Memory Efficient Attacks on Small LWE Keys

Andre Esser ¹ Rahul Girme ² Arindam Mukherjee ² Santanu Sarkar ²

¹Technology Innovation Institute, UAE

²Indian Institute of Technology Madras, India

Asiacrypt 2023, 7 December 2023

- Used in NTRU, Kyber, Dilithium.
- Hybrid Attack (Nick Howgrave-Graham, 2007).
- May's combinatorial attack (Crypto 2021).
- Enormous memory required.

This work: New memoryless algorithm and time-memory trade-off.

Definition (Ternary LWE problem)

Given: q = poly(n), $w \in \mathbb{N}$, $\mathbf{A} \in \mathbb{Z}_q^{n \times n}$, $\mathbf{b} \in \mathbb{Z}_q^n$, satisfying $\mathbf{As} = \mathbf{b} + \mathbf{e} \mod q$, where $\mathbf{s}, \mathbf{e} \in \{-1, 0, 1\}^n$ and $wt(\mathbf{s}) = w$. Find: $\mathbf{s} \in \{-1, 0, 1\}^n$.

- Simple linear algebra if e is known.
- If As − b ∈ {−1, 0, 1}ⁿ, then output s. Brute-force in 3ⁿ with polynomial memory.
- For simplicity assume **s** has equal number of 1 and -1.
- For the rest of the talk $wt(\mathbf{s}) = \frac{n}{2}$.

Basics of Collision Search

For a random function $f : S \to S$, $(y_1, y_2) \in S^2$ with $f(y_1) = f(y_2)$ can be found using $\mathcal{O}(\sqrt{|S|})$ evaluations of f and polynomial memory.

Figure: $f^{i}(x)$ is denoted by z_{i}

Procedure can be extended to two random functions f_1 and f_2 , namely RHO(f_1, f_2, x), where x is random starting point. Collision is unique (depends on the starting point).

Solving LWE via Collision Search (van Vredendaal 2016)

Recall $\mathbf{As} = \mathbf{b} + \mathbf{e} \mod q$. Split $\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2$.

 $\mathbf{As}_1 = \mathbf{b} + \mathbf{e} - \mathbf{As}_2$

Guess lower ℓ coordinates of **e** (May 2021). Small, Get for free, Not enough for linear algebra.

$$\underbrace{\pi_{\ell}(\mathsf{A}\mathsf{s}_{1})}_{f_{1}(\mathsf{s}_{1})} = \underbrace{\pi_{\ell}(\mathsf{b} + \mathsf{e} - \mathsf{A}\mathsf{s}_{2})}_{f_{2}(\mathsf{s}_{2})}$$

Search for collisions between f_1 and f_2 .

$$T = \tilde{\mathcal{O}} \left(\# \text{Collisions} \cdot T_{\text{Rho}} \right) = 2^{1.125n}$$
.

5/14

Representation Technique (Howgrave-Graham, Joux 2010)

Search space goes up but representations take care of it.

$$T = \tilde{\mathcal{O}} \left(\frac{\#\text{Collisions}}{\#\text{Representations}} \cdot T_{\text{Rho}} \right).$$

Basic Collision Search Instantiations

van Vredendaal:

Nested-Collision-Search (DDKS 2016)

$$\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4.$$

$$\mathbf{A}(\mathbf{s}_1 + \mathbf{s}_2) = \mathbf{b} - \mathbf{A}(\mathbf{s}_3 + \mathbf{s}_4) + \mathbf{e} \mod q.$$

Guess the first 2ℓ coordinates of **e**. (Small, Get for free and Sufficient to identify **s** uniquely!)

$$\pi_{2\ell}ig(\mathsf{A}(\mathsf{s}_1+\mathsf{s}_2)ig)=\pi_{2\ell}(\mathsf{b}+\mathbf{e})-\pi_{2\ell}ig(\mathsf{A}(\mathsf{s}_3+\mathsf{s}_4)ig)\mod q,$$

Randomly choose $\mathbf{r} := \pi_{\ell} (\mathbf{A}(\mathbf{s}_1 + \mathbf{s}_2)).$

$$\underbrace{\frac{\pi_{\ell}(\mathbf{A}\mathbf{s}_{1})}{f_{1}(\mathbf{s}_{1})}}_{f_{3}(\mathbf{s}_{3})} = \underbrace{\mathbf{r} - \pi_{\ell}(\mathbf{A}\mathbf{s}_{2})}_{f_{2}(\mathbf{s}_{2})} \mod q$$

$$\underbrace{\pi_{\ell}(\mathbf{A}\mathbf{s}_{3})}_{f_{3}(\mathbf{s}_{3})} = \underbrace{\pi_{\ell}(\mathbf{b} + \mathbf{e}) - \mathbf{r} - \pi_{\ell}(\mathbf{A}\mathbf{s}_{4})}_{f_{4}(\mathbf{s}_{4})} \mod q.$$

Nested-Collision-Search

Let
$$\vartheta_{\ell}(\mathbf{x}) := (x_{\ell+1}, \dots, x_{2\ell}).$$

 $g_1 : \mathbf{x} \mapsto \vartheta_{\ell}(\mathbf{A}(\mathbf{y}_1 + \mathbf{y}_2))$, where $(\mathbf{y}_1, \mathbf{y}_2) = \operatorname{RHO}(f_1, f_2, \mathbf{x})$ and
 $g_2 : \mathbf{x} \mapsto \vartheta_{\ell}(\mathbf{b}') - \vartheta_{\ell}(\mathbf{A}(\mathbf{y}_3 + \mathbf{y}_4))$, where $(\mathbf{y}_3, \mathbf{y}_4) = \operatorname{RHO}(f_3, f_4, \mathbf{x}).$

Now just search for collisions between g_1, g_2 .

Time-Complexity of Nested-Collision-Search

Comparing our Memoryless Algorithm

Time-Memory Trade-off using PCS

Theorem (Parallel Collision Search, Oorschot, Wiener 1999)

Finds M collisions between f_1 and f_2 using on expectation $\tilde{O}\left(\sqrt{M \cdot |S|}\right)$ function evaluations and $\tilde{O}(M)$ units of memory.

Maximum memory spent $\leq \#$ needed collisions (small for optimal instantiation) Idea: Incorporate the PCS speedup in Time complexity and re-optimize.

- Improved memoryless algorithm for ternary LWE keys.
- Time-memory Trade-off for a small exponential memory.
- More in the paper:
 - Adapting our technique for small max-norms 2 and 3.
 - Using techniques from information set decoding to improve the uniform-secrets case.

https://eprint.iacr.org/2023/243 https://github.com/arindamIITM/Small-LWE-Keys

Thank You.