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Differential Cryptanalysis
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X ′0 = ∆0
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Proposed by [BS,Crypto’91]

Probability: ∆0 → ∆2

Traditionally studied using statistical
method

Probability: ∆0 → ∆1 with p0
Probability: ∆1 → ∆2 with p1
Probability: p = p0p1
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Linear Cryptanalysis
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Proposed by [Mat,Eurocypt’93]

Correlation: Γ0 → Γ1

Traditionally studied using statistical
method

Correlation: Γ0 → Γ1 with ε0
Correlation: Γ1 → Γ2 with ε1
Correlation: ε = ε0ε1
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Differential-Linear Cryptanalysis
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Γ1

(Assume Γ1∆1 = 0)
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E0

E1

p

ε

Proposed by [LH,Crypto’94]

Cor.: Γ2(X2 ⊕X ′2) w/ X0 ⊕X ′0 = ∆0

Traditionally studied using statistical
2-phase method

E = E1 ◦ E0

Probability: ∆0 → ∆1 with p
Correlation: Γ1 → Γ2 with ε
DL correlation: pε2

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective 5 / 25



Higher-Order Differential-Linear Cryptanalysis
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ε

(Assume Γ1∆1 = 0)

Γ2

Proposed by [BDK,FSE’05]

Cor.: Γ2 (
⊕
X2) with X0, X

′
0, . . . being a

HD structure

Traditionally studied using statistical
2-phase method

E = E1 ◦ E0

Probability of HD of E0 is p
Correlation: Γ1 → Γ2 with ε
Correlation of HDL: pε2

d

Limitations
No method for a probabilistic HD

If ε < 1, HDL correlation goes to zero
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Higher-Order Differential-Linear Cryptanalysis
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Algebraic Transitional Form

X0

⊕
X ′0 = ∆0
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(Assume Γ1∆1 = 0)

Γ2
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E0

E1

p

ε

Proposed by [LLL,Crypto’21]

An algebraic perspective

DL cor. = cor. of Γ2(X2 ⊕X ′2)

The form of output difference can be
derived from a recursive method

X1,∆1 are functions of X0

Γ2(X2 ⊕X ′2) is a function of X1,∆1
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Contributions

HATF: to generalize the ATF to the higher-order case

HATF can predict the probabilistic bias of a HDL approximation
New distinguishers/key-recovery attacks on Ascon and Xoodyak

DSF: to linearize Ascon permutation

Improved zero-sum distinguishers for Ascon permutations
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HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]
f : Fn

2 → F2 and an `th-order input difference ∆ = (∆0, . . . ,∆`−1) for a certain
input X ∈ Fn

2 . The `
th derivative of f is calculated as

D∆f(X) =
⊕

a∈X⊕span(∆)

f(a)

Prop. (Algebraic Perspective on HD/HDL)
Let

M : F`
2 → X ⊕ span(∆)

(x0, x1, . . . , x`−1) 7→ X ⊕ x0∆0 ⊕ · · · ⊕ x`−1∆`−1 , X ⊕ x∆

We have
D∆f(X) =

⊕
x∈F`

2

f(X ⊕ x∆) = Dxf(X ⊕ x∆)

Expression of HD: Coe (f(X ⊕ x∆),x)
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Higher-Order Algebraic Transitional Form

Iterative Cipher
Ciphers are iterative composed of simple round functions

E = ER−1 ◦ ER−2 ◦ · · ·E1 ◦ E0, Er : Fn
2 → Fn

2

We can construct the expression of HD in an iterative method
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Construction of Higher-Order Algebraic Transitional Form

Write X ⊕ x∆ as
⊕

u∈F`
2
αux

u:

αu =


X, u = 0

∆i, u = ei

0, otherwise

Input
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α
(R)
10

α
(R)
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α
(R)
00 ⊕ α

(R)
10 x0 ⊕ α(R)

01 x1 ⊕ α(R)
11 x0x1
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Construction of Higher-Order Algebraic Transitional Form
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Construction of Higher-Order Algebraic Transitional Form
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Construction of Higher-Order Algebraic Transitional Form

Connecting all round functions, we obtain HATF of E,
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Construction of Higher-Order Algebraic Transitional Form

Time complexity of constructing the HATF:

Dominated by the calculations of ANFs round by round
Most time-consuming step is to calculate the d-degree monomials for⊕

u∈F`
2
α
(r)
u xu

2d` multiplications/additions
Final time complexity: O(2d`) (detailed analysis can be found in the paper)

Input

α
(0)
00

α
(0)
01

α
(0)
10

α
(0)
11

α
(0)
00 ⊕ α

(0)
01 x0 ⊕ α

(0)
10 x1

Round 1

α
(1)
00

α
(1)
01

α
(1)
10

α
(1)
11

α
(1)
00 ⊕ α

(1)
01 x0 ⊕ α(1)

10 x1 ⊕ α(1)
11 x0x1

Round 2

α
(1)
00

α
(1)
01

α
(1)
10

α
(1)
11

α
(2)
00 ⊕ α

(2)
01 x0 ⊕ α(2)

10 x1 ⊕ α(2)
11 x0x1

Round R

α
(R)
00

α
(R)
01

α
(R)
10

α
(R)
11

α
(R)
00 ⊕ α

(R)
10 x0 ⊕ α(R)

01 x1 ⊕ α(R)
11 x0x1

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective 13 / 25



Computing the Bias of HDL

α
(R)
1 is a composite form:(

α(0)
u , u ∈ Fn

2

)
E0−→ · · · ER−2−−−→

(
α(R−1)
u , u ∈ Fn

2

) ER−1−−−→ α
(R)
1

Lemma (LLL, Crypto’21)
Assume the bias of x0, x1, . . . , xn−1 are ε0, ε1, . . . , εn−1, respectively.

Bias(f) =
∑

x0,x1,...,xn−1

s.t.f(x0,...,xn−1)=0

n−1∏
i=0

(
1

2
+ (−1)xiεi

)
− 1

2

Time complexity is exponential in the number of variables in the ANF

The number of variables is at most d× 2`

Final time complexity: O(2`+d×2`) (detailed analysis can be found in the paper)
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Reduce the Complexity for Primitives with Quadratic Round
Functions

Primitives with quadratic round functions are more and more popular

Higher-order differential related attacks are one of the main threats

Quadratic Boolean function can be transformed into a disjoint form [JA, 1977]

f = x0x1 + x2x3 (X)

f = x0x1 + x0x2 (×)
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Reduce the Complexity for Primitives with Quadratic Round
Functions

A quicker method

Apply a linear substitution to all the variables to make f be disjoint
f = g ◦M(x0, x1, . . . , xn−1)

Compute the correlation of new variables by Piling-up lemma
y = x0 ⊕ x1 ⊕ x2 ⊕ · · ·

Compute the correlation of each individual part
g = x0x1 + x0 + x1 + 1

Compute the correlation of f
f = g0 ⊕ g1 ⊕ g2 · · ·
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Reduce the Complexity for Primitives with Quadratic Round
Functions

A quicker method

The variable substitution is the most time-consuming: O(n3.8)

(n is the number of variables)

The number of variables in an ANF is 2× 2`

Final time complexity: O(23.8`)
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Assumption Made for the Method

Assumption

The construction of HATF does not require assumptions

The calculation of bias of variables requires the variables to be independent

Trouble and Solution
If a variable is linear, then it is more risky not to be independent

α(r+1)
u [i] = α(r)

u [i0]⊕ α(r)
u [i1]⊕ · · ·
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The calculation of bias of variables requires the variables to be independent

Trouble and Solution
If a variable is linear, then it is more risky not to be independent

Not introduce new variables
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Assumption Made for the Method

Assumption

The construction of HATF does not require assumptions

The calculation of bias of variables requires the variables to be independent

Trouble and Solution

Different bits of α(r)
u can be highly related

α(r)
u [i] = α(r)

u [j] or α(r)
u [i] = α(r)

u [j] + 1
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Assumption Made for the Method

Assumption

The construction of HATF does not require assumptions

The calculation of bias of variables requires the variables to be independent

Trouble and Solution

Different bits of α(r)
u can be highly related

α
(r)
u [i] can be represented by α(r)

u [j]
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Precision of HATF

Some curves for 2nd order HDL of 4-round Ascon initialization
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Precision of HATF

Curve of one 2th-order HDL for 4-round Ascon initialization
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Precision of HATF

Some curves for 2nd order HDL of 5-round Ascon initialization:
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Precision of HATF

Some curves for 3rd to 8th order HDL of 5-round Ascon initialization:
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Precision of HATF

Curve of one 8th-order HDL for 5-round Ascon initialization
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Precision of HATF

Discussion on Precision

HATF CANNOT provide any upper/lower bound for HDL biases

Quite precise to predict biased bits

When the reported bias is high, the real bias is also high

We have not observed any counterexamples during our experiments
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Results

Results for Ascon initialization

Primitive Round Order Bias Method Reference
Expr. Theory

Ascon Init.

4 1st 2−2

2−20 Classical [DEMS, CT-RSA’15]
2−5 DLCT [BDKW, Eurocrypt’19]
2−2.365 ATF [LLL, Crypto’21]
2−2.09 HATF Here

2nd 2−1 2−1 HATF Here

5

1st 2−9 – Experimental [DEMS, CT-RSA’15]
2−10 HATF Here

2nd 2−6.60 2−7.05 HATF Here

8th 2−3.35 2−4.73 HATF Here

6 3rd 2−22† 2−25.97† HATF Here

† This bias holds when 24 conditions are satisfied
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Results

Primitive Round Order Bias Method Reference
Expr. Theory

Xoodyak Init. 4
1st

2−9.7 – Experimental [DW, SAC’22]
2−9.67 HATF Here

−2−5.36 – Experimental [DW, SAC’22]
−2−6.0 HATF Here

2nd 2−5.72 2−5.72 HATF Here

4th 2−1 2−1 HATF Here

5 2nd – 2−45 HATF Here

Xoodoo 4 - 2−1 2−1 Rot. DL [LSL, Eurocrypt’21]
4th 2−1 2−1 HATF Here

5 3rd 2−8.79 2−8.96 HATF Here
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Differential Supporting Function

We know:

D∆f(X) =
⊕
x∈F`

2

f(X ⊕ x∆) = Dxf(X ⊕ x∆)

X and ∆ are parameters

With X and ∆ being properly chosen, Dxf(X ⊕ x∆) can be made simpler
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DSF on Ascon Permutation

x4

x3

x2

x1

x0

Intuition: Let all Sboxes have the same X̄ + x∆̄

32× 31 = 992 choices

Evaluate the algebraic degree of r-round Ascon with X = X̄64, ∆ = ∆̄64
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DSF on Ascon Permutation

(X̄, ∆̄) ∈

{
(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),

(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}

Round r Upper bounds on the algebraic degree

S(r)[0] S(r)[1] S(r)[2] S(r)[3] S(r)[4]

4 3 3 2 2 3
5 6 5 5 6 6
6 11 11 12 12 11
7 23 24 23 23 22
8 47 47 45 46 47
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Improved Zero-Sum Results for Ascon Permutation

New zero-sum distinguishers on Ascon permutation:

Type Rnd Data(log) Time (log) Method Reference

From Start 8 130 130 Integral [Todo, Eurocrypt’15]
48 48 HD Here

Best 11 315 315 Integral [Todo, Eurocrypt’15]

Inside-outside 12 130 130 Zero-Sum [Todo, Eurocrypt’15]
55 55 Zero-Sum Here

Discussion on the new zero-sum distinguishers

The inputs (outputs) are fixed, so they are different from/weaker than the
previous zero-sum distinguishers (derived from division property)

More information is captured
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Conclusion

A generalization of the algebraic perspective on DL to HDL cases

The first theoretical method for a probabilistic HDL distinguisher: HATF

Improved distinguishers/key-recovery attacks for some round-reduced Ascon
and Xoodyak

A systematic method for linearization and finding zero-sum distinguishers for
Ascon: DSF

Thank You!
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