# Exploiting Algebraic Structures in Probing Security

Maxime Plançon<sup>12</sup>

<sup>1</sup>IBM Research Zurich <sup>2</sup>ETH Zurich

#### Outline of the talk

- $\rightarrow$  Introduction to masking and side-channel attacks
- $\rightarrow$  Technical and result overview
- $\rightarrow$  Performance comparison

# Side-channel attacks

Side-channel attacks refer to all attacks extracting information from the physical device running a cryptographic algorithm.

- Timing attacks
- Power analysis
- Electromagnetic radiation analysis
- etc

# Security game

We have a circuit C that manipulates secret random variables  $(x_1, \ldots, x_n)$ . The adversary A plays the following game:

- 1.  $\mathcal{A}$  learns some information on the wires  $\mathcal{W}$
- **2.**  $\mathcal{A}$  outputs a guess  $(y_1, \ldots, y_n)$
- **3.** *A* wins if  $(y_1, ..., y_n) = (x_1, ..., x_n)$

# Security game

We have a circuit C that manipulates secret random variables  $(x_1, \ldots, x_n)$ . The adversary A plays the following game:

- 1.  $\mathcal{A}$  learns some information on the wires  $\mathcal{W}$
- **2.**  $\mathcal{A}$  outputs a guess  $(y_1, \ldots, y_n)$
- **3.** *A* wins if  $(y_1, ..., y_n) = (x_1, ..., x_n)$

We say that C is secure when A has no advantage over an adversary that skips step 1.

#### Adversary model

 $\frac{t$ -threshold probing model: The adversary picks and learns t wires of the circuit [ISW03] <u>*r*-region probing model:</u> Let  $C_1, \ldots, C_m$  be a partition of C into subcircuits. The adversary picks and learns  $r|C_i$  wires in each of the subcircuits[ADF16]

#### Masking: Secret sharing the sensitive variables

Arithmetic encoding:  $x_0 + ... + x_{d-1} = x$  with  $\mathbf{x} \in \mathbb{F}^d$  distributed uniformly conditioned on  $\mathbf{x}^T \mathbf{1} = x$ .

#### Masking: Secret sharing the sensitive variables

Arithmetic encoding:  $x_0 + ... + x_{d-1} = x$  with  $\mathbf{x} \in \mathbb{F}^d$  distributed uniformly conditioned on  $\mathbf{x}^T \mathbf{1} = x$ .

Geometric interpretation: the encodings of 0 are the hyperplane H orthogonal to  $\mathbf{1}^{\perp}$ 

#### Masking: Secret sharing the sensitive variables

Arithmetic encoding:  $x_0 + ... + x_{d-1} = x$  with  $\mathbf{x} \in \mathbb{F}^d$  distributed uniformly conditioned on  $\mathbf{x}^T \mathbf{1} = x$ .

Geometric interpretation: the encodings of 0 are the hyperplane H orthogonal to  $\mathbf{1}^{\perp}$  Algebraic interpretation: the encodings of 0 are the ideal  $(X-1) \cdot R$  with  $R = \mathbb{F}[X]/X^d$ , i.e the polynomials  $\mathbf{x} \in \mathbb{F}^d$  such that  $\mathbf{x}(1) = 0$ .

#### Generalization: $\omega$ -encoding

Fix an element  $\omega \in \mathbb{F}$ ,  $x_0 + \omega x_1 + \ldots + \omega^{d-1} x_{d-1} = x$  with  $\mathbf{x} \in \mathbb{F}^d$  distributed uniformly conditioned on  $\mathbf{x}^T \boldsymbol{\omega}_d = x$  [GJR18].

Geometric interpretation: the encodings of 0 are the hyperplane *H* orthogonal to  $\boldsymbol{\omega}_d^{\perp}$ with  $\boldsymbol{\omega}_d = (1 \ \omega \ \dots \ \omega^{d-1})$ . Algebraic interpretation: the encodings of 0 are the ideal  $(X - \omega) \cdot R$  with  $R = \mathbb{F}[X]/X^d$ , i.e the polynomials  $\mathbf{x} \in \mathbb{F}^d$  such that  $\mathbf{x}(\omega) = 0$ .

#### Masked compiler

The idea of masking to protect a circuit  $\mathcal{C}$  is:

1. Replace each secret random variable with an encoding

### Masked compiler

The idea of masking to protect a circuit  $\mathcal{C}$  is:

- 1. Replace each secret random variable with an encoding
- 2. Replace each gate with a secure gadget

# **Masked compiler**

The idea of masking to protect a circuit C is:

- 1. Replace each secret random variable with an encoding
- 2. Replace each gate with a secure gadget
- 3. (If needed) Refresh the randomness of the encodings every now and then with a refresh gadget

 $\underline{/!\backslash} \text{ Even if } \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ are probing secure, their composition in general is not } /!\backslash$ 

# Gadgets for arithmetic circuits

Let  $\mathbf{a}, \mathbf{b}$  be encodings of respectively a, b.

• Addition gadget:  $\mathbf{c} = (a_0 + b_0, \dots, a_{d-1} + b_{d-1})$  is  $\overline{d-1}$ -probing secure, and  $\mathbf{c}(1) = \mathbf{a}(1) + \mathbf{b}(1)$ .

# Gadgets for arithmetic circuits

Let  $\mathbf{a}, \mathbf{b}$  be encodings of respectively a, b.

- Addition gadget:  $\mathbf{c} = (a_0 + b_0, \dots, a_{d-1} + b_{d-1})$  is  $\overline{d-1}$ -probing secure, and  $\mathbf{c}(1) = \mathbf{a}(1) + \mathbf{b}(1)$ .
- Multiplication gadget: Need more work to compute c s.t  $\overline{c(1) = a(1)b(1)}$  securely. Overwhelmingly most used is [ISW03].

# Gadgets for arithmetic circuits

Let  $\mathbf{a}, \mathbf{b}$  be encodings of respectively a, b.

- Addition gadget:  $\mathbf{c} = (a_0 + b_0, \dots, a_{d-1} + b_{d-1})$  is  $\overline{d-1}$ -probing secure, and  $\mathbf{c}(1) = \mathbf{a}(1) + \mathbf{b}(1)$ .
- Multiplication gadget: Need more work to compute c s.t  $\overline{c(1) = a(1)b(1)}$  securely. Overwhelmingly most used is [ISW03].

 $\rightarrow$  ISW computes all the  $a_i b_j$  and recombines these products with d(d-1)/2 random elements

#### Outline of the talk

- $\rightarrow$  Introduction to masking and side-channel attacks
- $\rightarrow$  Technical and result overview
- $\rightarrow$  Performance comparison

# **Opening claim**

Let  $\mathbb{F}$  be a field, K be a subfield of  $\mathbb{F}$  and  $\omega \in \mathbb{F}$ . Let  $\mathcal{C}$  be a circuit taking as input a uniform  $\omega_d$ -encoding x.

# **Opening claim**

Let  $\mathbb{F}$  be a field, K be a subfield of  $\mathbb{F}$  and  $\omega \in \mathbb{F}$ . Let  $\mathcal{C}$  be a circuit taking as input a uniform  $\omega_d$ -encoding x.

Assume C is such that for all set of probes  $P \subset W$ , all the probes in P are of the form  $p(\mathbf{x}) = \mathbf{p}^T \mathbf{x}$ , for some vector  $\mathbf{p} \in K^d$ .

# **Opening claim**

Let  $\mathbb{F}$  be a field, K be a subfield of  $\mathbb{F}$  and  $\omega \in \mathbb{F}$ . Let  $\mathcal{C}$  be a circuit taking as input a uniform  $\omega_d$ -encoding x.

Assume C is such that for all set of probes  $P \subset W$ , all the probes in P are of the form  $p(\mathbf{x}) = \mathbf{p}^T \mathbf{x}$ , for some vector  $\mathbf{p} \in K^d$ .

Then, if  $\deg_K(\omega) \ge d$ , we have that C is d-1-probing secure.



Adversary's view:  $\cdot$  x is uniform over a shifted copy of ker P.



Adversary's view:  $\cdot \mathbf{x}$  is uniform over a shifted copy of ker **P**.  $\cdot \boldsymbol{\omega}_d$  is NOT orthogonal to ker **P** 



Adversary's view:  $\cdot \mathbf{x}$  is uniform over a shifted copy of ker  $\mathbf{P}$ .  $\cdot \omega_d$  is NOT orthogonal to  $\ker \mathbf{P}$  $\cdot \mathbb{P}(\omega^T \mathbf{x} = x) = \mathsf{the}$ volume of the intersection  $H \cap \ker \mathbf{P}$ 



Adversary's view:  $\cdot \mathbf{x}$  is uniform over a shifted copy of  $\ker \mathbf{P}$ .  $\cdot \omega_d$  is NOT orthogonal to ker **P**  $\cdot \mathbb{P}(\omega^T \mathbf{x} = x) = \mathsf{the}$ volume of the intersection  $H \cap \ker \mathbf{P}$ · Therefore  $\boldsymbol{\omega}_d^T \mathbf{x}$  is uniform

## Abstract security notion

# Reducible-To-Independent-K-Linear

Let C be a circuit and  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  be n uniform and independent encodings. We say that C is RTIK when for all set of probes P, there exists a set of probes  $Q = (Q_i)_{1 \le i \le n}$  such that

- **1**. Q contains more information than P
- **2.**  $|Q_i| \le |P|$
- 3. Every probe  $q \in Q_i$  is of the form  $\mathbf{q}^T \mathbf{x}_i$  for some vector  $\mathbf{q} \in K^d$ .

#### Important properties of RTIK circuits

Composition If  $C_1$  and  $C_2$  are RTIK, so is their composition (in all known examples<sup>\*</sup>).

### Important properties of RTIK circuits

Composition If  $C_1$  and  $C_2$  are RTIK, so is their composition (in all known examples<sup>\*</sup>).

Security If C is RTIK, then C is secure in the region-probing model.

### Security notion for refresh gadgets

The security notion to refresh the randomness of  $\omega$ -encodings between RTIK circuits is weaker.

Examples of randomness-optimal refresh gadgets that use d-1 random field elements

#### Outline of the talk

- $\rightarrow$  Introduction to masking and side-channel attacks
- $\rightarrow$  Technical and result overview
- $\rightarrow$  Performance comparison

# Performance comparison of multiplication gadgets

|                     | ISW                | GPRV          | This work    |
|---------------------|--------------------|---------------|--------------|
| Bilinear mul        | $d^2$              | 2d            | $d^{\log 3}$ |
| Randomness          | $\frac{d(d-1)}{2}$ | $d\log(2d)^*$ | d            |
| <i>t</i> -threshold | d-1                | d/2 - 1       | d-1          |

\*: The input and output of GPRV must refreshed, which implies a bigger cost in randomness not taken into account in the table.

# Performance comparison of multiplication gadgets in the AES field

| d = 2        | ISW | GPRV | This work |
|--------------|-----|------|-----------|
| Bilinear mul | 4   | 4    | 3         |
| Randomness   | 1   | 4    | 1         |

| d = 4        | ISW | GPRV | This work |
|--------------|-----|------|-----------|
| Bilinear mul | 16  | 8    | 9         |
| Randomness   | 6   | 12   | 4         |

| d = 8        | ISW | GPRV | This work |
|--------------|-----|------|-----------|
| Bilinear mul | 64  | 16   | 27        |
| Randomness   | 28  | 32   | 8         |

 $\rightarrow$  We propose an efficient arithmetic circuit masked compiler in the region-probing model

 $\rightarrow$  We propose an efficient arithmetic circuit masked compiler in the region-probing model

 $\rightarrow$  Number of shares bounded by the algebraic structure available  $d \leqslant [\mathbb{F}:K]$ 

 $\rightarrow$  We propose an efficient arithmetic circuit masked compiler in the region-probing model

 $\rightarrow$  Number of shares bounded by the algebraic structure available  $d \leqslant [\mathbb{F}:K]$ 

 $\rightarrow$  Extra efficiency when  $d|[\mathbb{F}:K]$ 

 $\rightarrow$  We propose an efficient arithmetic circuit masked compiler in the region-probing model

 $\rightarrow$  Number of shares bounded by the algebraic structure available  $d \leqslant [\mathbb{F}:K]$ 

 $\rightarrow$  Extra efficiency when  $d|[\mathbb{F}:K]$ 

 $\rightarrow$  Find out about cool techniques: eprint 2022/1540, or come chat with me !

• Implementation to determine whether this work is an improvement in practice

- Implementation to determine whether this work is an improvement in practice
- Prove the security in more realistic models

- Implementation to determine whether this work is an improvement in practice
- Prove the security in more realistic models
- Formal verification of security for implementations

- Implementation to determine whether this work is an improvement in practice
- Prove the security in more realistic models
- Formal verification of security for implementations
- Efficient gadgets for equality/inequality test, conversions

- Implementation to determine whether this work is an improvement in practice
- Prove the security in more realistic models
- Formal verification of security for implementations
- Efficient gadgets for equality/inequality test, conversions
- Lift the upper bound on the number of probes

#### Thank you for your attention !

#### **References I**

Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust, Circuit compilers with o (1/\log (n)) o (1/log (n)) leakage rate, Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, Springer, 2016, pp. 586–615.

# **References II**

- Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain, How to securely compute with noisy leakage in quasilinear complexity, International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2018, pp. 547–574.
- Yuval Ishai, Amit Sahai, and David Wagner, Private circuits: Securing hardware against probing attacks, Advances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara, California, USA,

#### **References III**

# August 17-21, 2003. Proceedings 23, Springer, 2003, pp. 463–481.