Just How Fair is an Unreactive World?

Srinivasan Raghuraman, Visa Research and MIT Yibin Yang, Georgia Tech

Just How Fair is an Unreactive World?

Just How Fair is an Unreactive World?

Fair

Fair Secure Multiparty Computation

Real World

Bob

Ideal World

Real World

Ideal World

Real World

Ideal World

Security with Abort

Security with Abort

Security with Abort

Security with Abort

Fairness

Guaranteed Output Delivery

o := f(x, y')

Bob

Bob

Fairness

Security with Abort

Security with Abort

Fairness

Security with Abort

Fairness

Security with Abort

Fairness

Different Security Levels

Different Security Levels

Security with Abort

Alice

[Cleve86]'s Impossibility More general

Bob

[Cleve86]'s Impossibility More general

Bob

[Cleve86]'s Impossibility More general

Bypassing [Cleve86] to Achieve Fair MPC Via augmenting "stronger" communication channels

Bypassing [Cleve86] to Achieve Fair MPC Via augmenting "stronger" communication channels

No longer a one-way channel

No longer a one-way channel

Can we achieve fair MPC via unreactive/stateless channels?

Just how fair is an unreactive world?

We completely address this question.

We completely address this question. t = #corruption, n = #party

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t < \frac{n}{2}$		Local computation [FGMvR02]
$t = \frac{n}{2}$	Local computation [Cle86]	2-wise fair exchange [ours]
$t > \frac{n}{2}$	Arbitrary unreactive t -wise [ours]	(t+1)-wise fair exchange ^a [ours]

We completely address this question. t = #corruption, n = #party

Table 1: Our contributions.

Not very fair 🛞

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t < \frac{n}{2}$		Local computation [FGMvR02]
$t = \frac{n}{2}$	Local computation [Cle86]	2-wise fair exchange [ours]
$t > \frac{n}{2}$	Arbitrary unreactive t -wise [ours]	(t+1)-wise fair exchange ^a [ours]

We completely address this question. t = #corruption, n = #party

Table 1: Our contributions.

Not very fair 🛞

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t < \frac{n}{2}$		Local computation [FGMvR02]
$t = \frac{n}{2}$	Local computation [Cle86]	2-wise fair exchange [ours]
$t > \frac{n}{2}$	Arbitrary unreactive t -wise [ours]	(t+1)-wise fair exchange ^a [ours]

[Cohen and Lindel, Asiacrypt 14]: 1. Fairness with broadcast \rightarrow Fairness without broadcast

We completely address this question. t = #corruption, n = #party

Table 1: Our contributions.

2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

Not very fair 🛞

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC	
$t < \frac{n}{2}$	_	Local computation [FGMvR02]	
$t = \frac{n}{2}$	Local computation [Cle86]	2-wise fair exchange [ours]	
$t > \frac{n}{2}$	Arbitrary unreactive t -wise [ours]	(t+1)-wise fair exchange ^a [ours]	

[Cohen and Lindel, Asiacrypt 14]: 1. Fairness with broadcast \rightarrow Fairness without broadcast

We completely address this question. t = #corruption, n = #party

Table 1: Our contributions.

2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

Alice

Bob

X

Bob Alice X 1. To compute *f*: Execute some SwA MPC, David output 3-out-of-4 SS. Charlie Bob

Fair Exchange

3. If a party recovers the output, broadcast it.

Example: Our Upper
$$t = \frac{n}{2}$$
, 2-wise fair exchange, $n = 40$

Alice

3. If a party recovers the output, broadcast it.

4. Output the result.

Why Fair? $t = \frac{n}{2}$, 2-wise fair exchange, n = 4 $O_{a/b/d}$

Why Fair? $t = \frac{n}{2}$, 2-wise fair exchange, $n = 4 O_{a/b/d}$

O_{alb}

Alice

Honest parties also learn the output.

Why Fair? $t = \frac{n}{2}$, 2-wise fair exchange, $n = 4 O_{a/b/d}$

O_{alb}

Alice

Honest parties also learn the output.

Just How Fair is an Unreactive World?

Not very fair 🟵

t	Insufficient functionalities for fair coin tossing	Sufficient functionalities for fair MPC
$t < \frac{n}{2}$		Local computation [FGMvR02]
$t = \frac{n}{2}$	Local computation [Cle86]	2-wise fair exchange [ours]
$t > \frac{n}{2}$	Arbitrary unreactive t -wise [ours]	(t+1)-wise fair exchange ^a [ours]

[Cohen and Lindel, Asiacrypt 14]:

1. Fairness with broadcast \rightarrow Fairness without broadcast

2. No G.O.D. with broadcast \rightarrow No fairness (even) with broadcast

We completely address this question. t = #corruption, n = #party

Table 1: Our contributions.

Bob

 $m_{b,1}, m_{b,2}$

Example: Our Lower Bound Predictor — Known as "backup" coin

Alice

 $m_{c,1}, m_{c,2}, \cdots, m_{c,2R}$

Charlie

Example: Our Lower Bound Predictor — Known as "backup" coin

 $\Pi_{b,2}$

Future Work

Does an unreactive world enable more fair functionalities?

How to instantiate our upper bound protocols?

Can we fairly toss a coin that agrees with $\frac{1}{2}$ + non-negl(λ) probability?

ePrint: https://eprint.iacr.org/2022/1655