Scalable Multi-Party Private Set Union from Multi-Query Secret-Shared Private Membership Test

Xiang Liu ${ }^{1}$, Ying Gao ${ }^{1,2}$
School of Cyber Security and Technology, Beihang University
Zhongguancun Laboratory

December 8th
Asiacrypt 2023

Contents

(1) Background
(2) Our Main Idea
(3) Instantiation of Multi-Query Secret-Shared Private Membership Test
(4) Implementation

Contents

(1) Background

(2) Our Main Idea
(3) Instantiation of Multi-Query Secret-Shared Private Membership Test
(4) Implementation

Private Set Union (PSU)

Private Set Union (PSU)

Private Set Union (PSU)

Multi-Party Private Set Union (MPSU)

Applications

- Cyber risk assessment and management via joint IP blacklists and joint vulnerability data [HLS+16; LV04]
- Privacy-preserving data aggregation [BSMD10]
- Building block for private database full join [KRTW19]
- Building block for private ID [GMR+21; ZLDL23]
- ...

Previous Work and Motivation

(1) Additively homomorphic encryption (AHE) based constructions [KS05; Fri07; GHJ22]

- resist arbitrary collusion
- need a non-constant number of AHE operations, high computation cost
- lack of implementation, can't estimate their performances
(2) Other constructions
- secure in the honest majority setting [SCK12; BA16]
- [SCK12] has high computation and communication complexity
- [BA16; VCE22] are only practical on small sets

Previous Work and Motivation

(1) Additively homomorphic encryption (AHE) based constructions [KS05; Fri07; GHJ22]

- resist arbitrary collusion
- need a non-constant number of AHE operations, high computation cost
- lack of implementation, can't estimate their performances
(2) Other constructions
- secure in the honest majority setting [SCK12; BA16]
- [SCK12] has high computation and communication complexity
- [BA16; VCE22] are only practical on small sets

Can we construct a truly scalable MPSU protocol?

Our Contributions

We focus on semi-honest setting, and assume that the adversary doesn't corrupt the leader and clients simultaneously.

- Introduce a new primitive called multi-query secret-shared private membership test (mq-ssPMT)
- Propose a new MPSU framework based on mq-ssPMT and secret-shared shuffle
- Our framework of MPSU can be slightly modified to compute multi-party private set intersection (MPSI), and the cardinality of the intersection and union (MPSI-CA, MPSU-CA)
- Demonstrate the scalability of our MPSU protocol with an implementation

Contents

(1) Background

(2) Our Main Idea
(3) Instantiation of Multi-Query Secret-Shared Private Membership Test
(4) Implementation

Two-Party PSU Framework

- Convert the union to the difference $X \cup Y=(X \backslash Y) \cup Y$
- $X \backslash Y$ can be computed efficiently by a combination of reverse private membership test (RPMT) and oblivious transfer (OT) [KRTW19]

Two-Party PSU Framework

- Convert the union to the difference $X \cup Y=(X \backslash Y) \cup Y$
- $X \backslash Y$ can be computed efficiently by a combination of reverse private membership test (RPMT) and oblivious transfer (OT) [KRTW19]

Two-Party PSU Framework

- Convert the union to the difference $X \cup Y=(X \backslash Y) \cup Y$
- $X \backslash Y$ can be computed efficiently by a combination of reverse private membership test (RPMT) and oblivious transfer (OT) [KRTW19]

Two-Party PSU Framework

- Convert the union to the difference $X \cup Y=(X \backslash Y) \cup Y$
- $X \backslash Y$ can be computed efficiently by a combination of reverse private membership test (RPMT) and oblivious transfer (OT) [KRTW19]

Two-Party PSU Framework

- Convert the union to the difference $X \cup Y=(X \backslash Y) \cup Y$
- $X \backslash Y$ can be computed efficiently by a combination of reverse private membership test (RPMT) and oblivious transfer (OT) [KRTW19]

for $1 \leq i \leq n$:

- multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Our MPSU Main Idea

- Convert the union to the difference

$$
X_{1} \cup X_{2} \cup X_{3}=X_{1} \cup\left(X_{2} \backslash X_{1}\right) \cup\left(X_{3} \backslash\left(X_{2} \cup X_{1}\right)\right)
$$

- Compute the differences separately and then merge them

Our MPSU Main Idea

- Convert the union to the difference

$$
X_{1} \cup X_{2} \cup X_{3}=X_{1} \cup\left(X_{2} \backslash X_{1}\right) \cup\left(X_{3} \backslash\left(X_{2} \cup X_{1}\right)\right)
$$

- Compute the differences separately and then merge them

Two problems arise:

- How to compute the difference of more than two sets, such as $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$?
- The difference sets should not be revealed. How to merge them securely?

Our MPSU Main Idea

- Convert the union to the difference

$$
X_{1} \cup X_{2} \cup X_{3}=X_{1} \cup\left(X_{2} \backslash X_{1}\right) \cup\left(X_{3} \backslash\left(X_{2} \cup X_{1}\right)\right)
$$

- Compute the differences separately and then merge them

Two problems arise:

- How to compute the difference of more than two sets, such as $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$?
- The difference sets should not be revealed. How to merge them securely?

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

- Convert the difference of multi sets to the intersection of two differences $X_{3} \backslash\left(X_{2} \cup X_{1}\right)=\left(X_{3} \backslash X_{2}\right) \cap\left(X_{3} \backslash X_{1}\right)$
- Compute the differences separately, and then compute the intersection

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

- Convert the difference of multi sets to the intersection of two differences $X_{3} \backslash\left(X_{2} \cup X_{1}\right)=\left(X_{3} \backslash X_{2}\right) \cap\left(X_{3} \backslash X_{1}\right)$
- Compute the differences separately, and then compute the intersection
- If we use mq-RPMT, it will reveal $\left|X_{3} \backslash X_{1}\right|$ and $\left|X_{3} \backslash X_{2}\right|$

$X_{3}=\left(x_{3}^{1}, \cdots, x_{3}^{n}\right)$	mq-RPMT	$X_{1}=\left(x_{1}^{1}, \cdots, x_{1}^{n}\right)$
		$\mathbf{e}=\left(e_{1}, \cdots, e_{n}\right) \in\{0,1\}^{n}$
		$\backslash X_{1} \mid=$ hamming weight

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

- Convert the difference of multi sets to the intersection of two differences $X_{3} \backslash\left(X_{2} \cup X_{1}\right)=\left(X_{3} \backslash X_{2}\right) \cap\left(X_{3} \backslash X_{1}\right)$
- Compute the differences separately, and then compute the intersection
- If we use mq-RPMT, it will reveal $\left|X_{3} \backslash X_{1}\right|$ and $\left|X_{3} \backslash X_{2}\right|$
- So we need to protect the output of mq-RPMT, meanwhile keep its ability to compute the difference

Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)

- If the output of mq-RPMT is shared to two parties, we get multi-query secret-shared private membership test (mq-ssPMT)

$X=\left\{x_{1}, \cdots, x_{n}\right\}$			
\longleftrightarrow	$Y=\left\{y_{1}, \cdots, y_{n}\right\}$		
$\mathbf{e}_{0}=\left(e_{0}^{1}, \cdots, e_{0}^{n}\right) \in\{0,1\}^{n}$		\quad mq-ssPMT \quad	$\mathbf{e}_{1}=\left(e_{1}^{1}, \cdots, e_{1}^{n}\right) \in\{0,1\}^{n}$
:---:			

$$
1 \leq i \leq n: e_{0}^{i} \oplus e_{1}^{i}=\left\{\begin{array}{l}
1, y_{i} \in X \\
0, y_{i} \notin X
\end{array}\right.
$$

Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)

- Similar to mq-RPMT, we can combine mq-ssPMT and OT to compute the difference
- And mq-ssPMT doesn't reveal any information

$$
X=\{b, c\}, y=a
$$

$$
X=\{b, c\}, y=b
$$

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

- Convert the difference of multi sets to the intersection of two differences $X_{3} \backslash\left(X_{2} \cup X_{1}\right)=\left(X_{3} \backslash X_{2}\right) \cap\left(X_{3} \backslash X_{1}\right)$
- Compute the differences separately, and then compute the intersection
- If we use mq-RPMT, it will reveal $\left|X_{3} \backslash X_{1}\right|$ and $\left|X_{3} \backslash X_{2}\right|$
- So we need to protect the output of mq-RPMT, meanwhile keep its ability to compute the difference
- Now we have mq-ssPMT, but we can't directly compute $X_{3} \backslash X_{2}$ and $X_{3} \backslash X_{1}$
- And how to compute the intersection without using an MPSI protocol?

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

Our approach:

- Use a $(3,3)$ addtive secret sharing to share element $x=[x]_{1}+[x]_{2}+[x]_{3}$
- Use the share $[x]_{i}$ as the message of OT with P_{i}

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

Our approach:

- Use a $(3,3)$ addtive secret sharing to share element $x=[x]_{1}+[x]_{2}+[x]_{3}$
- Use the share $[x]_{i}$ as the message of OT with P_{i}

$$
X_{2}=\{a, d\}, x=a
$$

- If $x \in X_{1}$ or $x \in X_{2}$, the reconstruction of the secret will be random

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

Our approach:

- Use a $(3,3)$ addtive secret sharing to share element $x=[x]_{1}+[x]_{2}+[x]_{3}$
- Use the share $[x]_{i}$ as the message of OT with P_{i}

$$
X_{2}=\{a, d\}, x=a
$$

- If $x \notin X_{1}$ and $x \notin X_{2}$, the reconstruction of the secret will be x

Compute $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

Our approach:

- Use a $(3,3)$ addtive secret sharing to share element $x=[x]_{1}+[x]_{2}+[x]_{3}$
- Use the share $[x]_{i}$ as the message of OT with P_{i}

$$
X_{2}=\{a, d\}, x=a
$$

- can reconstruct $x \Leftrightarrow x \notin X_{1}$ and $x \notin X_{2} \Leftrightarrow x \in X_{3} \backslash\left(X_{2} \cup X_{1}\right)$

Our MPSU Main Idea

- Convert the union to the difference

$$
X_{1} \cup X_{2} \cup X_{3}=X_{1} \cup\left(X_{2} \backslash X_{1}\right) \cup\left(X_{3} \backslash\left(X_{2} \cup X_{1}\right)\right)
$$

- Compute the differences separately and then merge them

Two problems arise:

- How to compute the difference of more than two sets, such as $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$?
- The difference sets should not be revealed. How to merge them securely?

Shuffle and Reshare

- Directly sending the share of $X_{2} \backslash X_{1}$ and $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$ to P_{1} is not secure
- We should destroy the linkages of the difference set and the shares, but how?

Shuffle and Reshare

- Directly sending the share of $X_{2} \backslash X_{1}$ and $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$ to P_{1} is not secure
- We should destroy the linkages of the difference set and the shares, but how?
- Use a multi-party secret-shared shuffle protocol [EB22]

Shuffle and Reshare

- Directly sending the share of $X_{2} \backslash X_{1}$ and $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$ to P_{1} is not secure
- We should destroy the linkages of the difference set and the shares, but how?
- Use a multi-party secret-shared shuffle protocol [EB22]

$$
X_{1}=\{a, b\}, X_{2}=\{a, c\}, X_{3}=\{e, f\}
$$

before shuffling

$$
\begin{array}{l:ccc}
& P_{1} & P_{2} & P_{3} \\
X_{2} \backslash X_{1}-r & \$ & {[a]_{2}} & 0 \\
-c & {[c]_{1}} & {[c]_{2}} & 0 \\
X_{3} \backslash\left(X_{2} \cup X_{1}\right)-e & {[e]_{1}} & {[e]_{2}} & {[e]_{3}} \\
& {[f} & {[f]_{1}} & {[f]_{2}} \\
& {[f]_{3}}
\end{array}
$$

Shuffle and Reshare

- Directly sending the share of $X_{2} \backslash X_{1}$ and $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$ to P_{1} is not secure
- We should destroy the linkages of the difference set and the shares, but how?
- Use a multi-party secret-shared shuffle protocol [EB22]

$$
X_{1}=\{a, b\}, X_{2}=\{a, c\}, X_{3}=\{e, f\}
$$

before shuffling after shuffling

	P_{1}	P_{2}	P_{3}		P_{1}	P_{2}	P_{3}
$X_{2} \backslash X_{1}$	\$	[a] 2	\bigcirc		$[e]_{1}^{\prime}$	[e] ${ }_{2}^{\prime}$	$[e]_{3}^{\prime}$
	cl	[c]		multi-party	$[r]_{1}^{\prime}$	$[r]_{2}^{\prime}$	$[e]_{3}^{\prime}$
$X_{3} \backslash\left(X_{2} \cup X_{1}\right)$				secret-shared shuffle	$[f]_{1}^{\prime}$	$[f]_{2}^{\prime}$	$[f]_{3}^{\prime}$ $[c]_{3}^{\prime}$
			$\left[f_{31}\right.$		$[c]_{1}^{\prime}$	$[c]_{2}^{\prime}$	$[c]_{3}^{\prime}$

Shuffle and Reshare

- Directly sending the share of $X_{2} \backslash X_{1}$ and $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$ to P_{1} is not secure
- We should destroy the linkages of the difference set and the shares, but how?
- Use a multi-party secret-shared shuffle protocol [EB22]
- After shuffling, P_{1} collects all the shares and outputs the union

$$
\begin{aligned}
& \text { before shuffling after shuffling } \\
& \begin{array}{llllll}
P_{1} & P_{2} & P_{3} & P_{1} & P_{2} & P_{3}
\end{array} \\
& \begin{array}{c:cclllll}
X_{2} \backslash X_{1}-r & \$ & {[a]_{2}} & 0 & & & {[e]_{1}^{\prime}} & {[e]_{2}^{\prime}} \\
& {[e]_{3}^{\prime}} & e \\
& {[c]_{1}} & {[c]_{2}} & 0 & \text { multi-party } & {[r]_{1}^{\prime}} & {[r]_{2}^{\prime}} & {[e]_{3}^{\prime}} \\
\hdashline- & r
\end{array}
\end{aligned}
$$

Our MPSU Main Idea

- Convert the union to the difference

$$
X_{1} \cup X_{2} \cup X_{3}=X_{1} \cup\left(X_{2} \backslash X_{1}\right) \cup\left(X_{3} \backslash\left(X_{2} \cup X_{1}\right)\right)
$$

- Compute the differences separately and then merge them

Two problems arise:

- How to compute the difference of more than two sets, such as $X_{3} \backslash\left(X_{2} \cup X_{1}\right)$?
- The difference sets should not be revealed. How to merge them securely?
- This framework can be easily extended to the setting of any number of parties

Contents

(1) Background

(2) Our Main Idea
(3) Instantiation of Multi-Query Secret-Shared Private Membership Test

Instantiation from mq-RPMT in [ZCL+23]

- [ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is SKE-based

Instantiation from mq-RPMT in [ZCL+23]

- [ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is SKE-based
- At the end of SKE-based mq-RPMT, the sender \mathcal{S} and receiver \mathcal{R} run a 2PC protocol (like GMW protocol). Then \mathcal{S} sends his share to \mathcal{R}, and \mathcal{R} reconstructs the output

$$
\begin{gathered}
\underset{\mathbf{e}_{0}=\left(e_{0}^{1}, \cdots, e_{0}^{n}\right) \in\{0,1\}^{n}}{\left\{s_{1}^{*}, \cdots, s_{n}^{*}\right\}} \begin{array}{|c}
\mathbf{e}_{0} \\
\longrightarrow
\end{array} \xrightarrow[\mathbf{e}_{1}=\left(e_{1}^{1}, \cdots, e_{1}^{n}\right) \in\{0,1\}^{n}]{\longleftrightarrow} \\
\longrightarrow \text { output } \mathbf{e}_{0} \oplus \mathbf{e}_{1}
\end{gathered}
$$

Instantiation from mq-RPMT in [ZCL+23]

- [ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is SKE-based
- At the end of SKE-based mq-RPMT, the sender \mathcal{S} and receiver \mathcal{R} run a 2PC protocol (like GMW protocol). Then \mathcal{S} sends his share to \mathcal{R}, and \mathcal{R} reconstructs the output
- If we omit the reconstruction phase, it's exactly an mq-ssPMT

output \mathbf{e}_{0}
output \mathbf{e}_{1}

Other Instantiations

- mq-ssPMT can be replaced by n instances of ssPMT [CO18; LPR+21; ZMS+21], which only queries one item in each instance. But it increases overhead significantly
- It can also be realized by circuit-PSI [PSTY19; RR22]. It can be seen as the simplest form of circuit-PSI
- It means that we can construct a PSU protocol combining circuit-PSI and OT

Contents

(1) Background

(2) Our Main Idea
(3) Instantiation of Multi-Query Secret-Shared Private Membership Test
(4) Implementation

Experiment Results on Small Sets

- Instantiate mq-ssPMT with the mq-RPMT in [ZCL+23], and omit all the offline costs

Table: The comparison of SOTA and our MPSU protocol in running time (s) in the LAN setting.

	Number	Protocol			ize n	
	Parties k	Protocol	2^{4}	2^{6}	2^{8}	2^{10}
Time	3	[VCE22]	0.56	1.71	4.84	15.36
		Ours	0.10	0.10	0.11	0.14
	4	[VCE22]	0.76	2.36	7.64	20.84
		Ours	0.15	0.16	0.17	0.19
	5	[VCE22]	1.08	3.50	10.73	26.43
		Ours	0.22	0.22	0.23	0.24
	7	[VCE22]	1.84	4.49	15.29	52.82
		Ours	0.36	0.36	0.37	0.39
	10	[VCE22]	3.15	9.12	29.65	75.58
		Ours	0.58	0.62	0.63	0.68
	Speedup		$5 \times$	$12 \times$	$41 \times$	$109 \times$

Table: The comparison of SOTA and our MPSU protocol in communication cost (MB).

	Number				ize n	
	Parties k	Protocol	2^{4}	2^{6}	2^{8}	2^{10}
Comm.	3	[VCE22]	0.16	0.56	1.82	5.68
		Ours	0.15	0.16	0.28	0.96
	4	[VCE22]	0.25	0.84	2.74	8.52
		Ours	0.22	0.24	0.45	1.54
	5	[VCE22]	0.33	1.11	3.65	11.36
		Ours	0.30	0.33	0.63	2.17
	7	[VCE22]	0.49	1.67	5.47	17.03
		Ours	0.45	0.52	1.04	3.63
	10	[VCE22]	0.74	2.51	8.21	25.55
		Ours	0.69	0.83	1.77	6.30
	Speedup		-	$3 \times$	$4 \times$	$4 \times$

Experiment Results on Large Sets

Table: Running time (seconds) of our protocol in LAN and WAN settings. Each party holds n 64-bit elements. The output length of H is $\ell=64$. Cells with - denotes trials that ran out of memory.

Setting	Number	Set Size n			
	Parties k	2^{14}	2^{16}	2^{18}	2^{20}
LAN	3	0.55	1.79	7.04	29.02
	4	0.60	1.88	7.46	30.28
	5	0.67	2.01	7.92	34.10
	7	0.88	2.71	10.77	45.68
	10	1.41	4.89	19.90	-
WAN	3	3.36	6.64	15.38	51.81
	4	4.14	8.63	20.28	72.61
	5	5.53	10.56	29.35	111.06
	7	6.91	17.21	60.17	227.75
	10	11.08	33.89	127.71	-

References

[BA16] Marina Blanton and Everaldo Aguiar. "Private and oblivious set and multiset operations". In: Int. J. Inf. Sec. 15.5 (2016), pp. 493-518.
[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. "SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics". In: USENIX Security. 2010.
[CO18] Michele Ciampi and Claudio Orlandi. "Combining Private Set-Intersection with Secure Two-Party Computation". In: SCN. 2018.
[EB22] Saba Eskandarian and Dan Boneh. "Clarion: Anonymous Communication from Multiparty Shuffling Protocols". In: NDSS. 2022.
[Fri07] Keith Frikken. "Privacy-Preserving Set Union". In: ACNS. 2007.
[GHJ22] Xuhui Gong, Qiang-Sheng Hua, and Hai Jin. "Nearly Optimal Protocols for Computing Multi-party Private Set Union". In: IWQoS. 2022.
[GMR+21] Gayathri Garimella et al. "Private Set Operations from Oblivious Switching". In: PKC. 2021.
[HLS+16] Kyle Hogan et al. "Secure Multiparty Computation for Cooperative Cyber Risk Assessment". In: IEEE Cybersecurity Development. 2016.
[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. "Scalable private set union from symmetric-key techniques". In: ASIACRYPT. 2019.
[KS05] Lea Kissner and Dawn Song. "Privacy-Preserving Set Operations". In: CRYPTO. 2005.
[LPR+21] Tancrède Lepoint et al. "Private Join and Compute from PIR with Default". In: ASIACRYPT. 2021.
[LV04] Arjen Lenstra and Tim Voss. "Information Security Risk Assessment, Aggregation, and Mitigation". In: Information Security and Privacy. 2004.
[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. "Efficient Circuit-Based PSI with Linear Communication". In: EUROCRYPT. 2019.
[RR22] Srinivasan Raghuraman and Peter Rindal. "Blazing Fast PSI from Improved OKVS and Subfield VOLE". In: CCS. 2022.
[SCK12] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. "Constant-Round Multi-party Private Set Union Using Reversed Laurent Series". In: PKC. 2012.
[VCE22] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs. Cryptology ePrint Archive, Paper 2022/721. 2022.
[ZCL+23] Cong Zhang et al. "Linear Private Set Union from Multi-Query Reverse Private Membership Test". In: USENIX Security. 2023.
[ZLDL23] Cong Zhang, Weiran Liu, Bolin Ding, and Dongdai Lin. "Efficient Private Multiset ID Protocols". In: ICICS. 2023.
[ZMS+21] Shengnan Zhao et al. "Lightweight threshold private set intersection via oblivious transfer". In: WASA. 2021.

Thanks for your attention!

