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Soundness: difficult to find a valid proof for any invalid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.
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Definition of NIZK for NP

L!"#$ = {C|∃w: C w = 1}

Gen

Verify

crs

Prove
(crs,C,w) π

1/0
(crs,C,π)

λ

Sim
(crs,td,x)

π

TGen hidecrs, tdλ

Completeness: honest proofs must pass the verification.

Soundness: difficult to find a valid proof for any invalid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.



Existing NIZK for NP

Assumptions:

• Quadratic residuosity, trapdoor permutation [BFM88,FLS99]

• DLIN, subgroup decision (in pairings) [GOS06]

• LWE [PS19]

• Non-falsifiable assumptions  [Groth12,Lipmaa12,GGPR13]

• CDH*+DLIN ([KKNY19,KKNY20])
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Existing NIZK for NP

Assumptions:

• Quadratic residuosity, trapdoor permutation [BFM88,FLS99]

• DLIN, subgroup decision (in pairings) [GOS06]

• LWE [PS19]

• Non-falsifiable assumptions  [Groth12,Lipmaa12,GGPR13]

• CDH*+DLIN ([KKNY19,KKNY20]) Is it possible to improve the 
efficiency of GOS-NIZK 
without any trade-off? 



Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost 
than GOS-NIZK.



Our Results

We consider Type-3 pairings, since 
it is the most efficient one among 
all types of pairings.

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost 
than GOS-NIZK.



Our Results

Assumption: MDDH assumptions.

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost 
than GOS-NIZK.



NIZK for NP [GOS06]

…

… …

w1 w2 wi wi+1

w.l.o.g., we consider 
statement circuits 
consisting only of 

NAND gates

Prover:



NIZK for NP [GOS06]

…

… …

w1 w2 wi wi+1

wi+2

wout=1

The prover first 
extends the witness 
to contain bits of all 

wires

Prover:



NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

Additive 
homomorphic 
commitment

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout



NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

A fixed commitment to 1

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout=e



NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

Hiding property

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout



NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

There is a trapdoor 
that can be used to 

extract the 
committed values

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout



NIZK for NP [GOS06]

cmi cmj

cmk

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1and

The prover proves that the input/output commitments satisfy a relation 
supported by an OR-proof.

NAND gate

Prover:



NIZK for NP [GOS06]

cmi cmj

cmk

The verifier checks the validity of OR-proofs and whether the output commitment is e.

NAND gate

Verifier:



NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

cmout=e

Zero-knowledge: hiding property of the commitment 
and the zero-knowledge of the underlying OR-proof.

ck ← Setup(λ)
cmi=commit(ck,wi)



NIZK for NP [GOS06]

Soundness:

andcm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1



NIZK for NP [GOS06]

Soundness:

and

w% +w& +w' − 2 ∈ {0,1} and w%, w&, w' ∈ {0,1}

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1

gate consistency wire validity



NIZK for NP [GOS06]

Soundness:

and

w% +w& +w' − 2 ∈ {0,1} and w%, w&, w' ∈ {0,1}

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1

Then we can extract a 
valid witness from any 

valid proof.



Our Technique: Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0 

e − cm' commits to 0 
and

cm& commits to 0
or

cmi cmj

cmk

NAND gate

Prover:

The prover proves that the commitments satisfy another relation
supported by the OR-proof.



or

Cost is less if we adopt 
this relation

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0 

e − cm' commits to 0 
and

cm& commits to 0



or

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0 

e − cm' commits to 0 
and

cm& commits to 0

gate consistency is satisfied



or

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0 

e − cm' commits to 0 
and

cm& commits to 0

wire validity is unclear



Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

When wj=1, wi and wk
might be large numbers 

with the sum “happening 
to be” 1, e.g., wi+wk=5+9 

mod 13



Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

When wj=0, wi might be 
any large value



Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

Additionally prove that 
the committed values 

are binary? 



Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

Additionally prove that 
the committed values 

are binary? 

Less efficient than GOS-NIZK



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

We do not need to 
prove wire validity



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

When the proof is 
valid, the final 

output must be 1

1



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

If the right input is 1

1

1



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

The left input must 
be 0

1

10



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

If the right input is 0

1

0



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

0

The left input could 
be any large value



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Leave it blank for 
now

1

0⊥



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

0⊥

No matter what 
values are assigned 
to the subtree, G5 

will output 1



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

The output of G4
must be binary

wk



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

We assign values to 
its input wire(s) in a 

similar way

wk

wi wj



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Recursively, we 
obtain part of the 

witness

w1 w3w2

⊥ ⊥

⊥



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

No matter what the 
rest of the input 

wires are

w1 w2

⊥ ⊥

⊥ w3



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Assigned values will 
lead the circuit to 
output 1 anyway

w1 w3w2

⊥ ⊥

⊥



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

By setting the rest 
input wires as 0s, 

we obtain the 
witness

w1 w2

0 0

0 w3



New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or
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0 1

1

0
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New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

⊥ 0

witness=(⊥, ⊥, ⊥,0,0,1)



New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

⊥ 0

witness=(⊥, ⊥, ⊥,0,0,1) witness=(0,0,0,0,0,1)



Comparison: NIZK

t: number of wires
s: number of gates
(t must larger than s)



Comparison: NIZK

Our proof size and proving and 
verification cost are strictly 
smaller than GOS-NIZK



Comparison: Experimental Performance

When the ratio between number 
of gates and wires is 2, our proof 
size is about 1.62X smaller



Comparison: Experimental Performance

Our prover is about 
1.52X faster

Our verifier is about 
1.44X faster



Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)



Definition of BARG for NP

BGen

BVer

BExt

crs

(crs, (x%)%∈[*], (w%)%∈[*])
π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. 
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when 
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid 
statement/proof pair ((x%)%∈[2],π).

BProve



Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. 
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when 
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid 
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

A BARG for NP generates a proof for multiple NP-
statements, where the proof size scales 
sublinearly with the number of statements.



Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. 
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when 
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid 
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

Zero-knowledge is not required



Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. 
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when 
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid 
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

Proof size is independent with 
the number of statements.



Existing BARG for NP

Assumptions:

• Both quadratic residuosity assumption and the 
subexponentially hard Diffie-Hellman assumption, learning 
with errors assumption[CJJ21a,CJJ21b]

• MDDH assumption, subgroup decision [WW22]

• Non-standard assumptions[KPY19]

• Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, 
PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17] 

• Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, 
Set20] 



Existing BARG for NP

Assumptions:

• Both quadratic residuosity assumption and the 
subexponentially hard Diffie-Hellman assumption, learning 
with errors assumption[CJJ21a,CJJ21b]

• MDDH assumption, subgroup decision [WW22]

• Non-standard assumptions[KPY19]

• Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, 
PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17] 

• Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, 
Set20] 

State-of-the-art in pairings



Our Results

Pairing-based BARGs for NP with shorter proofs and less proving 
and verification cost than WW-BARG.

Assumption: MDDH assumption 
or subgroup decision assumption



Our Results

Pairing-based BARGs for NP with shorter proofs and less proving 
and verification cost than WW-BARG.

No trade-off



BARG for NP [WW22]

… …
wi,j+2

wi,out=1

The prover first 
extends the witness 
to contain bits of all 

wires

Prover: …wi,1 wi,2 wi,j wi,j+1



BARG for NP [WW22]

…

… …

cm1 cm2 cmj cmj+1

cmj+2

Prover:

cmout
Commit to all wires 

(vector commitment)



BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover:

gate consistency wire validity



BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover:

If we can prove gate 
consistency for the 

relation used by our NIZK, 
we can reduce the cost 



BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover: We do not have an explicit 
“batch OR-proof”.



Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

Prove non-linear 
relations for each NAND 

gate



Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

For all i ∈ m ,
1 − w%,4" −w%,4$ = 0

and
1 − w%,4# = 0

For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4# = 0

or

or
For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4" = 0

More “relaxed” 
version of OR-relations 

for witnesses



Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

For all i ∈ m ,
1 − w%,4" −w%,4$ = 0

and
1 − w%,4# = 0

For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4# = 0

or

or
For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4" = 0

Generalized witness-
extraction strategy



New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

The output must be 1

1



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

If the right input is 1

1

1



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

The left input is 0 as 
in our NIZK

1

10



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

Additional case: if 
the left input is 0

1

10

0



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

We leave the right 
input wire blank

1

10

0 ⊥



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

1

10

0 ⊥

Continue to extract 
the values for G1

1



New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0
Recursively, we 

obtain part of the 
witness leading the 
circuit to output 1

1

10

0 ⊥

1

1 1

1



Comparison: BARG

Our proof size and proving and 
verification cost are strictly smaller in 
both prime- and composite-order 
groups.



Comparison: Experimental Performance

When the ratio between 
number of gates and 

wires is 2, our proof size is 
1.20x smaller



Comparison: Experimental Performance

When proving 100 
statements, our prover is 

about 2.27x faster

Our verifier is about 2.70x 
faster



Extensions

v Conversion to SNARG for P

Our BARG SNARG for P

KLVW conversion 
technique [KLVW23]

v Conversion to non-interactive zaps (NIWI in the plain model)

Our NIZK Non-interactive zap

GOS conversion 
technique [GOS12]



Conclusion

A simple and efficient framework of proof systems for NP 
which improves the efficiency of GOS-NIZK and WW-BARG 
without any trade-off.


