be convert into ZKS by adding randomness r to

provide privacy.

gΠi∈[m]pi ⇒ gr ·Πi∈[m]pi .

Question:

11

Zero-Knowledge Sets

RSA accumulators can be convert into ZKS by adding randomness r to

provide privacy.

gΠi∈[m]pi ⇒ gr ·Πi∈[m]pi .

Question:

11

Zero-Knowledge Sets

Key observation:

In ZKS commitment, randomness is sampled from small and bounded

range of [0,B].

• Let A,B be disjoint sets, gr ·Hprime(A), gr
′·Hprime(B) are their ZKS

commitments.

gcd(r · Hprime(A), r
′ · Hprime(B)) = gcd(r , r ′) is small

• Let A,B be disjoint sets, U = A ∪ B, gr ·Hprime(A), gr
′·Hprime(B),

gr
′′·Hprime(U) are their ZKS commitments.

(gr ·Hprime(A), gr
′·Hprime(B), gr

′′·Hprime(U)) is close to a DDH-tuple

We call above two relations as pseudo-coprime relation and pseudo-DDH

relation.

12

Zero-Knowledge Protocol

Tools:

1. Schnorr’s Σ-protocol for bounded discrete-log:

RboundedDL = {(u,w,T ; x)|ux = w ∧ |x | ≤ T}

2. (A new variant of) Boneh et al.’s ZK-argument for multidimensional

discrete-log.

RmultiDL = {({ui}i∈[n],w; {xi}i∈[n])|Πi∈[n]u
xi
i = w}

Note: Both of above protocols only achieve a weak soundness due to

that “Computing g
1
a in an unknown-order group is hard”. Luckily, it is

sufficient for our construction.

13

Zero-Knowledge Protocol for Pseudo-Coprime Relation

• Only achieve a weak soundness. (The GCD of exponents might be

larger than T , however, it is still bounded by a proper upper bound.)

• One can use the Fiat-Shamir heuristic to obtain the non-interactive

version. 14

Zero-Knowledge Protocol for Pseudo-DDH Relation

• Only achieve a weak soundness. (That is, the statement might not

close to DDH-tuple as we required, however, it is still close enough.)

• One can use the Fiat-Shamir heuristic to obtain the non-interactive

version.

15

Zero-Knowledge Sets

16

From Boolean Circuit Queries to

Set-Operation

From Boolean Circuit Queries to Set-Operation

Our goal:

Query of Boolean circuit f over a set S

(requesting Soutput := {x |x ∈ S ∧ f (x) = 1})

⇓

Query of combined operations Q on related sets

Sb
i := {x |x ∈ S ∧ the i-th bit of “x” is b}

(requesting Soutput := Q({Sb
i }))

17

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

Example:

18

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on a set S , according the value of wire, each wire i

can be associated with two subsets {Sb
i }b∈{0,1}. That is,

Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

19

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .

20

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .

20

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .

20

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .

20

From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .
20

From Boolean Circuit Queries to Set-Operation

Example: f (x) = x̄1 ∧ x̄2 ∨ (¬x̄3) where x = x̄1∥x̄2∥x̄3 ∈ {0, 1}3

21

Zero-Knowledge Functional

Elementary Databases

Zero-Knowledge Functional Elementary Databases

Setup(1λ): Genrate using public parameters.

Commit(D): Let Sb
i := {x |(x , v) ∈ D ∧ the i-th bit of “x∥v” is b}

1. Use ZKS scheme to commit all Sb
i .

2. Use ZK-EDB scheme to commit D.

Prove(com, τ, f ,Doutput): Transform f into combined operation Q,

1. Prove that for each (x , v) ∈ Doutput and each i , x ∈ S x̄i
i and

x /∈ S1−x̄i
i .

Showing the correctness of S i
b.

2. Prove that {x |(x , v) ∈ Doutput} = Q(S0
1 ,S

1
1 , · · ·).

Showing the correctness of function.

3. Prove that for each (x , v) ∈ Doutput , (x , v) ∈ D through ZK-EDB.

Showing the validness of associated value v .

Verify(com, f ,Doutput , π): Check the correctness of proofs.

22

Performance

Performance of our ZK-FEDB1:

Prover’s work Verifier’s work Communication

Commit O(ℓ|D|)EXT + O(|D|)h N/A O(ℓ)G

Query
O(ℓ|D|+ |D||f |)EXT
+O(|D|+ ℓ+ |f |)h

O(ℓ+ |f |)EXT
+O(|Doutput |+ ℓ+ |f |)h

O(ℓ+ |f |)G

where ℓ is the bit length of record, |D| and |Doutput | denote the size of

committed database and output database respectly, |f | is the size of

query function, G represents a group element, h denotes hashing to a

prime and EXT is a λ-bit exponentiation.

1Utilizing our ZKS scheme and ZK-EDB scheme (constructed in the full version of

our paper), and applying the standard batching technique.

23

Thank you for your attention

	Backgroud
	Our Contributions
	Zero-Knowledge Sets with Set-Operation Queries
	From Boolean Circuit Queries to Set-Operation
	Zero-Knowledge Functional Elementary Databases
	Thank you for your attention

