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Zero-Knowledge Elementary Databases

Consider the following scenario:

Let D = {(x , v)} be an elementary database ((x , v) ∈ D, (x , v ′) ∈ D ⇒
v = v ′).

• The database owner cannot answer the queries inconsistently.

• The client cannot learn extra knowledge.
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Zero-Knowledge Elementary Databases

Zero-Knowledge Elementary Databases (ZK-EDB):

A ZK-EDB consists of four algorithms (Setup, Com, Prove, Verify):

• Soundness: The database owner/committer cannot answer the same

queries inconsistently.

• Zero-knowledge: The commitment and proof will not reveal any

extra knowledge, including the size of D. The size of D is not

contained in the input of simulator.
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Zero-Knowledge Elementary Databases

Zero-Knowledge Elementary Databases (ZK-EDB):

Application: End-to-end encrypted communication (E2EE) systems

Provide an auditable and queryable directory of their users’ public keys

(Key Transparent system).

3



The Quries of ZK-EDB

Most constructions:

• Follow the paradigm of Chase et al.

• Only support membership queries.

Libert et al.’s zero-knowledge expressive elementary databases:

• Modify Chase et al.’s paradigm.

• Support range queries over keys and/or values.

Question:
Can we construct ZK-EDB supporting richer queries?
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Difficulties

A naive attempt:

However, this attempt would fail due to the potential revelation of the

database size.

• Almost all zk-SNARKs expose the length of the witness.

• For generalize functional query, the witness must include all records

in database to ensure the correctness of query.
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Our Contributions

Zero-Knowledge Functional Elementary Databases (ZK-FEDB)

• Allow the most generalize functional queries: For any Boolean

circuit f , clients can query that: “Send me all records (x , v) ∈ D

satisfying f (x , v) = 1.”

• Function Binding (Soundness) and Zero-Knowledge.
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Our Contributions

Zero-Knowledge Functional Elementary Databases (ZK-FEDB)

Construction based on unknown-order group.

• Proof size: O(|(x , v)|+ |f |) (independent of |D|)
• Secure in the random oracle model and generic group model.
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Technique Contributions

Our technical constribution is two-fold.

• A new variant of zero-knowledge sets (ZKS): Support combined

operations queries on committed sets.

• A new transformation technique: Transform the query of Boolean

circuit into a query of combined operations on related sets.

Note.

ZKS: the “set” version of ZK-EDB, committing sets rather than

databases.

Combined operation: a “circuit” with gates “intersection”, “union” and

“set-difference”.
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Zero-Knowledge Sets with

Set-Operation Queries



Start from RSA Accumulators

RSA Accumulator

• g: The ganerator of an unknown-order group.

• Commitment of set S = {xi}i∈[m]:

C = gΠi∈[m]pi

where pi = Hprime(xi ) is a prime.

• Membership proof of xj ∈ S : gj satisfying g
pj
j = C.

• Non-membership proof of x /∈ S : (a, b) satisfying CagbHprime(x) = g.

A pair of membership proof and non-membership proof of same element

can be used to break strong RSA assumption.
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Basic Set Operations

Basic Set Relation:

“Intersection, Union,

Set-Defference”

⇓

Simpler set relations:

• Disjoint relation

{(J0, J1)|J0 ∩ J1 = ∅}
• Union among disjoint relation{

(U, J0, J1)

∣∣∣∣∣U = J0 ∪ J1 ∧
J0 ∩ J1 = ∅

}
.

Basic Set Relation on

Commitments:

“Intersection, Union,

Set-Defference”

⇓

Group Element Relations:

• Co-prime relation(C1,C2)

∣∣∣∣∣∣∣∣
∃a, b ∈ Z s.t.

gcd(a, b) = 1∧
(C1,C2) = (ga, gb)

 .

• DDH tuples relation
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Zero-Knowledge Sets

RSA accumulators can be convert into ZKS by adding randomness r to

provide privacy.

gΠi∈[m]pi ⇒ gr ·Πi∈[m]pi .

Question:
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Zero-Knowledge Sets

Key observation:

In ZKS commitment, randomness is sampled from small and bounded

range of [0,B].

• Let A,B be disjoint sets, gr ·Hprime(A), gr
′·Hprime(B) are their ZKS

commitments.

gcd(r · Hprime(A), r
′ · Hprime(B)) = gcd(r , r ′) is small

• Let A,B be disjoint sets, U = A ∪ B, gr ·Hprime(A), gr
′·Hprime(B),

gr
′′·Hprime(U) are their ZKS commitments.

(gr ·Hprime(A), gr
′·Hprime(B), gr

′′·Hprime(U)) is close to a DDH-tuple

We call above two relations as pseudo-coprime relation and pseudo-DDH

relation.
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Zero-Knowledge Protocol

Tools:

1. Schnorr’s Σ-protocol for bounded discrete-log:

RboundedDL = {(u,w,T ; x)|ux = w ∧ |x | ≤ T}

2. (A new variant of) Boneh et al.’s ZK-argument for multidimensional

discrete-log.

RmultiDL = {({ui}i∈[n],w; {xi}i∈[n])|Πi∈[n]u
xi
i = w}

Note: Both of above protocols only achieve a weak soundness due to

that “Computing g
1
a in an unknown-order group is hard”. Luckily, it is

sufficient for our construction.
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Zero-Knowledge Protocol for Pseudo-Coprime Relation

• Only achieve a weak soundness. (The GCD of exponents might be

larger than T , however, it is still bounded by a proper upper bound.)

• One can use the Fiat-Shamir heuristic to obtain the non-interactive

version. 14



Zero-Knowledge Protocol for Pseudo-DDH Relation

• Only achieve a weak soundness. (That is, the statement might not

close to DDH-tuple as we required, however, it is still close enough.)

• One can use the Fiat-Shamir heuristic to obtain the non-interactive

version.
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Zero-Knowledge Sets
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From Boolean Circuit Queries to Set-Operation

Our goal:

Query of Boolean circuit f over a set S

(requesting Soutput := {x |x ∈ S ∧ f (x) = 1})

⇓

Query of combined operations Q on related sets

Sb
i := {x |x ∈ S ∧ the i-th bit of “x” is b}

(requesting Soutput := Q({Sb
i }))
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From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

Example:
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From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on a set S , according the value of wire, each wire i

can be associated with two subsets {Sb
i }b∈{0,1}. That is,

Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}
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From Boolean Circuit Queries to Set-Operation

Let f be a Boolean circuit.

• When running f on an input, each wire in f has a value.

• When running f on each element of a set S , according the value of

wire, each wire i can be associated with two sets {Sb
i }b∈{0,1}. That

is, Sb
i := {x |x ∈ S ∧ the value of i-th wire of f (x) is b}

Key Observation:

• For each input wire i , Sb
i = {x |x ∈ S ∧ the i-th bit of “x” is b}.

• For the output wire output, the second associated set S1
output , is

exactly the answer of the query of Boolean circuit f .

• For any AND gate in f with input wires a, b and output wire c ,

S0
c = S0

a ∪ S0
b and S1

c = S1
a ∩ S1

b .

• For any OR gate with input wires a, b and output wire c ,

S0
c = S0

a ∩ S0
b and S1

c = S1
a ∪ S1

b .

• For any NOT gate with input wire a and output wire b, S0
b = S1

a

and S1
b = S0

b .
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From Boolean Circuit Queries to Set-Operation

Example: f (x) = x̄1 ∧ x̄2 ∨ (¬x̄3) where x = x̄1∥x̄2∥x̄3 ∈ {0, 1}3
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Zero-Knowledge Functional Elementary Databases

Setup(1λ): Genrate using public parameters.

Commit(D): Let Sb
i := {x |(x , v) ∈ D ∧ the i-th bit of “x∥v” is b}

1. Use ZKS scheme to commit all Sb
i .

2. Use ZK-EDB scheme to commit D.

Prove(com, τ, f ,Doutput): Transform f into combined operation Q,

1. Prove that for each (x , v) ∈ Doutput and each i , x ∈ S x̄i
i and

x /∈ S1−x̄i
i .

Showing the correctness of S i
b.

2. Prove that {x |(x , v) ∈ Doutput} = Q(S0
1 ,S

1
1 , · · · ).

Showing the correctness of function.

3. Prove that for each (x , v) ∈ Doutput , (x , v) ∈ D through ZK-EDB.

Showing the validness of associated value v .

Verify(com, f ,Doutput , π): Check the correctness of proofs.
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Performance

Performance of our ZK-FEDB1:

Prover’s work Verifier’s work Communication

Commit O(ℓ|D|)EXT + O(|D|)h N/A O(ℓ)G

Query
O(ℓ|D|+ |D||f |)EXT
+O(|D|+ ℓ+ |f |)h

O(ℓ+ |f |)EXT
+O(|Doutput |+ ℓ+ |f |)h

O(ℓ+ |f |)G

where ℓ is the bit length of record, |D| and |Doutput | denote the size of

committed database and output database respectly, |f | is the size of

query function, G represents a group element, h denotes hashing to a

prime and EXT is a λ-bit exponentiation.

1Utilizing our ZKS scheme and ZK-EDB scheme (constructed in the full version of

our paper), and applying the standard batching technique.

23



Thank you for your attention
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