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Outline of the talk

Ñ Introduction to masking and side-channel attacks

Ñ Technical and result overview

Ñ Performance comparison
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Side-channel attacks

Side-channel attacks refer to all attacks extracting information

from the physical device running a cryptographic algorithm.

‚ Timing attacks

‚ Power analysis

‚ Electromagnetic radiation analysis

‚ etc
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Security game

We have a circuit C that manipulates secret random variables

(x1, . . . , xn). The adversaryA plays the following game:

1. A learns some information on the wiresW
2. A outputs a guess (y1, . . . , yn)

3. Awins if (y1, . . . , yn) = (x1, . . . , xn)

We say that C is secure when A has no advantage over an

adversary that skips step 1.
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Adversarymodel

t-threshold probing model:

The adversary picks and learns

twires of the circuit [ISW03]

r-region probing model:

Let C1, . . . , Cm be a partition of C
into subcircuits. The adversary

picks and learns r|Ci wires in
each of the subcircuits[ADF16]

5



Masking: Secret sharing the sensitive variables

Arithmetic encoding: x0 + ...+ xd´1 = xwith x P Fd distributed

uniformly conditioned on xT1 = x.

Geometric interpretation: the

encodings of 0 are the
hyperplane H orthogonal to 1K

Algebraic interpretation: the

encodings of 0 are the ideal
(X ´ 1) ¨ R with R = F[X]/Xd,
i.e the polynomials x P Fd such

that x(1) = 0.

6



Masking: Secret sharing the sensitive variables

Arithmetic encoding: x0 + ...+ xd´1 = xwith x P Fd distributed

uniformly conditioned on xT1 = x.

Geometric interpretation: the

encodings of 0 are the
hyperplane H orthogonal to 1K

Algebraic interpretation: the

encodings of 0 are the ideal
(X ´ 1) ¨ R with R = F[X]/Xd,
i.e the polynomials x P Fd such

that x(1) = 0.

6



Masking: Secret sharing the sensitive variables

Arithmetic encoding: x0 + ...+ xd´1 = xwith x P Fd distributed

uniformly conditioned on xT1 = x.

Geometric interpretation: the

encodings of 0 are the
hyperplane H orthogonal to 1K

Algebraic interpretation: the

encodings of 0 are the ideal
(X ´ 1) ¨ R with R = F[X]/Xd,
i.e the polynomials x P Fd such

that x(1) = 0.

6



Generalization: ω-encoding

Fix an element ω P F, x0 + ωx1 + ...+ ωd´1xd´1 = xwith x P Fd

distributed uniformly conditioned on xTωd = x [GJR18].

Geometric interpretation: the

encodings of 0 are the
hyperplane H orthogonal to ωK

d

with ωd = (1 ω . . . ωd´1).

Algebraic interpretation: the

encodings of 0 are the ideal
(X ´ ω) ¨ R with R = F[X]/Xd,
i.e the polynomials x P Fd such

that x(ω) = 0.
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Masked compiler

The idea of masking to protect a circuit C is:

1. Replace each secret random variable with an encoding

2. Replace each gate with a secure gadget

3. (If needed) Refresh the randomness of the encodings every

now and then with a refresh gadget

/!z Even if C1 and C2 are probing secure, their composition in

general is not /!z
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Gadgets for arithmetic circuits

Let a,b be encodings of respectively a, b.

‚ Addition gadget: c = (a0 + b0, . . . , ad´1 + bd´1) is
d ´ 1-probing secure, and c(1) = a(1) + b(1).

‚ Multiplication gadget: Need more work to compute c s.t
c(1) = a(1)b(1) securely. Overwhelmingly most used is

[ISW03].

Ñ ISW computes all the aibj and recombines these products

with d(d ´ 1)/2 random elements
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Opening claim

Let F be a field, K be a subfield of F and ω P F. Let C be a

circuit taking as input a uniform ωd-encoding x.

Assume C is such that for all set of probes P Ă W , all the

probes in P are of the form p(x) = pTx, for some vector p P Kd.

Then, if degK(ω) ě d,we have that C is d ´ 1-probing secure.
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Proof sketch

Adversary’s view:

¨ x is uniform over a

shifted copy of ker P.

¨ ωd is NOT orthogonal to

ker P
¨ P(ωTx = x) = the

volume of the

intersection H X ker P
¨ Therefore ωT

d x is

uniform
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Abstract security notion

Reducible-To-Independent-K-Linear
Let C be a circuit and x1, . . . , xn be n uniform and independent

encodings. We say that C is RTIK when for all set of probes P,
there exists a set of probes Q = (Qi)1ďiďn such that

1. Q contains more information than P

2. |Qi| ď |P |

3. Every probe q P Qi is of the form qTxi for some vector

q P Kd.
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Important properties of RTIK circuits

Composition
If C1 and C2 are RTIK, so is their composition (in all known

examples*).

Security
If C is RTIK, then C is secure in the region-probing model.
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Security notion for refresh gadgets

The security notion to refresh the randomness of ω-encodings
between RTIK circuits is weaker.

Examples of randomness-optimal refresh gadgets that use d ´ 1
random field elements

15



Outline of the talk

Ñ Introduction to masking and side-channel attacks

Ñ Technical and result overview

Ñ Performance comparison

16



Performance comparison of multiplication
gadgets

ISW GPRV This work

Bilinear mul d2 2d dlog 3

Randomness
d(d´1)

2 d log(2d)˚ d
t-threshold d ´ 1 d/2 ´ 1 d ´ 1

*: The input and output of GPRVmust refreshed, which implies

a bigger cost in randomness not taken into account in the table.
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Performance comparison of multiplication
gadgets in the AES field

d = 2 ISW GPRV This work

Bilinear mul 4 4 3
Randomness 1 4 1

d = 4 ISW GPRV This work

Bilinear mul 16 8 9
Randomness 6 12 4

d = 8 ISW GPRV This work

Bilinear mul 64 16 27
Randomness 28 32 8
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Take away

Ñ We propose an efficient arithmetic circuit masked compiler

in the region-probing model

Ñ Number of shares bounded by the algebraic structure

available d ď [F : K]

Ñ Extra efficiency when d|[F : K]

Ñ Find out about cool techniques: eprint 2022/1540, or come

chat with me !
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Open questions and future work

‚ Implementation to determine whether this work is an

improvement in practice

‚ Prove the security in more realistic models

‚ Formal verification of security for implementations

‚ Efficient gadgets for equality/inequality test, conversions

‚ Lift the upper bound on the number of probes
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Thank you for your attention !
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