
Scalable Multi-Party Private Set Union from Multi-Query
Secret-Shared Private Membership Test

Xiang Liu1, Ying Gao1,2

School of Cyber Security and Technology, Beihang University
Zhongguancun Laboratory

December 8th
Asiacrypt 2023

Contents

1 Background

2 Our Main Idea

3 Instantiation of Multi-Query Secret-Shared Private Membership Test

4 Implementation

Contents

1 Background

2 Our Main Idea

3 Instantiation of Multi-Query Secret-Shared Private Membership Test

4 Implementation

Private Set Union (PSU)

Sender Receiver
X Y

nothing

X ∪ Y

Background 4 / 28

Private Set Union (PSU)

Sender Receiver
X Y

can compute (X ∪ Y) \ Y = X \ Y

?

but knows nothing about X ∩ Y

Background 5 / 28

Private Set Union (PSU)

Sender Receiver
X Y

can compute (X ∪ Y) \ Y = X \ Y

?

but knows nothing about X ∩ Y

Background 5 / 28

Multi-Party Private Set Union (MPSU)

P1 (Leader) P2 (Client)

P3 (Client)

X Y

Zobtain X ∪ Y ∪ Z obtain nothing

obtain nothing

Background 6 / 28

Applications

Background 7 / 28

Cyber risk assessment and management via joint IP blacklists and joint vulnerability
data [HLS+16; LV04]
Privacy-preserving data aggregation [BSMD10]
Building block for private database full join [KRTW19]
Building block for private ID [GMR+21; ZLDL23]
· · ·

Previous Work and Motivation

Background 8 / 28

1 Additively homomorphic encryption (AHE) based constructions [KS05; Fri07; GHJ22]
▶ resist arbitrary collusion
▶ need a non-constant number of AHE operations, high computation cost
▶ lack of implementation, can’t estimate their performances

2 Other constructions
▶ secure in the honest majority setting [SCK12; BA16]
▶ [SCK12] has high computation and communication complexity
▶ [BA16; VCE22] are only practical on small sets

Can we construct a truly scalable MPSU protocol?

Previous Work and Motivation

Background 8 / 28

1 Additively homomorphic encryption (AHE) based constructions [KS05; Fri07; GHJ22]
▶ resist arbitrary collusion
▶ need a non-constant number of AHE operations, high computation cost
▶ lack of implementation, can’t estimate their performances

2 Other constructions
▶ secure in the honest majority setting [SCK12; BA16]
▶ [SCK12] has high computation and communication complexity
▶ [BA16; VCE22] are only practical on small sets

Can we construct a truly scalable MPSU protocol?

Our Contributions

Background 9 / 28

We focus on semi-honest setting, and assume that the adversary doesn’t corrupt the
leader and clients simultaneously.

Introduce a new primitive called multi-query secret-shared private membership
test (mq-ssPMT)
Propose a new MPSU framework based on mq-ssPMT and secret-shared shuffle
Our framework of MPSU can be slightly modified to compute multi-party private
set intersection (MPSI), and the cardinality of the intersection and union
(MPSI-CA, MPSU-CA)
Demonstrate the scalability of our MPSU protocol with an implementation

Contents

1 Background

2 Our Main Idea

3 Instantiation of Multi-Query Secret-Shared Private Membership Test

4 Implementation

Two-Party PSU Framework

X Y

RPMT
xi

Y = {y1, · · · , yn}

ei ∈ {0, 1}

ei =

{
1, xi ∈ Y
0, xi /∈ YOT

(xi,⊥)
ei

zi =

{
xi, ei = 0(xi /∈ Y)
⊥, ei = 1(xi ∈ Y)
zi = xi or ⊥

repeat for 1 ≤ i ≤ n

mq-RPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e = (e1, · · · , en) ∈ {0, 1}n

for 1 ≤ i ≤ n:

Our Main Idea 11 / 28

Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Two-Party PSU Framework

X Y

RPMT
xi

Y = {y1, · · · , yn}

ei ∈ {0, 1}

ei =

{
1, xi ∈ Y
0, xi /∈ Y

OT
(xi,⊥)

ei

zi =

{
xi, ei = 0(xi /∈ Y)
⊥, ei = 1(xi ∈ Y)
zi = xi or ⊥

repeat for 1 ≤ i ≤ n

mq-RPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e = (e1, · · · , en) ∈ {0, 1}n

for 1 ≤ i ≤ n:

Our Main Idea 11 / 28

Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Two-Party PSU Framework

X Y

RPMT
xi

Y = {y1, · · · , yn}

ei ∈ {0, 1}

ei =

{
1, xi ∈ Y
0, xi /∈ Y

OT
(xi,⊥)

ei

zi =

{
xi, ei = 0(xi /∈ Y)
⊥, ei = 1(xi ∈ Y)

zi = xi or ⊥
repeat for 1 ≤ i ≤ n

mq-RPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e = (e1, · · · , en) ∈ {0, 1}n

for 1 ≤ i ≤ n:

Our Main Idea 11 / 28

Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Two-Party PSU Framework

X Y

RPMT
xi

Y = {y1, · · · , yn}

ei ∈ {0, 1}

ei =

{
1, xi ∈ Y
0, xi /∈ Y

OT
(xi,⊥)

ei

zi =

{
xi, ei = 0(xi /∈ Y)
⊥, ei = 1(xi ∈ Y)

zi = xi or ⊥
repeat for 1 ≤ i ≤ n

mq-RPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e = (e1, · · · , en) ∈ {0, 1}n

for 1 ≤ i ≤ n:

Our Main Idea 11 / 28

Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Two-Party PSU Framework

X Y

RPMT
xi

Y = {y1, · · · , yn}

ei ∈ {0, 1}

ei =

{
1, xi ∈ Y
0, xi /∈ Y

OT
(xi,⊥)

ei

zi =

{
xi, ei = 0(xi /∈ Y)
⊥, ei = 1(xi ∈ Y)

zi = xi or ⊥

repeat for 1 ≤ i ≤ n

mq-RPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e = (e1, · · · , en) ∈ {0, 1}n

for 1 ≤ i ≤ n:

Our Main Idea 11 / 28

Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]

Our MPSU Main Idea

X1 X2

X3

Our Main Idea 12 / 28

Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

Our MPSU Main Idea

X1 X2

X3

Our Main Idea 12 / 28

Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

Our MPSU Main Idea

X1 X2

X3

Our Main Idea 12 / 28

Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

Compute X3 \ (X2 ∪ X1)

X1 X2

X3

mq-RPMT
X3 = (x1

3, · · · , xn
3)

X1 = (x1
1, · · · , xn

1)

e = (e1, · · · , en) ∈ {0, 1}n

|X3 \ X1| = hamming weight of e

Our Main Idea 13 / 28

Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|
So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference

Compute X3 \ (X2 ∪ X1)

X1 X2

X3

mq-RPMT
X3 = (x1

3, · · · , xn
3)

X1 = (x1
1, · · · , xn

1)

e = (e1, · · · , en) ∈ {0, 1}n

|X3 \ X1| = hamming weight of e

Our Main Idea 13 / 28

Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|

So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference

Compute X3 \ (X2 ∪ X1)

X1 X2

X3

mq-RPMT
X3 = (x1

3, · · · , xn
3)

X1 = (x1
1, · · · , xn

1)

e = (e1, · · · , en) ∈ {0, 1}n

|X3 \ X1| = hamming weight of e

Our Main Idea 13 / 28

Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|
So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference

Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)

mq-ssPMT
X = {x1, · · · , xn} Y = {y1, · · · , yn}

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

1 ≤ i ≤ n : ei
0 ⊕ ei

1 =

{
1, yi ∈ X
0, yi /∈ X

Our Main Idea 14 / 28

If the output of mq-RPMT is shared to two parties, we get multi-query secret-shared
private membership test (mq-ssPMT)

Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)

X = {b, c}, y = a X = {b, c}, y = b

X a X b

1 1 1 0

mq-ssPMT mq-ssPMT

(⊥, a) (b,⊥)

a ⊥

OT OT

Our Main Idea 15 / 28

Similar to mq-RPMT, we can combine mq-ssPMT and OT to compute the difference
And mq-ssPMT doesn’t reveal any information

Compute X3 \ (X2 ∪ X1)

X1 X2

X3

Our Main Idea 16 / 28

Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|
So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference

Now we have mq-ssPMT, but we can’t directly compute X3 \ X2 and X3 \ X1

And how to compute the intersection without using an MPSI protocol?

Compute X3 \ (X2 ∪ X1)

X1 = {b, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 1 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 $

OT OT

[a]1 + $ + [a]3 = $

X1 = {a, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 0 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 [a]2

OT OT

[a]1 + [a]2 + [a]3 = a

Our Main Idea 17 / 28

Our approach:
Use a (3, 3) addtive secret sharing to share element x = [x]1 + [x]2 + [x]3
Use the share [x]i as the message of OT with Pi

If x ∈ X1 or x ∈ X2, the reconstruction of the secret will be randomIf x /∈ X1 and x /∈ X2, the reconstruction of the secret will be xcan reconstruct x ⇔ x /∈ X1 and x /∈ X2 ⇔ x ∈ X3 \ (X2 ∪ X1)

Compute X3 \ (X2 ∪ X1)

X1 = {b, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 1 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 $

OT OT

[a]1 + $ + [a]3 = $

X1 = {a, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 0 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 [a]2

OT OT

[a]1 + [a]2 + [a]3 = a

Our Main Idea 17 / 28

Our approach:
Use a (3, 3) addtive secret sharing to share element x = [x]1 + [x]2 + [x]3
Use the share [x]i as the message of OT with Pi

If x ∈ X1 or x ∈ X2, the reconstruction of the secret will be random

If x /∈ X1 and x /∈ X2, the reconstruction of the secret will be xcan reconstruct x ⇔ x /∈ X1 and x /∈ X2 ⇔ x ∈ X3 \ (X2 ∪ X1)

Compute X3 \ (X2 ∪ X1)

X1 = {b, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 1 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 $

OT OT

[a]1 + $ + [a]3 = $

X1 = {a, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 0 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 [a]2

OT OT

[a]1 + [a]2 + [a]3 = a

Our Main Idea 17 / 28

Our approach:
Use a (3, 3) addtive secret sharing to share element x = [x]1 + [x]2 + [x]3
Use the share [x]i as the message of OT with Pi

If x ∈ X1 or x ∈ X2, the reconstruction of the secret will be random

If x /∈ X1 and x /∈ X2, the reconstruction of the secret will be x

can reconstruct x ⇔ x /∈ X1 and x /∈ X2 ⇔ x ∈ X3 \ (X2 ∪ X1)

Compute X3 \ (X2 ∪ X1)

X1 = {b, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 1 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 $

OT OT

[a]1 + $ + [a]3 = $

X1 = {a, c}, x = a X2 = {a, d}, x = a

X1 a X2 a

1 1 0 0

mq-ssPMT mq-ssPMT

($, [a]1) ([a]2, $)

[a]1 [a]2

OT OT

[a]1 + [a]2 + [a]3 = a

Our Main Idea 17 / 28

Our approach:
Use a (3, 3) addtive secret sharing to share element x = [x]1 + [x]2 + [x]3
Use the share [x]i as the message of OT with Pi

If x ∈ X1 or x ∈ X2, the reconstruction of the secret will be randomIf x /∈ X1 and x /∈ X2, the reconstruction of the secret will be x

can reconstruct x ⇔ x /∈ X1 and x /∈ X2 ⇔ x ∈ X3 \ (X2 ∪ X1)

Our MPSU Main Idea

X1 X2

X3

✓

Our Main Idea 18 / 28

Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

Shuffle and Reshare

X1 = {a, b},X2 = {a, c},X3 = {e, f}
before shuffling
P1 P2 P3

$
[c]1

[e]1
[f]1

[a]2
[c]2

[e]2
[f]2

0
0

[e]3
[f]3

X2 \ X1

X3 \ (X2 ∪ X1)

r
c

e
f

after shuffling
P1 P2 P3

[e]′1
[r]′1

[f]′1
[c]′1

[e]′2
[r]′2

[f]′2
[c]′2

[e]′3
[e]′3

[f]′3
[c]′3

e
r

f
c

multi-party
secret-shared shuffle

Our Main Idea 19 / 28

Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?

Use a multi-party secret-shared shuffle protocol [EB22]
After shuffling, P1 collects all the shares and outputs the union

Shuffle and Reshare

X1 = {a, b},X2 = {a, c},X3 = {e, f}
before shuffling
P1 P2 P3

$
[c]1

[e]1
[f]1

[a]2
[c]2

[e]2
[f]2

0
0

[e]3
[f]3

X2 \ X1

X3 \ (X2 ∪ X1)

r
c

e
f

after shuffling
P1 P2 P3

[e]′1
[r]′1

[f]′1
[c]′1

[e]′2
[r]′2

[f]′2
[c]′2

[e]′3
[e]′3

[f]′3
[c]′3

e
r

f
c

multi-party
secret-shared shuffle

Our Main Idea 19 / 28

Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?
Use a multi-party secret-shared shuffle protocol [EB22]

After shuffling, P1 collects all the shares and outputs the union

Shuffle and Reshare

X1 = {a, b},X2 = {a, c},X3 = {e, f}
before shuffling
P1 P2 P3

$
[c]1

[e]1
[f]1

[a]2
[c]2

[e]2
[f]2

0
0

[e]3
[f]3

X2 \ X1

X3 \ (X2 ∪ X1)

r
c

e
f

after shuffling
P1 P2 P3

[e]′1
[r]′1

[f]′1
[c]′1

[e]′2
[r]′2

[f]′2
[c]′2

[e]′3
[e]′3

[f]′3
[c]′3

e
r

f
c

multi-party
secret-shared shuffle

Our Main Idea 19 / 28

Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?
Use a multi-party secret-shared shuffle protocol [EB22]

After shuffling, P1 collects all the shares and outputs the union

Shuffle and Reshare

X1 = {a, b},X2 = {a, c},X3 = {e, f}
before shuffling
P1 P2 P3

$
[c]1

[e]1
[f]1

[a]2
[c]2

[e]2
[f]2

0
0

[e]3
[f]3

X2 \ X1

X3 \ (X2 ∪ X1)

r
c

e
f

after shuffling
P1 P2 P3

[e]′1
[r]′1

[f]′1
[c]′1

[e]′2
[r]′2

[f]′2
[c]′2

[e]′3
[e]′3

[f]′3
[c]′3

e
r

f
c

multi-party
secret-shared shuffle

Our Main Idea 19 / 28

Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?
Use a multi-party secret-shared shuffle protocol [EB22]

After shuffling, P1 collects all the shares and outputs the union

Shuffle and Reshare

X1 = {a, b},X2 = {a, c},X3 = {e, f}

before shuffling
P1 P2 P3

$
[c]1

[e]1
[f]1

[a]2
[c]2

[e]2
[f]2

0
0

[e]3
[f]3

X2 \ X1

X3 \ (X2 ∪ X1)

r
c

e
f

after shuffling
P1 P2 P3

[e]′1
[r]′1

[f]′1
[c]′1

[e]′2
[r]′2

[f]′2
[c]′2

[e]′3
[e]′3

[f]′3
[c]′3

e
r

f
c

multi-party
secret-shared shuffle

Our Main Idea 19 / 28

Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?
Use a multi-party secret-shared shuffle protocol [EB22]
After shuffling, P1 collects all the shares and outputs the union

Our MPSU Main Idea

X1 X2

X3

✓✓

Our Main Idea 20 / 28

Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

This framework can be easily extended to the setting of any number of parties

Contents

1 Background

2 Our Main Idea

3 Instantiation of Multi-Query Secret-Shared Private Membership Test

4 Implementation

Instantiation from mq-RPMT in [ZCL+23]

· · · · · · · · · · · ·

GMW
{s∗1, · · · , s∗n} (k, s)

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

e0 output e0 ⊕ e1
output e0 output e1

Instantiation of Multi-Query Secret-Shared Private Membership Test 22 / 28

[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based

At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
(like GMW protocol). Then S sends his share to R, and R reconstructs the output
If we omit the reconstruction phase, it’s exactly an mq-ssPMT

Instantiation from mq-RPMT in [ZCL+23]

· · · · · · · · · · · ·

GMW
{s∗1, · · · , s∗n} (k, s)

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

e0 output e0 ⊕ e1

output e0 output e1

Instantiation of Multi-Query Secret-Shared Private Membership Test 22 / 28

[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based
At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
(like GMW protocol). Then S sends his share to R, and R reconstructs the output

If we omit the reconstruction phase, it’s exactly an mq-ssPMT

Instantiation from mq-RPMT in [ZCL+23]

· · · · · · · · · · · ·

GMW
{s∗1, · · · , s∗n} (k, s)

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

e0 output e0 ⊕ e1

output e0 output e1

Instantiation of Multi-Query Secret-Shared Private Membership Test 22 / 28

[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based
At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
(like GMW protocol). Then S sends his share to R, and R reconstructs the output
If we omit the reconstruction phase, it’s exactly an mq-ssPMT

Other Instantiations

Instantiation of Multi-Query Secret-Shared Private Membership Test 23 / 28

mq-ssPMT can be replaced by n instances of ssPMT [CO18; LPR+21; ZMS+21],
which only queries one item in each instance. But it increases overhead significantly
It can also be realized by circuit-PSI [PSTY19; RR22]. It can be seen as the simplest
form of circuit-PSI

▶ It means that we can construct a PSU protocol combining circuit-PSI and OT

Contents

1 Background

2 Our Main Idea

3 Instantiation of Multi-Query Secret-Shared Private Membership Test

4 Implementation

Experiment Results on Small Sets

Table: The comparison of SOTA and our MPSU
protocol in running time (s) in the LAN setting.

Number Protocol Set Size n
Parties k 24 26 28 210

Time

3 [VCE22] 0.56 1.71 4.84 15.36
Ours 0.10 0.10 0.11 0.14

4 [VCE22] 0.76 2.36 7.64 20.84
Ours 0.15 0.16 0.17 0.19

5 [VCE22] 1.08 3.50 10.73 26.43
Ours 0.22 0.22 0.23 0.24

7 [VCE22] 1.84 4.49 15.29 52.82
Ours 0.36 0.36 0.37 0.39

10 [VCE22] 3.15 9.12 29.65 75.58
Ours 0.58 0.62 0.63 0.68

Speedup 5× 12× 41× 109×

Table: The comparison of SOTA and our MPSU
protocol in communication cost (MB).

Number Protocol Set Size n
Parties k 24 26 28 210

Comm.

3 [VCE22] 0.16 0.56 1.82 5.68
Ours 0.15 0.16 0.28 0.96

4 [VCE22] 0.25 0.84 2.74 8.52
Ours 0.22 0.24 0.45 1.54

5 [VCE22] 0.33 1.11 3.65 11.36
Ours 0.30 0.33 0.63 2.17

7 [VCE22] 0.49 1.67 5.47 17.03
Ours 0.45 0.52 1.04 3.63

10 [VCE22] 0.74 2.51 8.21 25.55
Ours 0.69 0.83 1.77 6.30

Speedup - 3× 4× 4×

Implementation 25 / 28

Instantiate mq-ssPMT with the mq-RPMT in [ZCL+23], and omit all the offline costs

Experiment Results on Large Sets

Table: Running time (seconds) of our protocol in LAN and WAN settings. Each party holds n 64-bit
elements. The output length of H is ℓ = 64. Cells with - denotes trials that ran out of memory.

Setting Number Set Size n
Parties k 214 216 218 220

LAN

3 0.55 1.79 7.04 29.02
4 0.60 1.88 7.46 30.28
5 0.67 2.01 7.92 34.10
7 0.88 2.71 10.77 45.68
10 1.41 4.89 19.90 -

WAN

3 3.36 6.64 15.38 51.81
4 4.14 8.63 20.28 72.61
5 5.53 10.56 29.35 111.06
7 6.91 17.21 60.17 227.75
10 11.08 33.89 127.71 -

Implementation 26 / 28

References
[BA16] Marina Blanton and Everaldo Aguiar. “Private and oblivious set and multiset operations”. In: Int. J. Inf. Sec. 15.5 (2016), pp. 493–518.
[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. “SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network

Events and Statistics”. In: USENIX Security. 2010.
[CO18] Michele Ciampi and Claudio Orlandi. “Combining Private Set-Intersection with Secure Two-Party Computation”. In: SCN. 2018.
[EB22] Saba Eskandarian and Dan Boneh. “Clarion: Anonymous Communication from Multiparty Shuffling Protocols”. In: NDSS. 2022.
[Fri07] Keith Frikken. “Privacy-Preserving Set Union”. In: ACNS. 2007.
[GHJ22] Xuhui Gong, Qiang-Sheng Hua, and Hai Jin. “Nearly Optimal Protocols for Computing Multi-party Private Set Union”. In: IWQoS. 2022.
[GMR+21] Gayathri Garimella et al. “Private Set Operations from Oblivious Switching”. In: PKC. 2021.
[HLS+16] Kyle Hogan et al. “Secure Multiparty Computation for Cooperative Cyber Risk Assessment”. In: IEEE Cybersecurity Development. 2016.
[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. “Scalable private set union from symmetric-key techniques”. In: ASIACRYPT. 2019.
[KS05] Lea Kissner and Dawn Song. “Privacy-Preserving Set Operations”. In: CRYPTO. 2005.
[LPR+21] Tancrède Lepoint et al. “Private Join and Compute from PIR with Default”. In: ASIACRYPT. 2021.
[LV04] Arjen Lenstra and Tim Voss. “Information Security Risk Assessment, Aggregation, and Mitigation”. In: Information Security and Privacy. 2004.
[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. “Efficient Circuit-Based PSI with Linear Communication”. In:

EUROCRYPT. 2019.
[RR22] Srinivasan Raghuraman and Peter Rindal. “Blazing Fast PSI from Improved OKVS and Subfield VOLE”. In: CCS. 2022.
[SCK12] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. “Constant-Round Multi-party Private Set Union Using Reversed Laurent Series”. In: PKC.

2012.
[VCE22] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs. Cryptology

ePrint Archive, Paper 2022/721. 2022.
[ZCL+23] Cong Zhang et al. “Linear Private Set Union from Multi-Query Reverse Private Membership Test”. In: USENIX Security. 2023.
[ZLDL23] Cong Zhang, Weiran Liu, Bolin Ding, and Dongdai Lin. “Efficient Private Multiset ID Protocols”. In: ICICS. 2023.
[ZMS+21] Shengnan Zhao et al. “Lightweight threshold private set intersection via oblivious transfer”. In: WASA. 2021.

Thanks for your attention!

	Background
	Our Main Idea
	Instantiation of Multi-Query Secret-Shared Private Membership Test
	Implementation
	References
	References

