Just How Fair is an Unreactive World?

Srinivasan Raghuraman, Visa Research and MIT Yibin Yang, Georgia Tech

VISA
Research
Georgia
Tech

Just How Fair is an Unreactive World?

Just How Fair is an Unreactive World?

Fair

Fair Secure Multiparty Computation

Fair Secure Multiparty Computation

Let's recall what MPC is

Fair Secure Multiparty Computation

Let's recall what MPC is

Fair Secure Multiparty Computation

Let's recall what MPC is

Real World

Ideal World

Fair Secure Multiparty Computation

Let's recall what MPC is

Ideal World

Fair Secure Multiparty Computation

Let's recall what MPC is

Ideal World

Fair Secure Multiparty Computation

Let's recall what MPC is

Fair Secure Multiparty Computation

Let's recall what MPC is

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness vs. Guaranteed Output Delivery

Security with Abort

Alice

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

```
f
```


Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

[Cleve86]

Security with Abort

Fairness

Guaranteed Output Delivery

Different Security Levels

Security with Abort v.s. Fairness v.s. Guaranteed Output Delivery

[Cleve86]

Security with Abort

Fairness

Guaranteed Output Delivery

[Cleve86]'s Impossibility

More general

[Cleve86]'s Impossibility

More general

[Cleve86]'s Impossibility

More general

Alice

[Cleve86]'s Impossibility

More general

[Cleve86]'s Impossibility

More general

[Cleve86]'s Impossibility

More general

Bypassing [Cleve86] to Achieve Fair MPC

Via augmenting "stronger" communication channels

Bypassing [Cleve86] to Achieve Fair MPC

Via augmenting "stronger" communication channels

Synchronizable Exchange
 [Kumaresan et al. TCC’23]

Synchronizable Exchange

[Kumaresan et al. TCC’23]

Reactive

Synchronizable Exchange

[Kumaresan et al. TCC’23]

Reactive

Synchronizable Exchange

[Kumaresan et al. TCC’23]

Can we achieve fair MPC via unreactive/stateless channels?

Just how fair is an unreactive world?

Just How Fair is an Unreactive World?

Just How Fair is an Unreactive World?

We completely address this question.

Just How Fair is an Unreactive World?

We completely address this question. $t=$ \#corruption, $n=$ \#party

Just How Fair is an Unreactive World?

We completely address this question. $t=$ \#corruption, $n=$ \#party

Table 1: Our contributions.

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t<\frac{n}{2}$	-	Local computation [FGMvR02]
$t=\frac{n}{2}$	Local computation [Cle86]	2 -wise fair exchange [ours]
$t>\frac{n}{2}$	Arbitrary unreactive t-wise [ours]	$(t+1)$-wise fair exchange ${ }^{a}$ [ours]

Just How Fair is an Unreactive World?

We completely address this question.
Not very fair $:$
$t=$ \#corruption, $n=$ \#party

Table 1: Our contributions.

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t<\frac{n}{2}$	-	Local computation [FGMvR02]
$t=\frac{n}{2}$	Local computation [Cle86]	2 -wise fair exchange [ours]
$t>\frac{n}{2}$	Arbitrary unreactive t-wise [ours]	$(t+1)$-wise fair exchange ${ }^{a}$ [ours]

Just How Fair is an Unreactive World?

We completely address this question.
Not very fair ${ }^{*}$ $t=\#$ corruption, $n=$ \#party

Table 1: Our contributions.

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t<\frac{n}{2}$	-	Local computation [FGMvR02]
$t=\frac{n}{2}$	Local computation [Cle86]	2 -wise fair exchange [ours]
$t>\frac{n}{2}$	Arbitrary unreactive t-wise [ours]	$(t+1)$-wise fair exchange ${ }^{a}$ [ours]

[Cohen and Lindel, Asiacrypt 14]:

1. Fairness with broadcast \rightarrow Fairness without broadcast
2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

Just How Fair is an Unreactive World?

We completely address this question.
Not very fair ${ }^{*}$ $t=\#$ corruption, $n=$ \#party

Table 1: Our contributions.

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t<\frac{n}{2}$	-	Local computation [FGMvR02]
$t=\frac{n}{2}$	Local computation [Cle86]	2 -wise fair exchange [ours]
$t>\frac{n}{2}$	Arbitrary unreactive t-wise [ours]	$(t+1)$-wise fair exchange ${ }^{a}$ [ours]

[Cohen and Lindel, Asiacrypt 14]:

1. Fairness with broadcast \rightarrow Fairness without broadcast
2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

Example: Our Upper Bound

$t=\frac{n}{2}, 2$-wise fair exchange

Example: Our Upper Bound
 $t=\frac{n}{2}, 2$-wise fair exchange

Example: Our Upper Bound
 $t=\frac{n}{2}, 2$-wise fair exchange

Example: Our Upper Bound
 $t=\frac{n}{2}, 2-$ wise fair exchange

Example: Our Upper Bound

$t=\frac{n}{2}, 2-$ wise fair exchange, $n=4$

Example: Our Upper Bound

 $t=\frac{n}{2}, 2$-wise fair exchange, $n=4$

Example: Our Upper Bound

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$

Example: Our Upper Bound

 $t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$

1. To compute f : Execute some SwA MPC, output 3-out-of-4 SS.
2. Each party exchanges his/her share with the rest of the 3 parties.

Example: Our Upper Bound

 $t=\frac{n}{2}, 2$-wise fair exchange, $n=4 O_{a / b / c / d}$

Example: Our Upper Bound

 $t=\frac{n}{2}, 2$-wise fair exchange, $n=40 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$3. If a party recovers the output, broadcast it.

4. To compute f :

Execute some SwA MPC, output 3-out-of-4 SS.
2. Each party exchanges his/her share with the rest of the 3 parties.

Example: Our Upper Bound

 $t=\frac{n}{2}, 2$-wise fair exchange, $n=40 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$3. If a party recovers the output, broadcast it.

4. To compute f :

Execute some SwA MPC, output 3-out-of-4 SS.
4. Output the result.
2. Each party exchanges his/her share with the rest of the 3 parties.

Why Fair?

$t=\frac{n}{2}, 2-$ wise fair exchange, $n=4$

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4$

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$
Fair Exchange

Adv does not learn the output.
o_{b}

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$
Fair Exchange

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{d}$
Fair Exchange

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{a / b / d}$

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{a / b} / d$

Honest parties also learn the output.

Why Fair?

$t=\frac{n}{2}, 2$-wise fair exchange, $n=4 \quad O_{a / b} / d$

Adv does not learn the output. To learn the output, it has to exchange.

Honest parties also learn the output.

A small caveat: We need some
$O_{a / b / d}^{\text {bob }}$
authentication mechanism.

Just How Fair is an Unreactive World?

We completely address this question.
Not very fair ${ }^{*}$ $t=\#$ corruption, $n=$ \#party

Table 1: Our contributions.

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t<\frac{n}{2}$	-	Local computation [FGMvR02]
$t=\frac{n}{2}$	Local computation [Cle86]	2 -wise fair exchange [ours]
$t>\frac{n}{2}$	Arbitrary unreactive t-wise [ours]	$(t+1)$-wise fair exchange ${ }^{a}$ [ours]

[Cohen and Lindel, Asiacrypt 14]:

1. Fairness with broadcast \rightarrow Fairness without broadcast
2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

Example: Our Lower Bound

$n=3, t=2$,any 2-wise unreactive functionality

Example: Our Lower Bound

$n=3, t=2$, any 2 -wise unreactive functionality

Alice

Example: Our Lower Bound

$n=3, t=2$, any 2 -wise unreactive functionality

Example: Our Lower Bound

$n=3, t=2$, any 2-wise unreactive functionality

Example: Our Lower Bound

$n=3, t=2$, any 2-wise unreactive functionality

Example: Our Lower Bound

$n=3, t=2$, any 2 -wise unreactive functionality

Example: Our Lower Bound

$n=3, t=2$, any 2 -wise unreactive functionality

Example: Our Lower Bound

$\operatorname{Pr}\left[\operatorname{res}_{a}=r e s_{b}=r e s_{c}\right]=1$
$\operatorname{Pr}\left[\right.$ res $\left._{a} / \operatorname{res}_{b} / \operatorname{res}_{c}=0\right]=\frac{1}{2}$

Example: Our Lower Bound

$n=3, t=2$, any 2 -wise unreactive functionality

Example: Our Lower Bound

Predictor - Known as "backup" coin

Example: Our Lower Bound

Predictor - Known as "backup" coin
$m_{a, 1}, m_{a, 2}, \cdots, m_{a, 2 R}$

Alice

Example: Our Lower Bound
 Predictor - Known as "backup" coin

$\Pi_{a, 0}$

Alice

$$
\Pi_{b, 0}
$$

Bob

Charlie

Charlie

Charlie

Charlie

Charlie

Charlie

Future Work

Does an unreactive world enable more fair functionalities?
Can we fairly toss a coin that agrees with $\frac{1}{2}+$ non-negl (λ) probability?
How to instantiate our upper bound protocols?

Q/A

ePrint: https://eprint.iacr.org/2022/1655

