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Open Problem: Round Optimal Zero Knowledge

• ZK with negligible soundness error (in the standard model)


- Known in four rounds [FS90]


- Impossible (outside BPP) in two rounds [GO94] 

• What about three rounds?
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• ZK with negligible soundness error (in the standard model)


- Known in four rounds [FS90]


- Impossible (outside BPP) in two rounds [GO94] 

• What about three rounds?


• Black-Box Barrier: Three round ZK with black-box simulation impossible 
outside BPP [GK96]  



Bypassing the Barrier

• Known non black-box simulation techniques either:


- Require four rounds 


- Achieve three rounds from non-standard assumptions 

• Weaker notions of ZK?



Standard Zero Knowledge
 
 s.t.  :∃Sim ∀V, D
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Weak Zero Knowledge [DNRS03]
 
 ,  :∀V, D ∃SimV,D

P V SimV,D V≈D

x, w x x x



Weak ZK is not really that weak

• ZK is typically used to enforce honest behavior


• Example: Commit to  and prove that  satisfies some property.


- Commit to a vote and prove that it is to a valid candidate.


- Commit to a bit several times in parallel and prove consistency. 

• ZK Simulation is used to achieve indistinguishability based security


• Weak ZK also implies indistinguishability based security!

x x



• Weak Zero-Knowledge implies extremely useful notions such as: 

- Witness Hiding


- Strong Witness Indistinguishability


- Witness Indistinguishability 

• In fact, WZK is the only known way to get strong WI and witness hiding.

Weak ZK is not really that weak



Previous Constructions of 3-Round WZK

• Non Black-Box Techniques:


-  From Unleveled FHE [BKP22] 

• Non-Adaptive Setting (V’s challenge does not depend on x):


- From Random Self-Reducible PKE [implicit in BKP22]


- From Statistically Sender-Private OT [JKKR17]


- From Factoring [Den20]
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All require 
encryption with 

some 
homomorphic 

structure!



Understand which generic assumptions imply 
Weak Zero-Knowledge

Our Goal:



Three-Round WZK from Trapdoor Permutations
Our Results:



Non-Adaptive Distributional Three-Round WZK from 
Doubly-Enhanced Injective TDFs

Our Results (Precisely):



Key Idea

• Proof system for  such that verification requires a trapdoor. 

• Without the trapdoor, real and fake proofs look the same! 

• If the adversary does not check proofs, it can be fooled using fake proofs. 

• If the adversary checks proofs, simulator extracts the trapdoor.

x ∈ L
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Instantiating the Encryption with Trapdoor Permutations

• Let  be an index key and let  be the corresponding trapdoor for a TDP . 

•   

• By Goldreich-Levin List Decoding, inverting  reduces to distinguishing 
 from  

ik τ f

𝖤𝗇𝖼ik(b; y, r) := fik(y), r, ⟨y, r⟩ ⊕ b

fik(y)
𝖤𝗇𝖼ik(0; y, r) 𝖤𝗇𝖼ik(1; y, r)
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Fix via Coin Flipping
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Conclusion: Three Round WZK 
from TDPs



Open Problems

• Can we obtain three-round WZK from Injective Trapdoor Functions? PKE?


• Can we obtain three-round WZK from OWFs? All previous works require 
extracting trapdoors.


• Can three-round WZK be separated from OWFs? 

• Can three-round ZK be based on standard assumptions?



Thank You!


