
A Simple and Efficient Framework of
Proof Systems for NP

Yuyu Wang1, Chuanjie Su1, Jiaxin pan2, Yu Chen3

1. University of Electronic Science and Technology of China
2. NTNU - Norwegian University of Science and Technology

3. Shandong University

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Definition of NIZK for NP

L!"#$ = {C|∃w: C w = 1}

Gen

Verify

crs

Prove
(crs,C,w) π

1/0
(crs,C,π)

λ

Definition of NIZK for NP

L!"#$ = {C|∃w: C w = 1}

Completeness: honest proofs must pass the verification.

Soundness: difficult to find a valid proof for any invalid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.

Gen

Verify

crs

Prove
(crs,C,w) π

1/0
(crs,C,π)

λ

Definition of NIZK for NP

L!"#$ = {C|∃w: C w = 1}

Gen

Verify

crs

Prove
(crs,C,w) π

1/0
(crs,C,π)

λ

Sim
(crs,td,x)

π

TGen hidecrs, tdλ

Completeness: honest proofs must pass the verification.

Soundness: difficult to find a valid proof for any invalid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.

Existing NIZK for NP

Assumptions:

• Quadratic residuosity, trapdoor permutation [BFM88,FLS99]

• DLIN, subgroup decision (in pairings) [GOS06]

• LWE [PS19]

• Non-falsifiable assumptions [Groth12,Lipmaa12,GGPR13]

• CDH*+DLIN ([KKNY19,KKNY20])

Assumptions:

• Quadratic residuosity, trapdoor permutation [BFM88,FLS99]

• DLIN, subgroup decision (in pairings) [GOS06]

• LWE [PS19]

• Non-falsifiable assumptions [Groth12,Lipmaa12,GGPR13]

• CDH*+DLIN ([KKNY19,KKNY20])

Existing NIZK for NP

State-of-the-art in
the pairings

Existing NIZK for NP

Assumptions:

• Quadratic residuosity, trapdoor permutation [BFM88,FLS99]

• DLIN, subgroup decision (in pairings) [GOS06]

• LWE [PS19]

• Non-falsifiable assumptions [Groth12,Lipmaa12,GGPR13]

• CDH*+DLIN ([KKNY19,KKNY20]) Is it possible to improve the
efficiency of GOS-NIZK
without any trade-off?

Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost
than GOS-NIZK.

Our Results

We consider Type-3 pairings, since
it is the most efficient one among
all types of pairings.

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost
than GOS-NIZK.

Our Results

Assumption: MDDH assumptions.

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost
than GOS-NIZK.

NIZK for NP [GOS06]

…

… …

w1 w2 wi wi+1

w.l.o.g., we consider
statement circuits
consisting only of

NAND gates

Prover:

NIZK for NP [GOS06]

…

… …

w1 w2 wi wi+1

wi+2

wout=1

The prover first
extends the witness
to contain bits of all

wires

Prover:

NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

Additive
homomorphic
commitment

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout

NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

A fixed commitment to 1

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout=e

NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

Hiding property

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout

NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

There is a trapdoor
that can be used to

extract the
committed values

ck ← Setup(λ)
cmi=commit(ck,wi)

Prover:

cmout

NIZK for NP [GOS06]

cmi cmj

cmk

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1and

The prover proves that the input/output commitments satisfy a relation
supported by an OR-proof.

NAND gate

Prover:

NIZK for NP [GOS06]

cmi cmj

cmk

The verifier checks the validity of OR-proofs and whether the output commitment is e.

NAND gate

Verifier:

NIZK for NP [GOS06]

…

… …

cm1 cm2 cmi cmi+1

cmi+2

cmout=e

Zero-knowledge: hiding property of the commitment
and the zero-knowledge of the underlying OR-proof.

ck ← Setup(λ)
cmi=commit(ck,wi)

NIZK for NP [GOS06]

Soundness:

andcm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1

NIZK for NP [GOS06]

Soundness:

and

w% +w& +w' − 2 ∈ {0,1} and w%, w&, w' ∈ {0,1}

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1

gate consistency wire validity

NIZK for NP [GOS06]

Soundness:

and

w% +w& +w' − 2 ∈ {0,1} and w%, w&, w' ∈ {0,1}

cm% + cm& + cm' − 2e
commits to 0 or 1

cmi , cm&, cmk

commit to 0 or 1

Then we can extract a
valid witness from any

valid proof.

Our Technique: Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0

e − cm' commits to 0
and

cm& commits to 0
or

cmi cmj

cmk

NAND gate

Prover:

The prover proves that the commitments satisfy another relation
supported by the OR-proof.

or

Cost is less if we adopt
this relation

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0

e − cm' commits to 0
and

cm& commits to 0

or

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0

e − cm' commits to 0
and

cm& commits to 0

gate consistency is satisfied

or

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Proving an Alternative Relation

e − cm% − cm' commits to 0
and

e-cmj commits to 0

e − cm' commits to 0
and

cm& commits to 0

wire validity is unclear

Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

When wj=1, wi and wk
might be large numbers

with the sum “happening
to be” 1, e.g., wi+wk=5+9

mod 13

Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

When wj=0, wi might be
any large value

Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

Additionally prove that
the committed values

are binary?

Problems

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

wi wj

wk

NAND gate

Additionally prove that
the committed values

are binary?

Less efficient than GOS-NIZK

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

We do not need to
prove wire validity

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

When the proof is
valid, the final

output must be 1

1

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

If the right input is 1

1

1

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

The left input must
be 0

1

10

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

If the right input is 0

1

0

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

0

The left input could
be any large value

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Leave it blank for
now

1

0⊥

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

0⊥

No matter what
values are assigned
to the subtree, G5

will output 1

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

The output of G4
must be binary

wk

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

1

We assign values to
its input wire(s) in a

similar way

wk

wi wj

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Recursively, we
obtain part of the

witness

w1 w3w2

⊥ ⊥

⊥

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

No matter what the
rest of the input

wires are

w1 w2

⊥ ⊥

⊥ w3

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

Assigned values will
lead the circuit to
output 1 anyway

w1 w3w2

⊥ ⊥

⊥

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

By setting the rest
input wires as 0s,

we obtain the
witness

w1 w2

0 0

0 w3

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

0

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

⊥ 0

1

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

⊥ 0

witness=(⊥, ⊥, ⊥,0,0,1)

New Witness-Extraction Strategy: Example

G5

G3 G4

G1 G2

1

1 − w% −w' = 0
and

1 − w& = 0

1 − w' = 0
and

w& = 0
or

0 1

1

0⊥

⊥ ⊥

1

⊥ 0

witness=(⊥, ⊥, ⊥,0,0,1) witness=(0,0,0,0,0,1)

Comparison: NIZK

t: number of wires
s: number of gates
(t must larger than s)

Comparison: NIZK

Our proof size and proving and
verification cost are strictly
smaller than GOS-NIZK

Comparison: Experimental Performance

When the ratio between number
of gates and wires is 2, our proof
size is about 1.62X smaller

Comparison: Experimental Performance

Our prover is about
1.52X faster

Our verifier is about
1.44X faster

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Definition of BARG for NP

BGen

BVer

BExt

crs

(crs, (x%)%∈[*], (w%)%∈[*])
π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct.
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid
statement/proof pair ((x%)%∈[2],π).

BProve

Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct.
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

A BARG for NP generates a proof for multiple NP-
statements, where the proof size scales
sublinearly with the number of statements.

Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct.
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

Zero-knowledge is not required

Definition of BARG for NP

BGen

BVer

BExt

crs

BProve π

1/0
(crs, (x%)%∈[*],π)

(td,(x%)%∈[*],π)
w∗

L*-./01!"#$ = {C|∀i ∈ m : ∃w%: C w% = 1}

(λ,m)
BTGen crs%∗, td

(λ,m, i∗)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct.
Here, our proof size is independent of m.

Somewhere argument of knowledge: crs and crs%∗ are indistinguishable, and when
in the trapdoor mode, BExt is able to extract a valid witness for x%∗ for any valid
statement/proof pair ((x%)%∈[2],π).

(crs, (x%)%∈[*], (w%)%∈[*])

Proof size is independent with
the number of statements.

Existing BARG for NP

Assumptions:

• Both quadratic residuosity assumption and the
subexponentially hard Diffie-Hellman assumption, learning
with errors assumption[CJJ21a,CJJ21b]

• MDDH assumption, subgroup decision [WW22]

• Non-standard assumptions[KPY19]

• Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13,
PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]

• Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20,
Set20]

Existing BARG for NP

Assumptions:

• Both quadratic residuosity assumption and the
subexponentially hard Diffie-Hellman assumption, learning
with errors assumption[CJJ21a,CJJ21b]

• MDDH assumption, subgroup decision [WW22]

• Non-standard assumptions[KPY19]

• Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13,
PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]

• Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20,
Set20]

State-of-the-art in pairings

Our Results

Pairing-based BARGs for NP with shorter proofs and less proving
and verification cost than WW-BARG.

Assumption: MDDH assumption
or subgroup decision assumption

Our Results

Pairing-based BARGs for NP with shorter proofs and less proving
and verification cost than WW-BARG.

No trade-off

BARG for NP [WW22]

… …
wi,j+2

wi,out=1

The prover first
extends the witness
to contain bits of all

wires

Prover: …wi,1 wi,2 wi,j wi,j+1

BARG for NP [WW22]

…

… …

cm1 cm2 cmj cmj+1

cmj+2

Prover:

cmout
Commit to all wires

(vector commitment)

BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover:

gate consistency wire validity

BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover:

If we can prove gate
consistency for the

relation used by our NIZK,
we can reduce the cost

BARG for NP [WW22]

w%,4" w%.4#

w%,4$

For all i ∈ m ,
1 − w%,4"w%.4# = w%,4$

For all i ∈ m , j ∈ [t],
w%,& = 0 or 1and

The prover generates succinct proofs of wire validity and gate consistency.

NAND gate

Prover: We do not have an explicit
“batch OR-proof”.

Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

Prove non-linear
relations for each NAND

gate

Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

For all i ∈ m ,
1 − w%,4" −w%,4$ = 0

and
1 − w%,4# = 0

For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4# = 0

or

or
For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4" = 0

More “relaxed”
version of OR-relations

for witnesses

Solution

For all i ∈ m ,
1 − w%,4" −w%,4$ w%,4# = 0

For all i ∈ m ,
(1 − w%,4$)(1 − w%,4#) = 0and

For all i ∈ m ,
1 − w%,4" −w%,4$ = 0

and
1 − w%,4# = 0

For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4# = 0

or

or
For all i ∈ m ,
1 − w%,4$ = 0

and
w%,4" = 0

Generalized witness-
extraction strategy

New Witness-Extraction Strategy

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

The output must be 1

1

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

If the right input is 1

1

1

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

The left input is 0 as
in our NIZK

1

10

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

Additional case: if
the left input is 0

1

10

0

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

We leave the right
input wire blank

1

10

0 ⊥

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0

1

10

0 ⊥

Continue to extract
the values for G1

1

New Witness-Extraction Strategy: Examples

G5

G3 G4

G1 G2

1 − w%,4" −w%,4$ = 0
and

1 − w%,4# = 0

1 − w%,4$ = 0
and

w%,4# = 0
or or

1 − w%,4$ = 0
and

w%,4" = 0
Recursively, we

obtain part of the
witness leading the
circuit to output 1

1

10

0 ⊥

1

1 1

1

Comparison: BARG

Our proof size and proving and
verification cost are strictly smaller in
both prime- and composite-order
groups.

Comparison: Experimental Performance

When the ratio between
number of gates and

wires is 2, our proof size is
1.20x smaller

Comparison: Experimental Performance

When proving 100
statements, our prover is

about 2.27x faster

Our verifier is about 2.70x
faster

Extensions

v Conversion to SNARG for P

Our BARG SNARG for P

KLVW conversion
technique [KLVW23]

v Conversion to non-interactive zaps (NIWI in the plain model)

Our NIZK Non-interactive zap

GOS conversion
technique [GOS12]

Conclusion

A simple and efficient framework of proof systems for NP
which improves the efficiency of GOS-NIZK and WW-BARG
without any trade-off.

