A Simple and Efficient Framework of Proof Systems for NP

Yuyu Wang ${ }^{1}$, Chuanjie Su ${ }^{1}$, Jiaxin pan 2, Yu Chen ${ }^{3}$

1. University of Electronic Science and Technology of China
2. NTNU - Norwegian University of Science and Technology
3. Shandong University

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Definition of NIZK for NP

$$
\begin{gathered}
\mathrm{L}^{\mathrm{CSAT}}=\{\mathrm{C} \mid \exists \mathrm{w}: \mathrm{C}(\mathrm{w})=1\} \\
\xrightarrow{\lambda} \mathrm{Gen} \longrightarrow \mathrm{crs}
\end{gathered}
$$

$$
\xrightarrow{(\mathrm{crs}, \mathrm{C}, \mathrm{w})} \text { Prove } \longrightarrow \pi
$$

Definition of NIZK for NP

Completeness: honest proofs must pass the verification.
Soundness: difficult to find a valid proof for any invalid statement.
Zero-knowledge: π reveals no additional information on wexcept for the statement.

Definition of NIZK for NP

Completeness: honest proofs must pass the verificat on.
Soundness: difficult to find a valid proof for any $/$ valid statement.
Zero-knowledge: π reveals no additional information on w except for the statement.

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Groth12,Lipmaa12,GGPR13]
- CDH*+DLIN ([KKNY19,KKNY20])

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Gr State-of-the-art in the pairings
- CDH*+DLIN ([KKNY19,KKNY20])

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Groth12,Lipn GGPR13]
- CDH*+DLIN ([KKNY19,KKNY20])

Is it possible to improve the efficiency of GOS-NIZK without any trade-off?

Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

We consider Type-3 pairings, since it is the most efficient one among all types of pairings.

Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

Assumption: MDDH assumptions.

NIZK for NP [GOS06]

NIZK for NP [GOS06]

The prover first extends the witness to contain bits of all wires

NIZK for NP [GOS06]

The prover proves that the input/output commitments satisfy a relation supported by an OR-proof.

$$
\begin{aligned}
& \mathrm{cm}_{\mathrm{i}}+\mathrm{cm}_{\mathrm{j}}+\mathrm{cm}_{\mathrm{k}}-2 \mathrm{e} \\
& \text { commits to } 0 \text { or } 1
\end{aligned}
$$

$\mathrm{cm}_{\mathrm{i}}, \mathrm{cm}_{\mathrm{j}}, \mathrm{cm}_{\mathrm{k}}$ commit to 0 or 1

NIZK for NP [GOS06]

The verifier checks the validity of OR-proofs and whether the output commitment is e.

NIZK for NP [GOS06]

NIZK for NP [GOS06]

Soundness:

$$
\begin{aligned}
& \mathrm{cm}_{\mathrm{i}}+\mathrm{cm}_{\mathrm{j}}+\mathrm{cm}_{\mathrm{k}}-2 \mathrm{e} \\
& \text { commits to } 0 \text { or } 1
\end{aligned}
$$

and $\mathrm{cm}_{\mathrm{i}}, \mathrm{cm}_{\mathrm{j}}, \mathrm{cm}_{\mathrm{k}}$ commit to 0 or 1

NIZK for NP [GOS06]

Soundness:

NIZK for NP [GOS06]

Soundness:

Our Technique: Proving an Alternative Relation

The prover proves that the commitments satisfy another relation supported by the OR-proof.

```
e}-\mp@subsup{\textrm{cm}}{\textrm{i}}{}-\mp@subsup{\textrm{cm}}{\textrm{k}}{}\mathrm{ commits to 0
    and
    e-cm
```

```
\(\mathrm{e}-\mathrm{cm}_{\mathrm{k}}\) commits to 0
    and
    \(\mathrm{cm}_{\mathrm{j}}\) commits to 0
```


Proving an Alternative Relation

Proving an Alternative Relation

Proving an Alternative Relation

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

Problems

NAND gate

When $w_{j}=1, w_{i}$ and w_{k} might be large numbers with the sum "happening to be" 1, e.g., $w_{i}+w_{k}=5+9$ $\bmod 13$

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

$$
\begin{gathered}
1-w_{k}=0 \\
\text { and } \\
w_{j}=0
\end{gathered}
$$

Problems

When $\mathrm{w}_{\mathrm{j}}=0, \mathrm{w}_{\mathrm{i}}$ might be any large value

NAND gate

$$
\begin{gathered}
1-w_{i}-w_{k}=0 \\
\text { and } \\
1-w_{j}=0
\end{gathered}
$$

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

Problems

Additionally prove that the committed values are binary?

NAND gate

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

Problems

$$
\begin{gathered}
1-w_{i}-w_{k}=0 \\
\text { and } \\
1-w_{j}=0
\end{gathered}
$$

New Witness-Extraction Strategy

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

Or | $1-w_{k}=0$ |
| :---: |
| and |
| $w_{j}=0$ |

We do not need to prove wire validity
G_{5}

New Witness-Extraction Strategy

New Witness-Extraction Strategy

$$
\begin{gathered}
1-w_{i}-w_{k}=0 \\
\text { and } \\
1-w_{j}=0
\end{gathered}
$$

Or | $1-\mathrm{w}_{\mathrm{k}}=0$ |
| :---: |
| and |
| $\mathrm{w}_{\mathrm{j}}=0$ |

New Witness-Extraction Strategy

New Witness-Extraction Strategy: Example

$$
\begin{gathered}
1-w_{i}-w_{k}=0 \\
\text { and } \\
1-w_{j}=0
\end{gathered}
$$

$$
\begin{array}{c|c}
1-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{j}}=0
\end{array}
$$

New Witness-Extraction Strategy: Example

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{j}}=0
\end{gathered}
$$

$$
\begin{gathered}
\text { Or } \begin{array}{c}
1-\mathrm{w}_{\mathrm{k}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{j}}=0
\end{array} \\
\hline
\end{gathered}
$$

New Witness-Extraction Strategy: Example

New Witness-Extraction Strategy: Example

New Witness-Extraction Strategy: Example

Comparison: NIZK

Scheme	Sound.	ZK	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.
GOS12 [30] (sym. pair.)	comp. perf.	perf. comp.	$5\|\mathbb{G}\|$	$(9 t+6 s)\|\mathbb{G}\|$	$15 t+12 s$	$18(s+t)$	DLIN
GOS12* (asym. pair.)	comp. perf.	perf. comp.	$4\left\|\mathbb{G}_{1}\right\|+4\left\|\mathbb{G}_{2}\right\| \|$$(6 t+4 s)\left\|\mathbb{G}_{1}\right\|+$ $(6 t+6 s)\left\|\mathbb{G}_{2}\right\|$	$18 t+16 s$	$12(s+t)$	SXDH	
Ours	comp. perf.	perf. comp.	$4\left\|\mathbb{G}_{1}\right\|+4\left\|\mathbb{G}_{2}\right\| \|$$(2 t+8 s)\left\|\mathbb{G}_{1}\right\|+$ $10 s\left\|\mathbb{G}_{2}\right\|$	$2 t+30 s$	$24 s$	SXDH	

t: number of wires
s : number of gates
(t must larger than s)

Comparison: NIZK

Scheme	Sound.	ZK	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.	
GOS12 [30]	comp. (sym. pair.) perf.	perf. comp.	$5\|\mathbb{G}\|$	$(9 t+6 s)\|\mathbb{G}\|$	$15 t+12 s$	$18(s+t)$	DLIN	
GOS12* (asym. pair.)	comp. perf.	perf. comp.	$4\left\|\mathbb{G}_{1}\right\|+4 \mid \mathbb{G}_{2} \\|$	$(6 t+4 s)\left\|\mathbb{G}_{1}\right\|+$ $(6 t+6 s)\left\|\mathbb{G}_{2}\right\|$	$18 t+16 s$	$12(s+t)$	SXDH	
Ours	comp. perf.	perf. comp.	$4\left\|\mathbb{G}_{1}\right\|+4 \mid \mathbb{G}_{2} \\|$	$(2 t+8 s)\left\|\mathbb{G}_{1}\right\|+$ $10 s\left\|\mathbb{G}_{2}\right\|$	$2 t+30 s$	$24 s$	SXDH	

Our proof size and proving and verification cost are strictly smaller than GOS-NIZK

Comparison: Experimental Performance

When the ratio between number of gates and wires is 2 , our proof size is about 1.62X smaller

| Scheme | Proof Size (MB)
 (Ratio: 2.00) | | | | Proof Size (MB)
 (Ratio: 1.50) | | | | | Proof Size (MB)
 (Ratio: 1.06) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} |
| GOS12 [30] | 0.61 | 1.22 | 2.44 | 4.87 | 9.75 | 0.50 | 1.01 | 2.01 | 4.03 | 8.06 | 0.41 | 0.82 | 1.64 | 3.29 | 6.58 |
| Ours | 0.37 | 0.75 | 1.50 | 3.00 | 6.00 | 0.36 | 0.73 | 1.45 | 2.90 | 5.81 | 0.35 | 0.70 | 1.41 | 2.82 | 5.65 |

Comparison: Experimental Performance

Scheme	Ratio	Proving Cost (seconds)					Verification Cost (seconds)				
		2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}
GOS12 [30]	2.00	1.38	2.69	5.39	10.81	21.72	12.55	25.80	50.57	101.11	201.95
Ours		0.87	1.82	3.51	6.99	14.37	8.68	17.38	37.23	70.04	138.70
GOS12 [30]	1.50	1.17	2.23	435	9.27	17.87	10.61	21.15	/2.28	84.91	168.13
Ours		0.85	1.6	9	6.74	13.75	8.61	17.27		68.60	141.79
GOS12 [30]						14.65	Our verifier is about 1.44X faster				
Ours	Our prover is about 1.52X faster					3.25					

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Definition of BARG for NP

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and $\mathrm{crs}_{\mathrm{i}}{ }^{*}$ are indistinguishable, and when in the trapdoor mode, BExt is able to extract a valid witness for $\mathrm{X}_{\mathrm{i}^{*}}$ for any valid statement/proof pair $\left(\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in[m]}, \pi\right)$.

Definition of BARG for NP

Succinctness: the proof size, crs size, armuritication running time is succinct. Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs $_{i^{*}}$ are indistinguishable, and when in the trapdoor mode, BExt is able to extract a valid witness for $\mathrm{X}_{\mathrm{i}^{*}}$ for any valid statement/proof pair $\left(\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in[m]}, \pi\right)$.

Definition of BARG for NP

Completeness: honest proofs must pass the verification.
Succinctness: the proof size, crs size, and verification running time is succinct. Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and $\mathrm{crs}_{\mathrm{i}^{*}}$ are indistinguishable, and when in the trapdoor mode, BExt is able to extract a valid witness for $\mathrm{X}_{\mathrm{i}^{*}}$ for any valid statement/proof pair $\left(\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in[m]}, \pi\right)$.

Definition of BARG for NP

Somewhere argument of knowledge: crs and crs $_{i^{*}}$ are indistinguishable, and when in the trapdoor mode, BExt is able to extract a valid witness for $\mathrm{X}_{\mathrm{i}^{*}}$ for any valid statement/proof pair $\left(\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in[m]}, \pi\right)$.

Existing BARG for NP

Assumptions:

- Both quadratic residuosity assumption and the subexponentially hard Diffie-Hellman assumption, learning with errors assumption[CJJ21a,CJJ21b]
- MDDH assumption, subgroup decision [WW22]
- Non-standard assumptions[KPY19]
- Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]
- Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, Set20]

Existing BARG for NP

Assumptions:

- Both quadratic residuosity assumpt.

State-of-the-art in pairings subexponentially hard Diffie-Hellman as with errors assumption[CJJ21a,CJJ21b]

- MDDH assumption, subgroup decision [WW22]
- Non-standard assumptions[KPY19]
- Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]
- Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, Set20]

Our Results

Pairing-based BARGs for NP with shorter proofs and less proving and verification cost than WW-BARG.

Assumption: MDDH assumption

or subgroup decision assumption

Our Results

Pairing-based BARGs for NP with shorter proofs and less proving and verification cost than WW-BARG.

No trade-off

BARG for NP [WW22]

BARG for NP [WW22]

BARG for NP [WW22]

The prover generates succinct proofs of wire validity and gate consistency.

BARG for NP [WW22]

If we can prove gate consistency for the relation used by our NIZK, we can reduce the cost

The prover generates succinct proofs of wire varm noy.

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}} \mathrm{w}_{\mathrm{i} . \mathrm{d}_{2}}=\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}
\end{gathered}
$$

and

$$
\begin{aligned}
& \text { For all } i \in[m], j \in[t], \\
& \qquad w_{i, j}=0 \text { or } 1
\end{aligned}
$$

BARG for NP [WW22]

The prover generates succinct proofs of wire validity and gate consistency.

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}} \mathrm{w}_{\mathrm{i} . \mathrm{d}_{2}}=\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}
\end{gathered}
$$

and

$$
\begin{aligned}
& \text { For all } i \in[m], j \in[t], \\
& \qquad w_{i, j}=0 \text { or } 1
\end{aligned}
$$

Solution

$$
\begin{gathered}
\text { For all i } \in[\mathrm{m}], \\
\left(1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}\right) \mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

and

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
\left(1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}\right)\left(1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}\right)=0
\end{gathered}
$$

Prove non-linear
relations for each NAND
gate

Solution

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
\left(1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}\right) \mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

For all i $\in[m]$,
$1-\mathrm{w}_{\mathrm{i}, \mathrm{d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{d}_{3}}=0$
and
$1-\mathrm{w}_{\mathrm{i}, \mathrm{d}_{2}}=0$
or

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}=0
\end{gathered}
$$

Solution

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
\left(1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}\right) \mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

$$
\begin{gathered}
\text { For all } \mathrm{i} \in[\mathrm{~m}], \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}=0
\end{gathered}
$$

New Witness-Extraction Strategy

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gathered}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gathered}
$$

New Witness-Extraction Strategy: Examples

$$
\begin{gather*}
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{1}}-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{3}}=0 \tag{0}\\
\text { and } \\
1-\mathrm{w}_{\mathrm{i}, \mathrm{~d}_{2}}=0
\end{gather*}
$$

Comparison: BARG

Scheme	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.
WW22 [49] (asym. pair.)	$\left(4+2 m^{2}\right)\left\|\mathbb{G}_{1}\right\|+$ $\left(4+2 m^{2}\right)\left\|\mathbb{G}_{2}\right\|$	$(4 t+4 s)\left\|\mathbb{G}_{1}\right\|+$ $(4 t+4 s)\left\|\mathbb{G}_{2}\right\|$	$4 m^{2} t+4 m(m-1) s$	$24 t+32 s$	SXDH
WW22* $[49]$ (sym. pair.)	$\left(1+m^{2}\right)\|\mathbb{G}\|$	$(2 t+s)\|\mathbb{G}\|$	$m^{2} t+\frac{m(m-1)}{2} s$	$2 t+3 s$	Subgroup decision
Ours (asym. pair.)	$\left(4+2 m^{2}\right)\left\|\mathbb{G}_{1}\right\|+$ $\left(4+2 m^{2}\right)\left\|\mathbb{G}_{2}\right\|$	$(2 t+6 s)\left\|\mathbb{G}_{1}\right\|+$ $(2 t+6 s)\left\|\mathbb{G}_{2}\right\|$	$4 m t+6 m(m-1) s$	$40 s$	SXDH
Ours (sym. pair.)	$\left(1+m^{2}\right)\|\mathbb{G}\|$	$(t+2 s)\|\mathbb{G}\|$	$m t+m(m-1) s$	$4 s$	Subgroup decision

Our proof size and proving and verification cost are strictly smaller in both prime- and composite-order groups.

Comparison: Experimental Performance

| Scheme | Proof Size (MB)
 (Ratio: 2.00) | | | | Proof Size (MB)
 (Ratio: 1.50) | | | | Proof Size (MB)
 (Ratio: 1.06) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} | 2^{8} | 2^{9} | 2^{10} | 2^{11} | 2^{12} |
| WW22 [49]
 (100 stats.) | 0.42 | 0.84 | 1.69 | 3.37 | 6.75 | 0.35 | 0.70 | 1.41 | 2.81 | 5.62 | 0.29 | 0.58 | 1.16 | 2.32 | 4.64 |
| Ours
 (100 stats.) | 0.35 | 0.70 | 1.41 | 2.81 | 5.62 | 0.32 | 0.63 | 1.26 | 2.53 | 5.06 | 0.28 | 0.57 | 1.14 | 2.28 | 4.57 |
| WW22 [49]
 (50 stats.) | 0.42 | 0.84 | 1.69 | 3.37 | 6.75 | 0.35 | 0.70 | 1.41 | 2.81 | 5.62 | 0.29 | 0.58 | 1.16 | 2.32 | 4.64 |
| Ours
 (50 stats.) | 0.35 | 0.70 | 1.41 | 2.81 | 5.62 | 0.32 | 0.63 | 1.26 | 2.53 | 5.06 | 0.28 | 0.57 | 1.14 | 2.28 | 4.57 |

When the ratio between number of gates and
wires is 2 , our proof size is
1.20x smaller

Comparison: Experimental Performance

Scheme	Ratio	Proving Cost (seconds)					Verification Cost (seconds)				
		2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}
$\begin{aligned} & \text { WW22 [49] } \\ & \text { (100 stats.) } \end{aligned}$	2.00	2.50	4.64	9.93	18.36	37.44	15.69	30.23	65.45	123.66	255.95
Ours (100 stats.)		1.07	2.02	4.10	8.00	16.91	5.90	11.61	23.38	46.41	94.46
WW22 [49] (50 stats.)	2.00	0.61	1.22	2.4	4.71	9.74	16.43	31.16	6.21	118.37	253.20
$\begin{array}{\|l\|} \hline \text { Ours } \\ (50 \text { stats. }) \\ \hline \end{array}$		0.29		20	2.05	4.67	5.68	11.44	40	46.56	95.28

When proving 100 statements, our prover is about 2.27x faster

Our verifier is about 2.70x faster

Extensions

* Conversion to non-interactive zaps (NIWI in the plain model)

Conversion to SNARG for P

KLVW conversion
 technique [KLVW23]

Our BARG

Conclusion

A simple and efficient framework of proof systems for NP which improves the efficiency of GOS-NIZK and WW-BARG without any trade-off.

