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Applications

Background 7 / 28

Cyber risk assessment and management via joint IP blacklists and joint vulnerability
data [HLS+16; LV04]
Privacy-preserving data aggregation [BSMD10]
Building block for private database full join [KRTW19]
Building block for private ID [GMR+21; ZLDL23]
· · ·



Previous Work and Motivation

Background 8 / 28

1 Additively homomorphic encryption (AHE) based constructions [KS05; Fri07; GHJ22]
▶ resist arbitrary collusion
▶ need a non-constant number of AHE operations, high computation cost
▶ lack of implementation, can’t estimate their performances

2 Other constructions
▶ secure in the honest majority setting [SCK12; BA16]
▶ [SCK12] has high computation and communication complexity
▶ [BA16; VCE22] are only practical on small sets

Can we construct a truly scalable MPSU protocol?
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Our Contributions
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We focus on semi-honest setting, and assume that the adversary doesn’t corrupt the
leader and clients simultaneously.

Introduce a new primitive called multi-query secret-shared private membership
test (mq-ssPMT)
Propose a new MPSU framework based on mq-ssPMT and secret-shared shuffle
Our framework of MPSU can be slightly modified to compute multi-party private
set intersection (MPSI), and the cardinality of the intersection and union
(MPSI-CA, MPSU-CA)
Demonstrate the scalability of our MPSU protocol with an implementation
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Convert the union to the difference X ∪ Y = (X \ Y) ∪ Y
X \ Y can be computed efficiently by a combination of reverse
private membership test (RPMT) and oblivious transfer (OT)
[KRTW19]

multi-query RPMT (mq-RPMT) - query multiple times in an RPMT instance [ZCL+23]
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Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?
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Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|
So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference
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Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)
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If the output of mq-RPMT is shared to two parties, we get multi-query secret-shared
private membership test (mq-ssPMT)



Multi-Query Secret-Shared Private Membership Test (mq-ssPMT)
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a ⊥
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Similar to mq-RPMT, we can combine mq-ssPMT and OT to compute the difference
And mq-ssPMT doesn’t reveal any information



Compute X3 \ (X2 ∪ X1)
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Convert the difference of multi sets to the intersection of two
differences X3 \ (X2 ∪ X1) = (X3 \ X2) ∩ (X3 \ X1)

Compute the differences separately, and then compute the
intersection

If we use mq-RPMT, it will reveal |X3 \ X1| and |X3 \ X2|
So we need to protect the output of mq-RPMT, meanwhile
keep its ability to compute the difference

Now we have mq-ssPMT, but we can’t directly compute X3 \ X2 and X3 \ X1

And how to compute the intersection without using an MPSI protocol?
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Our approach:
Use a (3, 3) addtive secret sharing to share element x = [x]1 + [x]2 + [x]3
Use the share [x]i as the message of OT with Pi

If x ∈ X1 or x ∈ X2, the reconstruction of the secret will be randomIf x /∈ X1 and x /∈ X2, the reconstruction of the secret will be xcan reconstruct x ⇔ x /∈ X1 and x /∈ X2 ⇔ x ∈ X3 \ (X2 ∪ X1)
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Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?
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Directly sending the share of X2 \ X1 and X3 \ (X2 ∪ X1) to P1 is not secure
We should destroy the linkages of the difference set and the shares, but how?

Use a multi-party secret-shared shuffle protocol [EB22]
After shuffling, P1 collects all the shares and outputs the union
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Convert the union to the difference
X1 ∪ X2 ∪ X3 = X1 ∪ (X2 \ X1) ∪ (X3 \ (X2 ∪ X1))

Compute the differences separately and then merge them

Two problems arise:
How to compute the difference of more than two sets, such as X3 \ (X2 ∪ X1)?
The difference sets should not be revealed. How to merge them securely?

This framework can be easily extended to the setting of any number of parties
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Instantiation from mq-RPMT in [ZCL+23]
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[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based

At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
(like GMW protocol). Then S sends his share to R, and R reconstructs the output
If we omit the reconstruction phase, it’s exactly an mq-ssPMT



Instantiation from mq-RPMT in [ZCL+23]

· · · · · · · · · · · ·

GMW
{s∗1, · · · , s∗n} (k, s)

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

e0 output e0 ⊕ e1

output e0 output e1

Instantiation of Multi-Query Secret-Shared Private Membership Test 22 / 28

[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based
At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
(like GMW protocol). Then S sends his share to R, and R reconstructs the output

If we omit the reconstruction phase, it’s exactly an mq-ssPMT



Instantiation from mq-RPMT in [ZCL+23]

· · · · · · · · · · · ·

GMW
{s∗1, · · · , s∗n} (k, s)

e0 = (e1
0, · · · , en

0) ∈ {0, 1}n e1 = (e1
1, · · · , en

1) ∈ {0, 1}n

e0 output e0 ⊕ e1

output e0 output e1

Instantiation of Multi-Query Secret-Shared Private Membership Test 22 / 28

[ZCL+23] proposed two constructions of mq-RPMT, one is PKE-based, the other is
SKE-based
At the end of SKE-based mq-RPMT, the sender S and receiver R run a 2PC protocol
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Other Instantiations
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mq-ssPMT can be replaced by n instances of ssPMT [CO18; LPR+21; ZMS+21],
which only queries one item in each instance. But it increases overhead significantly
It can also be realized by circuit-PSI [PSTY19; RR22]. It can be seen as the simplest
form of circuit-PSI

▶ It means that we can construct a PSU protocol combining circuit-PSI and OT
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Experiment Results on Small Sets

Table: The comparison of SOTA and our MPSU
protocol in running time (s) in the LAN setting.

Number Protocol Set Size n
Parties k 24 26 28 210

Time

3 [VCE22] 0.56 1.71 4.84 15.36
Ours 0.10 0.10 0.11 0.14

4 [VCE22] 0.76 2.36 7.64 20.84
Ours 0.15 0.16 0.17 0.19

5 [VCE22] 1.08 3.50 10.73 26.43
Ours 0.22 0.22 0.23 0.24

7 [VCE22] 1.84 4.49 15.29 52.82
Ours 0.36 0.36 0.37 0.39

10 [VCE22] 3.15 9.12 29.65 75.58
Ours 0.58 0.62 0.63 0.68

Speedup 5× 12× 41× 109×

Table: The comparison of SOTA and our MPSU
protocol in communication cost (MB).

Number Protocol Set Size n
Parties k 24 26 28 210

Comm.

3 [VCE22] 0.16 0.56 1.82 5.68
Ours 0.15 0.16 0.28 0.96

4 [VCE22] 0.25 0.84 2.74 8.52
Ours 0.22 0.24 0.45 1.54

5 [VCE22] 0.33 1.11 3.65 11.36
Ours 0.30 0.33 0.63 2.17

7 [VCE22] 0.49 1.67 5.47 17.03
Ours 0.45 0.52 1.04 3.63

10 [VCE22] 0.74 2.51 8.21 25.55
Ours 0.69 0.83 1.77 6.30

Speedup - 3× 4× 4×
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Instantiate mq-ssPMT with the mq-RPMT in [ZCL+23], and omit all the offline costs



Experiment Results on Large Sets

Table: Running time (seconds) of our protocol in LAN and WAN settings. Each party holds n 64-bit
elements. The output length of H is ℓ = 64. Cells with - denotes trials that ran out of memory.

Setting Number Set Size n
Parties k 214 216 218 220

LAN

3 0.55 1.79 7.04 29.02
4 0.60 1.88 7.46 30.28
5 0.67 2.01 7.92 34.10
7 0.88 2.71 10.77 45.68
10 1.41 4.89 19.90 -

WAN

3 3.36 6.64 15.38 51.81
4 4.14 8.63 20.28 72.61
5 5.53 10.56 29.35 111.06
7 6.91 17.21 60.17 227.75
10 11.08 33.89 127.71 -
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Thanks for your attention!
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