Revisiting Higher-Order Differential-Linear Attacks from

 an Algebraic PerspectiveKai Hu, Thomas Peyrin, Quan Quan Tan, and Trevor Yap

Nanyang Technological University

December 7, 2023 Guangzhou, China

NANYANG
 TECHNOLOGICAL UNIVERSITY
 SINGAPORE

Contents

(1) Background
(2) Contribution
(3) Higher-Order Algebraic Transitional Form

4 Differential Supporting Function
(5) Conclusion

Differential Cryptanalysis

- Proposed by [BS,Crypto'91]
- Probability: $\Delta_{0} \rightarrow \Delta_{2}$
- Traditionally studied using statistical method
- Probability: $\Delta_{0} \rightarrow \Delta_{1}$ with p_{0}
- Probability: $\Delta_{1} \rightarrow \Delta_{2}$ with p_{1}
- Probability: $p=p_{0} p_{1}$

Linear Cryptanalysis

- Proposed by [Mat,Eurocypt'93]
- Correlation: $\Gamma_{0} \rightarrow \Gamma_{1}$
- Traditionally studied using statistical method
- Correlation: $\Gamma_{0} \rightarrow \Gamma_{1}$ with ϵ_{0}
- Correlation: $\Gamma_{1} \rightarrow \Gamma_{2}$ with ϵ_{1}
- Correlation: $\epsilon=\epsilon_{0} \epsilon_{1}$

Differential-Linear Cryptanalysis

Higher-Order Differential-Linear Cryptanalysis

- Proposed by [BDK,FSE'05]
$X_{0} \quad X_{0}^{\prime} \quad X_{0}^{\prime \prime} \quad X_{0}^{\prime \prime \prime}$ structure

- Cor.: $\Gamma_{2}\left(\bigoplus X_{2}\right)$ with $X_{0}, X_{0}^{\prime}, \ldots$ being a HD structure
- Traditionally studied using statistical 2-phase method
- $E=E_{1} \circ E_{0}$
- Probability of HD of E_{0} is p
- Correlation: $\Gamma_{1} \rightarrow \Gamma_{2}$ with ϵ
- Correlation of HDL: $p \epsilon^{2^{d}}$

Higher-Order Differential-Linear Cryptanalysis

- Proposed by [BDK,FSE'05]
$X_{0} \quad X_{0}^{\prime} \quad X_{0}^{\prime \prime} \quad X_{0}^{\prime \prime \prime}$ structure

- Cor.: $\Gamma_{2}\left(\bigoplus X_{2}\right)$ with $X_{0}, X_{0}^{\prime}, \ldots$ being a HD structure
- Traditionally studied using statistical 2-phase method
- $E=E_{1} \circ E_{0}$
- Probability of HD of E_{0} is p
- Correlation: $\Gamma_{1} \rightarrow \Gamma_{2}$ with ϵ
- Correlation of HDL: $p \epsilon^{2^{d}}$

Limitations

- No method for a probabilistic HD
- If $\epsilon<1$, HDL correlation goes to zero

Algebraic Transitional Form

$$
\begin{aligned}
& X_{0} \quad \oplus \quad X_{0}^{\prime} \quad=\Delta_{0} \\
& \epsilon \\
& \Gamma_{2}
\end{aligned}
$$

Algebraic Transitional Form

Algebraic Transitional Form

$X_{0} \oplus x \Delta_{0}$	
\downarrow	
f	- Proposed by [LLL, Crypto'21]
\downarrow	- An algebraic perspective
$X_{1} \oplus x \Delta_{1}$	- DL cor. $=$ cor. of $\Gamma_{2}\left(X_{2} \oplus X_{2}^{\prime}\right)$
\downarrow	- The form of output difference can be derived from a recursive method
f \downarrow	- X_{1}, Δ_{1} are functions of X_{0} - $\Gamma_{2}\left(X_{2} \oplus X_{2}^{\prime}\right)$ is a function of X_{1}, Δ_{1}

Contents

(1) Background
(2) Contribution
(3) Higher-Order Algebraic Transitional Form
4) Differential Supporting Function
(5) Conclusion

Contributions

- HATF: to generalize the ATF to the higher-order case
- HATF can predict the probabilistic bias of a HDL approximation
- New distinguishers/key-recovery attacks on Ascon and Xoodyak
- DSF: to linearize Ascon permutation
- Improved zero-sum distinguishers for Ascon permutations

Contents

(1) Background

(2) Contribution
(3) Higher-Order Algebraic Transitional Form

4 Differential Supporting Function
(5) Conclusion

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ and an $\ell^{t h}$-order input difference $\boldsymbol{\Delta}=\left(\Delta_{0}, \ldots, \Delta_{\ell-1}\right)$ for a certain input $X \in \mathbb{F}_{2}^{n}$. The $\ell^{t h}$ derivative of f is calculated as

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{a \in X \oplus \operatorname{span}(\boldsymbol{\Delta})} f(a)
$$

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ and an $\ell^{t h}$-order input difference $\boldsymbol{\Delta}=\left(\Delta_{0}, \ldots, \Delta_{\ell-1}\right)$ for a certain input $X \in \mathbb{F}_{2}^{n}$. The $\ell^{t h}$ derivative of f is calculated as

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{a \in X \oplus \operatorname{span}(\boldsymbol{\Delta})} f(a)
$$

Prop. (Algebraic Perspective on HD/HDL)

Let

$$
\begin{aligned}
\mathcal{M}: \mathbb{F}_{2}^{\ell} & \rightarrow X \oplus \operatorname{span}(\boldsymbol{\Delta}) \\
\left(x_{0}, x_{1}, \ldots, x_{\ell-1}\right) & \mapsto X \oplus x_{0} \Delta_{0} \oplus \cdots \oplus x_{\ell-1} \Delta_{\ell-1} \triangleq X \oplus \boldsymbol{x} \boldsymbol{\Delta}
\end{aligned}
$$

We have

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{\ell}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})=D_{\boldsymbol{x}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})
$$

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ and an $\ell^{t h}$-order input difference $\boldsymbol{\Delta}=\left(\Delta_{0}, \ldots, \Delta_{\ell-1}\right)$ for a certain input $X \in \mathbb{F}_{2}^{n}$. The $\ell^{t h}$ derivative of f is calculated as

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{a \in X \oplus \operatorname{span}(\boldsymbol{\Delta})} f(a)
$$

Prop. (Algebraic Perspective on HD/HDL)

Let

$$
\begin{aligned}
\mathcal{M}: \mathbb{F}_{2}^{\ell} & \rightarrow X \oplus \operatorname{span}(\boldsymbol{\Delta}) \\
\left(x_{0}, x_{1}, \ldots, x_{\ell-1}\right) & \mapsto X \oplus x_{0} \Delta_{0} \oplus \cdots \oplus x_{\ell-1} \Delta_{\ell-1} \triangleq X \oplus \boldsymbol{x} \boldsymbol{\Delta}
\end{aligned}
$$

We have

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{\ell}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})=D_{\boldsymbol{x}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})
$$

$$
\text { Expression of HD: Coe }(f(X \oplus \boldsymbol{x} \boldsymbol{\Delta}), \boldsymbol{x})
$$

Higher-Order Algebraic Transitional Form

Iterative Cipher

Ciphers are iterative composed of simple round functions

$$
E=E_{R-1} \circ E_{R-2} \circ \cdots E_{1} \circ E_{0}, \quad E_{r}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}
$$

We can construct the expression of HD in an iterative method

Construction of Higher-Order Algebraic Transitional Form

Write $X \oplus \boldsymbol{x} \boldsymbol{\Delta}$ as $\bigoplus_{u \in \mathbb{F}_{2}^{\ell}} \alpha_{u} \boldsymbol{x}^{u}$:

$$
\alpha_{u}= \begin{cases}X, & u=0 \\ \Delta_{i}, & u=e_{i} \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

$\alpha_{00}^{(0)} \oplus \alpha_{01}^{(0)} x_{0} \oplus \alpha_{10}^{(0)} x_{1}$

Construction of Higher-Order Algebraic Transitional Form

Apply E_{r} to $\bigoplus_{u \in \mathbb{F}_{2}^{e}} \alpha_{u}^{(r)} \boldsymbol{x}^{u}$

$$
\bigoplus_{u \in \mathbb{F}_{2}^{\ell}} \alpha_{u}^{(r+1)} \boldsymbol{x}^{u}=E_{r}\left(\bigoplus_{u \in \mathbb{F}_{2}^{\ell}} \alpha_{u}^{(r)} \boldsymbol{x}^{u}\right)
$$

$\alpha_{00}^{(0)} \oplus \alpha_{01}^{(0)} x_{0} \oplus \alpha_{10}^{(0)} x_{1} \quad \alpha_{00}^{(1)} \oplus \alpha_{01}^{(1)} x_{0} \oplus \alpha_{10}^{(1)} x_{1} \oplus \alpha_{11}^{(1)} x_{0} x_{1}$

Construction of Higher-Order Algebraic Transitional Form

$\alpha_{u}^{(r+1)}$ is a function of $\alpha_{u}^{(r)}$

$$
\alpha_{u}^{(r+1)}=\operatorname{Coe}\left(E_{r}\left(\bigoplus_{u \in \mathbb{F}_{2}^{\ell}} \alpha_{u}^{(r)} \boldsymbol{x}^{u}\right), \boldsymbol{x}^{u}\right)
$$

Construction of Higher-Order Algebraic Transitional Form

Connecting all round functions, we obtain HATF of E,

$$
\mathcal{E}=\mathcal{E}_{R-1} \circ \mathcal{E}_{R-2} \circ \cdots \circ \mathcal{E}_{0}, \quad \mathcal{E}_{r}:\left(\mathbb{F}_{2}^{n}\right)^{2^{\ell}} \rightarrow\left(\mathbb{F}_{2}^{n}\right)^{2^{\ell}}
$$

$$
\alpha_{00}^{(0)} \oplus \alpha_{01}^{(0)} x_{0} \oplus \alpha_{10}^{(0)} x_{1} \quad \alpha_{00}^{(1)} \oplus \alpha_{01}^{(1)} x_{0} \oplus \alpha_{10}^{(1)} x_{1} \oplus \alpha_{11}^{(1)} x_{0} x_{1} \quad \alpha_{00}^{(2)} \oplus \alpha_{01}^{(2)} x_{0} \oplus \alpha_{10}^{(2)} x_{1} \oplus \alpha_{11}^{(2)} x_{0} x_{1}
$$

$$
\alpha_{00}^{(R)} \oplus \alpha_{10}^{(R)} x_{0} \oplus \alpha_{01}^{(R)} x_{1} \oplus \alpha_{11}^{(R)} x_{0} x_{1}
$$

Construction of Higher-Order Algebraic Transitional Form

Time complexity of constructing the HATF:

- Dominated by the calculations of ANFs round by round
- Most time-consuming step is to calculate the d-degree monomials for

$$
\bigoplus_{u \in \mathbb{F}_{2}^{\ell}} \alpha_{u}^{(r)} \boldsymbol{x}^{u}
$$

- $2^{d \ell}$ multiplications/additions
- Final time complexity: $\mathcal{O}\left(2^{d \ell}\right)$ (detailed analysis can be found in the paper)

Computing the Bias of HDL

$\alpha_{1}^{(R)}$ is a composite form:

$$
\left(\alpha_{u}^{(0)}, u \in \mathbb{F}_{2}^{n}\right) \xrightarrow{\mathcal{E}_{0}} \cdots \xrightarrow{\mathcal{E}_{R-2}}\left(\alpha_{u}^{(R-1)}, u \in \mathbb{F}_{2}^{n}\right) \xrightarrow{\mathcal{E}_{R-1}} \alpha_{\mathbf{1}}^{(R)}
$$

Lemma (LLL, Crypto'21)

Assume the bias of $x_{0}, x_{1}, \ldots, x_{n-1}$ are $\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n-1}$, respectively.

$$
\operatorname{Bias}(f)=\sum_{\substack{x_{0}, x_{1}, \ldots, x_{n-1} \\ \text { s.t.f } f\left(x_{0}, \ldots, x_{n-1}\right)=0}} \prod_{i=0}^{n-1}\left(\frac{1}{2}+(-1)^{x_{i}} \varepsilon_{i}\right)-\frac{1}{2}
$$

- Time complexity is exponential in the number of variables in the ANF
- The number of variables is at most $d \times 2^{\ell}$
- Final time complexity: $\mathcal{O}\left(2^{\ell+d \times 2^{\ell}}\right)$ (detailed analysis can be found in the paper)

Reduce the Complexity for Primitives with Quadratic Round Functions

- Primitives with quadratic round functions are more and more popular
- Higher-order differential related attacks are one of the main threats

Quadratic Boolean function can be transformed into a disjoint form [JA, 1977]

$$
\begin{aligned}
& f=x_{0} x_{1}+x_{2} x_{3} \quad(\checkmark) \\
& f=x_{0} x_{1}+x_{0} x_{2} \quad(\times)
\end{aligned}
$$

Reduce the Complexity for Primitives with Quadratic Round Functions

- Primitives with quadratic round functions are more and more popular
- Higher-order differential related attacks are one of the main threats

Quadratic Boolean function can be transformed into a disjoint form [JA, 1977]

$$
f=x_{0} x_{1}+x_{0} x_{2}(\times) \rightarrow f=x_{0}\left(x_{1}+x_{2}\right) \xrightarrow{\text { Sub }} f=t_{0} t_{1}(\checkmark)
$$

Reduce the Complexity for Primitives with Quadratic Round Functions

A quicker method

- Apply a linear substitution to all the variables to make f be disjoint

$$
f=g \circ M\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

- Compute the correlation of new variables by Piling-up lemma

$$
y=x_{0} \oplus x_{1} \oplus x_{2} \oplus \cdots
$$

- Compute the correlation of each individual part

$$
g=x_{0} x_{1}+x_{0}+x_{1}+1
$$

- Compute the correlation of f

$$
f=g_{0} \oplus g_{1} \oplus g_{2} \cdots
$$

Reduce the Complexity for Primitives with Quadratic Round Functions

A quicker method

- The variable substitution is the most time-consuming: $\mathcal{O}\left(n^{3.8}\right)$ (n is the number of variables)
- The number of variables in an ANF is $2 \times 2^{\ell}$
- Final time complexity: $\mathcal{O}\left(2^{3.8 \ell}\right)$

Assumption Made for the Method

Assumption

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

- If a variable is linear, then it is more risky not to be independent

$$
\alpha_{\boldsymbol{u}}^{(r+1)}[i]=\alpha_{\boldsymbol{u}}^{(r)}\left[i_{0}\right] \oplus \alpha_{\boldsymbol{u}}^{(r)}\left[i_{1}\right] \oplus \cdots
$$

Assumption Made for the Method

Assumption

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

- If a variable is linear, then it is more risky not to be independent

Not introduce new variables

Assumption Made for the Method

Assumption

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

- Different bits of $\alpha_{\boldsymbol{u}}^{(r)}$ can be highly related

$$
\alpha_{\boldsymbol{u}}^{(r)}[i]=\alpha_{\boldsymbol{u}}^{(r)}[j] \text { or } \alpha_{\boldsymbol{u}}^{(r)}[i]=\alpha_{\boldsymbol{u}}^{(r)}[j]+1
$$

Assumption Made for the Method

Assumption

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

- Different bits of $\alpha_{\boldsymbol{u}}^{(r)}$ can be highly related

$$
\alpha_{u}^{(r)}[i] \text { can be represented by } \alpha_{u}^{(r)}[j]
$$

Precision of HATF

Some curves for 2nd order HDL of 4-round Ascon initialization

(a) $\Delta(0,1)$

(a) $\Delta(0,4)$

(b) $\Delta(0,2)$

(b) $\Delta(0,5)$

(c) $\Delta(0,6)$

Precision of HATF

Curve of one $2^{\text {th }}$-order HDL for 4-round Ascon initialization

Precision of HATF

Some curves for 2nd order HDL of 5-round Ascon initialization:

Precision of HATF

Curve of one $2^{\text {nd }}$-order HDL for 5 -round Ascon initialization

Precision of HATF

Some curves for 3rd to 8th order HDL of 5-round Ascon initialization:

(a) $\Delta(0,24,33)$

(a) $\Delta(1,12,18,22,21,52)$

(b) $\Delta(0,9,15,41)$

(b) $\Delta(10,13,21,31,49,55,61)$

(c) $\Delta(0,9,24,51,55)$

(c) $\Delta(0,8,9,13,14,26,43,60)$

Precision of HATF

Curve of one $8^{\text {th }}$-order HDL for 5-round Ascon initialization

Precision of HATF

Discussion on Precision

- HATF CANNOT provide any upper/lower bound for HDL biases
- Quite precise to predict biased bits
- When the reported bias is high, the real bias is also high
- We have not observed any counterexamples during our experiments

Results

Results for Ascon initialization

Primitive	Round	Order	Expr.	Bias Theory	Method	Reference
Ascon Init.	4	$1^{\text {st }}$	2^{-2}	$\begin{aligned} & 2^{-20} \\ & 2^{-5} \\ & 2^{-2.365} \\ & \mathbf{2}^{-\mathbf{2 . 0 9}} \end{aligned}$	Classical DLCT ATF HATF	[DEMS, CT-RSA'15] [BDKW, Eurocrypt'19] [LLL, Crypto'21] Here
		$2^{\text {nd }}$	2^{-1}	2^{-1}	HATF	Here
	5	$1^{\text {st }}$	2^{-9}	$\overline{2}^{-10}$	Experimental HATF	[DEMS, CT-RSA'15]
		$2^{\text {nd }}$	$2^{-6.60}$	$2^{-7.05}$	HATF	Here
		$8^{\text {th }}$	$2^{-3.35}$	$2^{-4.73}$	HATF	Here
	6	$3^{\text {rd }}$	$2^{-22} \dagger$	$2^{-25.97} \dagger$	HATF	Here

\dagger This bias holds when 24 conditions are satisfied

Results

Primitive	Round	Order	Bias		Method	Reference
			Expr.	Theory		
Xoodyak Init.	4	$1^{s t}$	$2^{-9.7}$	$\overline{2}^{-9.67}$	Experimental HATF	[DW, SAC'22] Here
			$-2^{-5.36}$	$-2^{-6.0}$	Experimental HATF	[DW, SAC'22] Here
		$2^{\text {nd }}$	$2^{-5.72}$	$2^{-5.72}$	HATF	Here
		$4^{t h}$	2^{-1}	2^{-1}	HATF	Here
	5	$2^{\text {nd }}$	-	2^{-45}	HATF	Here
Xoodoo	4	4^{-}	$\begin{aligned} & 2^{-1} \\ & 2^{-1} \end{aligned}$	$\begin{aligned} & 2^{-1} \\ & \mathbf{2}^{-1} \end{aligned}$	Rot. DL HATF	[LSL, Eurocrypt'21] Here
	5	$3^{\text {rd }}$	$2^{-8.79}$	$2^{-8.96}$	HATF	Here

Contents

(1) Background

(2) Contribution
(3) Higher-Order Algebraic Transitional Form

4 Differential Supporting Function
(5) Conclusion

Differential Supporting Function

We know:

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{\ell}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})=D_{\boldsymbol{x}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})
$$

Differential Supporting Function

We know:

$$
\mathcal{D}_{\Delta} f(X)=\bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{\ell}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})=D_{\boldsymbol{x}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})
$$

- X and $\boldsymbol{\Delta}$ are parameters
- With X and $\boldsymbol{\Delta}$ being properly chosen, $D_{\boldsymbol{x}} f(X \oplus \boldsymbol{x} \boldsymbol{\Delta})$ can be made simpler

DSF on Ascon Permutation

- Intuition: Let all Sboxes have the same $\bar{X}+x \bar{\Delta}$
- $32 \times 31=992$ choices
- Evaluate the algebraic degree of r-round Ascon with $X=\bar{X}^{64}, \boldsymbol{\Delta}=\bar{\Delta}^{64}$

DSF on Ascon Permutation

$$
(\bar{X}, \bar{\Delta}) \in\left\{\begin{array}{l}
(0 \times 6,0 \times 13),(0 \mathrm{xa}, 0 \mathrm{x} 13),(0 \mathrm{xc}, 0 \mathrm{x} 17),(0 \mathrm{xf}, 0 \mathrm{x} 18), \\
(0 \mathrm{x} 15,0 \mathrm{x} 13),(0 \mathrm{x} 17,0 \mathrm{x} 18),(0 \mathrm{x} 19,0 \mathrm{x} 13),(0 \mathrm{x} 1 \mathrm{~b}, 0 \mathrm{x} 17)
\end{array}\right\}
$$

Round r	Upper bounds on the algebraic degree				
	$S^{(r)}[0]$	$S^{(r)}[1]$	$S^{(r)}[2]$	$S^{(r)}[3]$	$S^{(r)}[4]$
4	3	3	2	2	3
5	6	5	5	6	6
6	11	11	12	12	11
7	23	24	23	23	22
8	47	47	45	46	47

Improved Zero-Sum Results for Ascon Permutation

New zero-sum distinguishers on Ascon permutation:

Type	Rnd	Data(log)	Time (log)	Method	Reference
From Start	8	130 48	130 48	Integral HD	[Todo, Eurocrypt'15]
Best	11	315	315	Integral	[Todo, Eurocrypt'15]
Inside-outside	12	130 5	130 55	Zero-Sum Zero-Sum	[Todo, Eurocrypt'15]

Discussion on the new zero-sum distinguishers

- The inputs (outputs) are fixed, so they are different from/weaker than the previous zero-sum distinguishers (derived from division property)
- More information is captured

Contents

(1) Background

(3) Higher-Order Algebraic Transitional Form

4 Differential Supporting Function
(5) Conclusion

Conclusion

- A generalization of the algebraic perspective on DL to HDL cases
- The first theoretical method for a probabilistic HDL distinguisher: HATF
- Improved distinguishers/key-recovery attacks for some round-reduced Ascon and Xoodyak
- A systematic method for linearization and finding zero-sum distinguishers for Ascon: DSF

Conclusion

- A generalization of the algebraic perspective on DL to HDL cases
- The first theoretical method for a probabilistic HDL distinguisher: HATF
- Improved distinguishers/key-recovery attacks for some round-reduced Ascon and Xoodyak
- A systematic method for linearization and finding zero-sum distinguishers for Ascon: DSF

Thank You!

