Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Kai Hu, Thomas Peyrin, Quan Quan Tan, and Trevor Yap

Nanyang Technological University

December 7, 2023 Guangzhou, China

Background

- 2 Contribution
- 3 Higher-Order Algebraic Transitional Form
- 4 Differential Supporting Function
- 5 Conclusion

Differential Cryptanalysis

- Proposed by [BS,Crypto'91]
- Probability: $\Delta_0 \rightarrow \Delta_2$
- Traditionally studied using statistical method
 - Probability: $\Delta_0 \rightarrow \Delta_1$ with p_0
 - Probability: $\Delta_1 \rightarrow \Delta_2$ with p_1
 - Probability: $p = p_0 p_1$

Linear Cryptanalysis

- Proposed by [Mat,Eurocypt'93]
- Correlation: $\Gamma_0 \to \Gamma_1$
- Traditionally studied using statistical method
 - Correlation: $\Gamma_0 \to \Gamma_1$ with ϵ_0
 - Correlation: $\Gamma_1 \rightarrow \Gamma_2$ with ϵ_1
 - Correlation: $\epsilon = \epsilon_0 \epsilon_1$

Differential-Linear Cryptanalysis

- Proposed by [LH,Crypto'94]
- Cor.: $\Gamma_2(X_2\oplus X_2')$ w/ $X_0\oplus X_0'=\Delta_0$
- Traditionally studied using statistical 2-phase method
 - $E = E_1 \circ E_0$
 - Probability: $\Delta_0 \rightarrow \Delta_1$ with p
 - Correlation: $\Gamma_1 \to \Gamma_2$ with ϵ
 - DL correlation: $p\epsilon^2$

Higher-Order Differential-Linear Cryptanalysis

$$X_1 \oplus X_1' \oplus X_1'' \oplus X_1''' = \Delta_1 \Gamma_1$$

$$\begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & (Assume \ \Gamma_1 \Delta_1 = 0) \\
\hline
f & f & f & f & \epsilon \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\end{array}$$

 $X_2 \oplus X_2' \oplus X_2'' \oplus X_2''' = \Delta_2 \Gamma_2$

- Proposed by [BDK,FSE'05]
- Cor.: $\Gamma_2 (\bigoplus X_2)$ with X_0, X'_0, \ldots being a HD structure
- Traditionally studied using statistical 2-phase method
 - $E = E_1 \circ E_0$
 - Probability of HD of E_0 is p
 - Correlation: $\Gamma_1 \rightarrow \Gamma_2$ with ϵ
 - Correlation of HDL: $p\epsilon^{2^d}$

Higher-Order Differential-Linear Cryptanalysis

 ϵ

$$X_1 \oplus X_1' \oplus X_1'' \oplus X_1''' = \Delta_1 \Gamma_1$$

• Cor.: $\Gamma_2(\bigoplus X_2)$ with X_0, X'_0, \ldots being a HD structure

• Traditionally studied using statistical 2-phase method

• $E = E_1 \circ E_0$

- Probability of HD of E_0 is p
- (Assume $\Gamma_1 \Delta_1 = 0$) Correlation: $\Gamma_1 \to \Gamma_2$ with ϵ
 - Correlation of HDL: $p\epsilon^{2^d}$

Limitations

- $X_2 \oplus X'_2 \oplus X''_2 \oplus X'''_2 = \Delta_2 \Gamma_2$
- No method for a probabilistic HD
- If $\epsilon < 1$, HDL correlation goes to zero

Algebraic Transitional Form

- Proposed by [LLL,Crypto'21]
- An algebraic perspective

• DL cor. = cor. of
$$\Gamma_2(X_2 \oplus X'_2)$$

3 N.

Algebraic Transitional Form

- Proposed by [LLL,Crypto'21]
- An algebraic perspective
 - DL cor. = cor. of $\Gamma_2(X_2 \oplus X_2')$

- Proposed by [LLL,Crypto'21]
- An algebraic perspective
 - DL cor. = cor. of $\Gamma_2(X_2\oplus X_2')$
- The form of output difference can be derived from a recursive method
 - X_1, Δ_1 are functions of X_0
 - $\Gamma_2(X_2\oplus X_2')$ is a function of X_1,Δ_1

1 Background

2 Contribution

3 Higher-Order Algebraic Transitional Form

4 Differential Supporting Function

5 Conclusion

- HATF: to generalize the ATF to the higher-order case
 - HATF can predict the probabilistic bias of a HDL approximation
 - New distinguishers/key-recovery attacks on Ascon and Xoodyak
- DSF: to linearize Ascon permutation
 - Improved zero-sum distinguishers for Ascon permutations

Background

- 2 Contribution
- 3 Higher-Order Algebraic Transitional Form
 - 4 Differential Supporting Function
- 5 Conclusion

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and an ℓ^{th} -order input difference $\mathbf{\Delta} = (\Delta_0, \dots, \Delta_{\ell-1})$ for a certain input $X \in \mathbb{F}_2^n$. The ℓ^{th} derivative of f is calculated as

$$\mathcal{D}_{\mathbf{\Delta}}f(X) = \bigoplus_{a \in X \oplus \mathsf{span}(\mathbf{\Delta})} f(a)$$

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and an ℓ^{th} -order input difference $\mathbf{\Delta} = (\Delta_0, \dots, \Delta_{\ell-1})$ for a certain input $X \in \mathbb{F}_2^n$. The ℓ^{th} derivative of f is calculated as

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathsf{span}(\Delta)} f(a)$$

Prop. (Algebraic Perspective on HD/HDL)

Let

$$\mathcal{M}:\mathbb{F}_2^\ell o X \oplus \mathsf{span}(\mathbf{\Delta})$$

$$(x_0, x_1, \dots, x_{\ell-1}) \mapsto X \oplus x_0 \Delta_0 \oplus \dots \oplus x_{\ell-1} \Delta_{\ell-1} \triangleq X \oplus x \Delta_{\ell-1}$$

We have

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_2^{\ell}} f(X \oplus \boldsymbol{x} \Delta) = D_{\boldsymbol{x}}f(X \oplus \boldsymbol{x} \Delta)$$

HDL Cryptanalysis from an Algebraic Perspective

HD of a Boolean function [Lai, 1994]

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and an ℓ^{th} -order input difference $\mathbf{\Delta} = (\Delta_0, \dots, \Delta_{\ell-1})$ for a certain input $X \in \mathbb{F}_2^n$. The ℓ^{th} derivative of f is calculated as

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathsf{span}(\Delta)} f(a)$$

Prop. (Algebraic Perspective on HD/HDL)

Let

$$\mathcal{M}: \mathbb{F}_2^\ell \to X \oplus \mathsf{span}(\mathbf{\Delta})$$

$$(x_0, x_1, \dots, x_{\ell-1}) \mapsto X \oplus x_0 \Delta_0 \oplus \dots \oplus x_{\ell-1} \Delta_{\ell-1} \triangleq X \oplus x \Delta_{\ell-1}$$

We have

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_2^{\ell}} f(X \oplus \boldsymbol{x} \Delta) = D_{\boldsymbol{x}}f(X \oplus \boldsymbol{x} \Delta)$$

Expression of HD: $\operatorname{Coe}(f(X \oplus \boldsymbol{x} \boldsymbol{\Delta}), \boldsymbol{x})$

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Iterative Cipher

Ciphers are iterative composed of simple round functions

$$E = E_{R-1} \circ E_{R-2} \circ \cdots \in E_1 \circ E_0, \quad E_r : \mathbb{F}_2^n \to \mathbb{F}_2^n$$

We can construct the expression of HD in an iterative method

Construction of Higher-Order Algebraic Transitional Form

Write $X \oplus \boldsymbol{x} \boldsymbol{\Delta}$ as $\bigoplus_{u \in \mathbb{F}_2^\ell} lpha_u \boldsymbol{x}^u$:

$$\alpha_u = \begin{cases} X, & u = 0\\ \Delta_i, & u = e_i\\ \mathbf{0}, & \text{otherwise} \end{cases}$$

 $\alpha_{\rm 00}^{(0)}\oplus\alpha_{\rm 01}^{(0)}x_0\oplus\alpha_{\rm 10}^{(0)}x_1$

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Construction of Higher-Order Algebraic Transitional Form

Apply E_r to $\bigoplus_{u \in \mathbb{F}_2^\ell} \alpha_u^{(r)} x^u$

$$\bigoplus_{u \in \mathbb{F}_2^{\ell}} \alpha_u^{(r+1)} \boldsymbol{x}^u = E_r \left(\bigoplus_{u \in \mathbb{F}_2^{\ell}} \alpha_u^{(r)} \boldsymbol{x}^u \right)$$

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Construction of Higher-Order Algebraic Transitional Form

 $\alpha_u^{(r+1)}$ is a function of $\alpha_u^{(r)}$

$$\alpha_u^{(r+1)} = \operatorname{Coe}\left(E_r\left(\bigoplus_{u\in \mathbb{F}_2^\ell}\alpha_u^{(r)} \pmb{x}^u\right), \pmb{x}^u\right)$$

Connecting all round functions, we obtain HATF of E,

$$\mathcal{E} = \mathcal{E}_{R-1} \circ \mathcal{E}_{R-2} \circ \cdots \circ \mathcal{E}_0, \quad \mathcal{E}_r : (\mathbb{F}_2^n)^{2^\ell} \to (\mathbb{F}_2^n)^{2^\ell}$$

13 / 25

⊒⊳ ∢∃⊳

Time complexity of constructing the HATF:

- Dominated by the calculations of ANFs round by round
- Most time-consuming step is to calculate the d-degree monomials for $\bigoplus_{u\in\mathbb{F}_2^\ell}\alpha_u^{(r)}\pmb{x}^u$
- $2^{d\ell}$ multiplications/additions
- Final time complexity: $\mathcal{O}(2^{d\ell})$ (detailed analysis can be found in the paper)

$$e_{\mathbf{1}}^{(R)}$$
 is a composite form:

$$\left(\alpha_u^{(0)}, u \in \mathbb{F}_2^n\right) \xrightarrow{\mathcal{E}_0} \cdots \xrightarrow{\mathcal{E}_{R-2}} \left(\alpha_u^{(R-1)}, u \in \mathbb{F}_2^n\right) \xrightarrow{\mathcal{E}_{R-1}} \alpha_1^{(R)}$$

Lemma (LLL, Crypto'21)

Assume the bias of $x_0, x_1, \ldots, x_{n-1}$ are $\epsilon_0, \epsilon_1, \ldots, \epsilon_{n-1}$, respectively.

$$\mathsf{Bias}(f) = \sum_{\substack{x_0, x_1, \dots, x_{n-1} \\ s.t.f(x_0, \dots, x_{n-1}) = 0}} \prod_{i=0}^{n-1} \left(\frac{1}{2} + (-1)^{x_i} \varepsilon_i \right) - \frac{1}{2}$$

- Time complexity is exponential in the number of variables in the ANF
- The number of variables is at most $d\times 2^\ell$
- Final time complexity: $\mathcal{O}(2^{\ell+d\times 2^\ell})$ (detailed analysis can be found in the paper)

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

14 / 25

(日) (同) (三) (三)

- Primitives with quadratic round functions are more and more popular
- Higher-order differential related attacks are one of the main threats

Quadratic Boolean function can be transformed into a disjoint form [JA, 1977]

$$f = x_0 x_1 + x_2 x_3 \quad (\checkmark)$$
$$f = x_0 x_1 + x_0 x_2 \quad (\times)$$

- Primitives with quadratic round functions are more and more popular
- Higher-order differential related attacks are one of the main threats

Quadratic Boolean function can be transformed into a disjoint form [JA, 1977]

$$f = x_0 x_1 + x_0 x_2(\times) \to f = x_0 (x_1 + x_2) \xrightarrow{\mathsf{Sub}} f = t_0 t_1(\checkmark)$$

A quicker method

- Apply a linear substitution to all the variables to make f be disjoint $f = q \circ M(x_0, x_1, \dots, x_{n-1})$
- Compute the correlation of new variables by Piling-up lemma

 $y = x_0 \oplus x_1 \oplus x_2 \oplus \cdots$

• Compute the correlation of each individual part

$$g = x_0 x_1 + x_0 + x_1 + 1$$

• Compute the correlation of f

$$f = g_0 \oplus g_1 \oplus g_2 \cdots$$

A quicker method

- The variable substitution is the most time-consuming: $O(n^{3.8})$ (*n* is the number of variables)
- The number of variables in an ANF is $2\times 2^\ell$
- Final time complexity: $\mathcal{O}(2^{3.8\ell})$

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

• If a variable is linear, then it is more risky not to be independent

$$\alpha_{\boldsymbol{u}}^{(r+1)}[i] = \alpha_{\boldsymbol{u}}^{(r)}[i_0] \oplus \alpha_{\boldsymbol{u}}^{(r)}[i_1] \oplus \cdots$$

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

• If a variable is linear, then it is more risky not to be independent

Not introduce new variables

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

• Different bits of $\alpha_{\pmb{u}}^{(r)}$ can be highly related

$$\alpha_{\boldsymbol{u}}^{(r)}[i] = \alpha_{\boldsymbol{u}}^{(r)}[j] \text{ or } \alpha_{\boldsymbol{u}}^{(r)}[i] = \alpha_{\boldsymbol{u}}^{(r)}[j] + 1$$

- The construction of HATF does not require assumptions
- The calculation of bias of variables requires the variables to be independent

Trouble and Solution

• Different bits of $\alpha_{\pmb{u}}^{(r)}$ can be highly related

 $\alpha_{\pmb{u}}^{(r)}[i]$ can be represented by $\alpha_{\pmb{u}}^{(r)}[j]$

Precision of HATF

Some curves for 2nd order HDL of 4-round Ascon initialization

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Curve of one $2^{th}\mbox{-}{\rm order}$ HDL for 4-round Ascon initialization

Precision of HATF

Some curves for 2nd order HDL of 5-round Ascon initialization:

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Curve of one $2^{nd}\mbox{-}{\rm order}$ HDL for 5-round Ascon initialization

Precision of HATF

Some curves for 3rd to 8th order HDL of 5-round Ascon initialization:

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

Discussion on Precision

- HATF CANNOT provide any upper/lower bound for HDL biases
- Quite precise to predict biased bits
- When the reported bias is high, the real bias is also high
- We have not observed any counterexamples during our experiments

Results

Results for Ascon initialization

Primitive	Round	Order	Expr.	Bias Theory	Method	Reference
	4	1^{st}	2^{-2}	$2^{-20} 2^{-5} 2^{-2.365} 2^{-2.09}$	Classical DLCT ATF <mark>HATF</mark>	[DEMS, CT-RSA'15] [BDKW, Eurocrypt'19] [LLL, Crypto'21] Here
Ascon Init.		2^{nd}	2^{-1}	2^{-1}	HATF	Here
	_	1^{st}	2^{-9}	$\overline{2}^{-10}$	Experimental HATF	[DEMS, CT-RSA'15] Here
	5	2^{nd}	$2^{-6.60}$	$2^{-7.05}$	HATF	Here
		8^{th}	$2^{-3.35}$	$2^{-4.73}$	HATF	Here
	6	3^{rd}	2^{-22} †	$2^{-25.97}$ †	HATF	Here

† This bias holds when 24 conditions are satisfied

19 / 25

3

<口> <問> <問> < 因> < 因> < 因> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > <

Results

Primitive	Round	Order	B Expr.	ias Theory	Method	Reference
Xoodyak Init.	4	1^{st}	$2^{-9.7}$	$-2^{-9.67}$	Experimental HATF	[DW, SAC'22] Here
			$-2^{-5.36}$	$^{-}_{-2^{-6.0}}$	Experimental HATF	[DW, SAC'22] Here
		2^{nd}	$2^{-5.72}$	$2^{-5.72}$	HATF	Here
		4^{th}	2^{-1}	2^{-1}	HATF	Here
	5	2^{nd}	_	2^{-45}	HATF	Here
Xoodoo	4	4^{th}	2^{-1} 2^{-1}	2^{-1} 2^{-1}	Rot. DL HATF	[LSL, Eurocrypt'21] Here
	5	3^{rd}	$2^{-8.79}$	$2^{-8.96}$	HATF	Here

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

3

イロト イヨト イヨト イヨト

Background

- 2 Contribution
- 3 Higher-Order Algebraic Transitional Form
- 4 Differential Supporting Function
 - 5 Conclusion

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

We know:

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_2^{\ell}} f(X \oplus \boldsymbol{x}\Delta) = D_{\boldsymbol{x}}f(\boldsymbol{X} \oplus \boldsymbol{x}\Delta)$$

We know:

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_2^{\ell}} f(X \oplus \boldsymbol{x}\Delta) = D_{\boldsymbol{x}}f(\boldsymbol{X} \oplus \boldsymbol{x}\Delta)$$

- X and Δ are parameters
- With X and Δ being properly chosen, $D_{m{x}}f(X\oplus m{x}\Delta)$ can be made simpler

- Intuition: Let all Sboxes have the same $\bar{X} + x\bar{\Delta}$
- $32 \times 31 = 992$ choices
- Evaluate the algebraic degree of r-round Ascon with $X = \bar{X}^{64}$, $\Delta = \bar{\Delta}^{64}$

$$(\bar{X},\bar{\Delta}) \in \begin{cases} (\texttt{0x6},\texttt{0x13}), (\texttt{0xa},\texttt{0x13}), (\texttt{0xc},\texttt{0x17}), (\texttt{0xf},\texttt{0x18}), \\ (\texttt{0x15},\texttt{0x13}), (\texttt{0x17},\texttt{0x18}), (\texttt{0x19},\texttt{0x13}), (\texttt{0x1b},\texttt{0x17}) \end{cases}$$

Round r	Upper bounds on the algebraic degree					
	$\overline{S^{(r)}[0]}$	$S^{(r)}[1]$	$S^{(r)}[2]$	$S^{(r)}[3]$	$S^{(r)}[4]$	
4	3	3	2	2	3	
5	6	5	5	6	6	
6	11	11	12	12	11	
7	23	24	23	23	22	
8	47	47	45	46	47	

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

22 / 25

→ 3 → 4 3

- I A P

New zero-sum distinguishers on Ascon permutation:

Туре	Rnd	Data(log)	Time (log)	Method	Reference
From Start	8	130 48	130 48	Integral HD	[Todo, Eurocrypt'15] <mark>Here</mark>
Best	11	315	315	Integral	[Todo, Eurocrypt'15]
Inside-outside	12	130 55	130 55	Zero-Sum <mark>Zero-Sum</mark>	[Todo, Eurocrypt'15] <mark>Here</mark>

Discussion on the new zero-sum distinguishers

- The inputs (outputs) are fixed, so they are different from/weaker than the previous zero-sum distinguishers (derived from division property)
- More information is captured

Background

- 2 Contribution
- 3 Higher-Order Algebraic Transitional Form
- 4 Differential Supporting Function

Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective

- A generalization of the algebraic perspective on DL to HDL cases
- The first theoretical method for a probabilistic HDL distinguisher: HATF
- Improved distinguishers/key-recovery attacks for some round-reduced Ascon and Xoodyak
- A systematic method for linearization and finding zero-sum distinguishers for Ascon: DSF

- A generalization of the algebraic perspective on DL to HDL cases
- The first theoretical method for a probabilistic HDL distinguisher: HATF
- Improved distinguishers/key-recovery attacks for some round-reduced Ascon and Xoodyak
- A systematic method for linearization and finding zero-sum distinguishers for Ascon: DSF

Thank You!