A Simple and Efficient Framework of Proof Systems for NP

Yuyu Wang¹, Chuanjie Su¹, Jiaxin pan², Yu Chen³

- 1. University of Electronic Science and Technology of China
- NTNU Norwegian University of Science and Technology
 Shandong University

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Definition of NIZK for NP

$$L^{CSAT} = \{C | \exists w: C(w) = 1\}$$

$$\xrightarrow{\lambda} Gen \longrightarrow crs$$

$$(crs,C,w) \longrightarrow Prove \longrightarrow \pi$$

$$(crs,C,\pi) \longrightarrow Verify \longrightarrow 1/0$$

Definition of NIZK for NP

Completeness: honest proofs must pass the verification.

Soundness: difficult to find a valid proof for any invalid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.

Definition of NIZK for NP

Completeness: honest proofs must pass the verification.

Soundness: difficult to find a valid proof for any valid statement.

Zero-knowledge: π reveals no additional information on w except for the statement.

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Groth12,Lipmaa12,GGPR13]
- CDH*+DLIN ([KKNY19,KKNY20])

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Gr
- CDH*+DLIN ([KKNY19,KKNY20])

State-of-the-art in the pairings

Existing NIZK for NP

Assumptions:

- Quadratic residuosity, trapdoor permutation [BFM88,FLS99]
- DLIN, subgroup decision (in pairings) [GOS06]
- LWE [PS19]
- Non-falsifiable assumptions [Groth12,Lipn

GGPR13]

CDH*+DLIN ([KKNY19,KKNY20])

Is it possible to improve the efficiency of GOS-NIZK without any trade-off?

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

Our Results

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

We consider Type-3 pairings, since it is the most efficient one among all types of pairings.

Pairing-based NIZK for NP with shorter proofs and less proving and verification cost than GOS-NIZK.

Assumption: MDDH assumptions.

The prover proves that the input/output commitments satisfy a relation supported by an OR-proof.

The verifier checks the validity of OR-proofs and whether the output commitment is e.

Zero-knowledge: hiding property of the commitment and the zero-knowledge of the underlying OR-proof.

Soundness:

 $cm_i + cm_j + cm_k - 2e$ commits to 0 or 1

and

cm_i , cm_j, cm_k commit to 0 or 1

Soundness:

Soundness:

Our Technique: Proving an Alternative Relation

The prover proves that the commitments satisfy another relation supported by the OR-proof.

Proving an Alternative Relation

Proving an Alternative Relation

Proving an Alternative Relation

Problems

Comparison: NIZK

Scheme	Sound.	ZK	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.	
GOS12 [30]	comp.	perf.	SICI	$(0+\perp 6_{e}) \mathbb{C} $	$15+ \pm 12e$	$18(e \perp t)$		
(sym. pair.)	perf.	comp.		(<i>3t</i> + 03) @	157 ± 128	10(s+t)		
$GOS12^*$	comp.	perf.		$ (6t+4s) \mathbb{G}_1 +$	$18+ \pm 16e$	$12(e \perp t)$	схрн	
(asym. pair.)	perf.	comp.	4 @1 + 4 @2 	$ (6t+6s) \mathbb{G}_2 $	10l + 10s	$12(3 \pm i)$	SADIT	
Ours	comp.	perf.		$(2t+8s) \mathbb{G}_1 +$	2t + 20c	24 a	SYDU	
	perf.	comp.	4 U1 + 4 U2 	$ 10s \mathbb{G}_2 $	2l + 308	248	37011	

t: number of wires

s: number of gates

(t must larger than s)

Comparison: NIZK

Scheme	Sound.	ZK	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.
GOS12 [30]	comp.	perf.	รเตเ	$(0+\pm 6e)$	$15+ \pm 12e$	$18(e \perp t)$	
(sym. pair.)	perf.	comp.		(<i>3t</i> + 0 <i>s</i>) @	$15t \pm 125$	10(s + t)	
$GOS12^*$	comp.	perf.	$1 \mathbb{G}_1 + 1 \mathbb{G}_2$	$ (6t+4s) \mathbb{G}_1 +$	187 ± 168	$12(e \perp t)$	ахрн
(asym. pair.)	perf.	comp.		$ (6t+6s) \mathbb{G}_2 $	10t + 103	12(3 + i)	SADIT
Ours	comp.	perf.		$ (2t+8s) \mathbb{G}_1 +$	$24 + 20^{\circ}$	24.0	сурц
	perf.	comp.	4 + 4	$ 10s \mathbb{G}_2 $	2t + 30s	248	ЗЛЛП

Our proof size and proving and verification cost are strictly smaller than GOS-NIZK

Comparison: Experimental Performance

When the ratio between number of gates and wires is 2, our proof size is about 1.62X smaller

	Proof Size (MB)					Proof Size (MB)					Proof Size (MB)				
Scheme	(Ratio: 2.00)					(Ratio: 1.50)					(Ratio: 1.06)				
	2^8	2^{9}	2^{10}	2^{11}	2^{12}	2^8	2^9	2^{10}	2^{11}	2^{12}	2^8	2^9	2^{10}	2^{11}	2^{12}
GOS12 [30]	0.61	1.22	2.44	4.87	9.75	0.50	1.01	2.01	4.03	8.06	0.41	0.82	1.64	3.29	6.58
Ours	0.37	0.75	1.50	3.00	6.00	0.36	0.73	1.45	2.90	5.81	0.35	0.70	1.41	2.82	5.65
	· · · · · · · · · · · · · · · · · · ·														

Comparison: Experimental Performance

Scheme	Ratio	Proving Cost (seconds					Verification Cost (seconds)						
Scheme	flatio	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}		
GOS12 [30]	2.00	1.38	2.69	5.39	10.81	21.72	12.55	25.80	50.57	101.11	201.95		
Ours	2.00	0.87	1.82	3.51	6.99	14.37	8.68	17.38	37.23	70.04	138.70		
GOS12 [30]	1 50	1.17	2.23	4 55	9.27	17.87	10.61	21.15	^2.28	84.91	168.13		
Ours	1.00	0.85	1.6	9	6.74	13.75	8.61	17.27	A A	68.60	141.79		
GOS12 [30]						14.65	8				78		
Ours	Ou 1.5	ver is a ster	about	3.25	25 Our verifier is about 1.44X faster								

Proof systems

Non-interactive zero-knowledge proof (NIZK)

Non-interactive batch argument (BARG)

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. Here, our proof size is independent of m.

Succinctness: the proof size, crs size, and vermeation running time is succinct. Here, our proof size is independent of m.

Completeness: honest proofs must pass the verification.

Succinctness: the proof size, crs size, and verification running time is succinct. Here, our proof size is independent of m.

Succinctness: the proof size, crs size, and verification running time is succinct. Here, our proof size is independent of m.

Existing BARG for NP

Assumptions:

- Both quadratic residuosity assumption and the subexponentially hard Diffie-Hellman assumption, learning with errors assumption[CJJ21a,CJJ21b]
- MDDH assumption, subgroup decision [WW22]
- Non-standard assumptions[KPY19]
- Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]
- Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, Set20]

Existing BARG for NP

Assumptions:

- Both quadratic residuosity assumpt subexponentially hard Diffie-Hellman as with errors assumption[CJJ21a,CJJ21b]
- MDDH assumption, subgroup decision [WW22]
- Non-standard assumptions[KPY19]
- Non-falsifiable assumptions[Gro10, BCcm12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17]
- Idealized models[Mic95, Gro16, BBHR18, COS20, CHM 20, Set20]

State-of-the-art in pairings

Our Results

Pairing-based BARGs for NP with shorter proofs and less proving and verification cost than WW-BARG.

Assumption: MDDH assumption or subgroup decision assumption

Pairing-based BARGs for NP with shorter proofs and less proving and verification cost than WW-BARG.

No trade-off

The prover generates succinct proofs of wire validity and gate consistency.

BARG for NP [WW22]

The prover generates succinct proofs of wire validity and gate consistency.

For all
$$i \in [m]$$
,
 $1 - w_{i,d_1}w_{i,d_2} = w_{i,d_3}$
and
For all $i \in [m]$, $j \in [t]$,
 $w_{i,j} = 0 \text{ or } 1$

Solution

For all $i \in [m]$, $(1 - w_{i,d_1} - w_{i,d_3})w_{i,d_2} = 0$

and

Solution

Solution

New Witness-Extraction Strategy

$$\begin{array}{c} 1 - w_{i,d_1} - w_{i,d_3} = 0 \\ and \\ 1 - w_{i,d_2} = 0 \end{array} \hspace{0.2cm} \text{Or} \hspace{0.2cm} \begin{array}{c} 1 - w_{i,d_3} = 0 \\ and \\ w_{i,d_2} = 0 \end{array} \hspace{0.2cm} \text{Or} \hspace{0.2cm} \begin{array}{c} 1 - w_{i,d_3} = 0 \\ and \\ w_{i,d_1} = 0 \end{array} \end{array}$$

Comparison: BARG

Scheme	CRS Size	Proof Size	Prov. Cost	Ver. Cost	Assump.
$\begin{array}{c} \text{WW22 [49]} \\ \text{(asym. pair.)} \end{array}$	$(4+2m^2) \mathbb{G}_1 +\ (4+2m^2) \mathbb{G}_2 $	$\frac{ (4t+4s) \mathbb{G}_1 +}{ (4t+4s) \mathbb{G}_2 }$	$4m^2t + 4m(m-1)s$	24t + 32s	SXDH
$WW22^{*}$ [49] (sym. pair.)	$(1+m^2) \mathbb{G} $	$ (2t+s) \mathbb{G} $	$m^2t + rac{m(m-1)}{2}s$	2t + 3s	Subgroup decision
Ours (asym. pair.)	$\frac{(4+2m^2) \mathbb{G}_1 +}{(4+2m^2) \mathbb{G}_2 }$	$\frac{(2t+6s) \mathbb{G}_1 +}{(2t+6s) \mathbb{G}_2 }$	4mt + 6m(m-1)s	40s	SXDH
Ours (sym. pair.)	$(1+m^2) \mathbb{G} $	$ (t+2s) \mathbb{G} $	mt + m(m-1)s	4s	Subgroup decision

Our proof size and proving and verification cost are strictly smaller in both prime- and composite-order groups.

Comparison: Experimental Performance

	Proof Size (MB)					Proof Size (MB)					Proof Size (MB)					
Scheme	(Ratio: 2.00)						(Ratio: 1.50)					(Ratio: 1.06)				
r	2^8	2^9	2^{10}	2^{11}	2^{12}	2^8	2^{9}	2^{10}	2^{11}	2^{12}	2^8	2^{9}	2^{10}	2^{11}	2^{12}	
WW22 [49] (100 stats.)	0.42	0.84	1.69	3.37	6.75	0.35	0.70	1.41	2.81	5.62	0.29	0.58	1.16	2.32	4.64	
Ours (100 stats.)	0.35	0.70	1.41	2.81	5.62	0.32	0.63	1.26	2.53	5.06	0.28	0.57	1.14	2.28	4.57	
WW22 [49] (50 stats.)	0.42	0.84	1.69	3.37	6.75	0.35	0.70	1.41	2.81	5.62	0.29	0.58	1.16	2.32	4.64	
Ours (50 stats.)	0.35	0.70	1.41	2.81	5.62	0.32	0.63	1.26	2.53	5.06	0.28	0.57	1.14	2.28	4.57	

When the ratio between number of gates and wires is 2, our proof size is 1.20x smaller

Comparison: Experimental Performance

Scheme	Ratio	Pro	\mathbf{ving}	\mathbf{Cost}	(seco	nds)	Verification Cost (seconds)					
benefite		2^8	29	2^{10}	2^{11}	2^{12}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	
		4	4	4	4	2	4	4	4	4	-	
WW22 [49]		2 50	1 61	9 93	18 36	37 11	15 69	30.23	65 45	123 66	255 95	
(100 stats.)	2.00	2.00	1.01	5.55	10.00	51.11	10.05	50.25	00.40	120.00	200.30	
Ours	2.00	1.07	2 02	1 10	8 00	16.01	5 00	11 61	22.28	46 41	04.46	
(100 stats.)		1.07	2.02	4.10	0.00	10.91	5.90	11.01	23.30	40.41	94.40	
WW22 [49]	L				[A			
		0.61	1.22	2.	4.71	9.74	16.43	31.16	6^{-21}	118.37	253.20	
(50 stats.)	2.00	0.01				0.112	20120	02.20				
Ours	2.00	0.20	0.5	20	2.05	1 67	5 68	11 11	10	16 56	05.28	
(50 stats.)		0.29	0.2	.20	2.00	4.07	5.08	11.44	±0	40.00	90.20	

When proving 100 statements, our prover is about 2.27x faster

Our verifier is about 2.70x faster

Extensions

Conversion to non-interactive zaps (NIWI in the plain model)

Conclusion

A simple and efficient framework of proof systems for NP which improves the efficiency of GOS-NIZK and WW-BARG without any trade-off.