Unified View for Notions of Bit Security

ASIACRYPT@Guangzhou, China December, 2023

Shun Watanabe (Tokyo University of Agriculture and Technology) Kenji Yasunaga (Tokyo Institute of Technology)

What is bit security?

We shall quantify how much security a certain system provide...

Roughly, a system is λ bit secure if 2^{λ} operations are needed to break the system.

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$f: \{0,1\}^n \to \{0,1\}^n$$

and an attack with cost T such that

$$\Pr\left(A(f(x)) = x\right) = \varepsilon_A$$

how much bit security is guaranteed?

Bit security of one-way function

Given one-way function (permutation)

a representative of search primitive

$$f: \{0,1\}^n \to \{0,1\}^n$$

and an attack with cost T such that

$$\Pr\left(A(f(x)) = x\right) = \varepsilon_A$$

how much bit security is guaranteed?

The success probability can be amplified to $\simeq N \varepsilon_A$

Total cost is
$$\mathcal{O}(N \cdot T_A) = \mathcal{O}\left(\frac{T_A}{\varepsilon_A}\right) \implies BS = \min_A \left\{ \log_2\left(\frac{T_A}{\varepsilon_A}\right) \right\}$$

How should we define bit security of decision primitives/assumptions.

(PRG, encryption, DDH)

How should we define bit security of decision primitives/assumptions. (PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security.

It is compatible with known facts, but did not have an operational meaning...

How should we define bit security of decision primitives/assumptions. (PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security.

It is compatible with known facts, but did not have an operational meaning...

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

It has an operational meaning; some open problems remained: connection between MW and WY.

How should we define bit security of decision primitives/assumptions. (PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security.

It is compatible with known facts, but did not have an operational meaning...

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

It has an operational meaning; some open problems remained: connection between MW and WY.

Result 1: a slight modification of WY21 is equivalent to MW18.

Result 2: Goldreich-Levin reduction is tight in WY21.

Result 3: via canonical games, it suffices to consider decision game in WY21

Result 4: application to distribution replacement theorem

How should we define bit security of decision primitives/assumptions. (PRG, encryption, DDH)

Micciancio-Walter (EUROCRYPT 2018) introduced a notion of bit security.

It is compatible with known facts, but did not have an operational meaning...

Watanabe-Yasunaga (ASIACRYPT 2021) introduced an alternative notion of bit security.

It has an operational meaning; some open problems remained: connection between MW and WY.

Result 1: a slight modification of WY21 is equivalent to MW18.

Result 2: Goldreich-Levin reduction is tight in WY21.

Result 3: via canonical games, it suffices to consider decision game in WY21

Result 4: application to distribution replacement theorem

Motivating question 1

Attack with success probability 40 %

Attack with success probability 50 %

Motivating question 2

Attack with success probability 60 %

Attack with success probability 60 %

Game	1	2	3	4	5	6	7	8	9	10
Prediction	0	0	0	0	1	0	0	0	0	0
Outcome	0	0	1	0	1	1	0	1	0	1

Game	1	2	3	4	5	6	7	8	9	10
Prediction	1	0	0	0	1	0	0	1	1	1
Outcome	0	0	1	0	1	1	0	1	0	1

Motivating question 2

Attack with success probability 60 %

Attack with success probability 60 %

Biased adversary

Unbiased adversary

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$f: \{0,1\}^n \to \{0,1\}^n$$

and its hard-core predicate

$$h: \{0,1\}^n \to \{0,1\}$$

Seed: $x \in_R \{0,1\}^n$ Output: G(x) = (f(x), h(x))

Consider a construction of PRG using one-way permutation.

Given one-way permutation

$$f: \{0,1\}^n \to \{0,1\}^n$$

and its hard-core predicate

$$h: \{0,1\}^n \to \{0,1\}$$

Seed:
$$x \in_R \{0,1\}^n$$
 Output: $G(x) = (f(x),h(x))$

Indistinguishability game:

PRG:
$$u = 0$$
 $(y, z) = (f(x), h(x))$

TRG: u = 1 $(y, z) = (f(x), \sigma)$ $\sigma \in_R \{0, 1\}$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

Note that the advantage is

$$2(\Pr(\hat{u} = u) - 1/2) = \varepsilon_i, \quad i = 1, 2$$

There are a few possible attacks:

1) Linear test attack:

For a fixed vector
$$v \in \{0,1\}^{n+1}$$
, output $\hat{u} = 0$ if $\langle v, (y,z) \rangle = 0$

 $A_0 = (1/2 + \varepsilon_1, 1/2 - \varepsilon_1)$ $A_1 = (1/2, 1/2)$

There exists v such that $\varepsilon_1 \ge 2^{-n/2}$ [Alon-Goldreich-Hastad-Peralta 92].

2) Inversion attack:

Invert f(x), and output $\hat{u} = 0$ if it succeed and h(x) = z.

If the success probability of inversion is $2\varepsilon_2$,

$$A_0 = (2\varepsilon_2, 1 - 2\varepsilon_2) \quad A_1 = (\varepsilon_2, 1 - \varepsilon_2)$$

Note that the advantage is

$$2(\Pr(\hat{u} = u) - 1/2) = \varepsilon_i, \quad i = 1, 2$$

The standard advantage cannot capture the difference of biased and unbiased adversaries.

Bit security framework of Micciancio-Walter

$$y \in \{0, 1\} \cup \{\bot\}$$

Bit security is defined as $\min_{A} \left\{ \log \frac{T_A}{\operatorname{adv}_A^{MW}} \right\}$
 $\operatorname{adv}_A^{MW} := \frac{I(U \land Y)}{H(U)} = 1 - \frac{H(U|Y)}{H(U)}$
Shannon entropy

 $U \in \{0,1\}$ is a random secret of game

Y is the adversary's output

Bit security framework of Micciancio-Walter

For decision game,

conditional square advantage

$$\operatorname{adv}_A^{\operatorname{MW}} \simeq \alpha_A \cdot (2\beta_A - 1)^2 =: \operatorname{adv}_A^{CS}$$

where

$$\alpha_A := \Pr(A \text{ outputs } Y \neq \bot) \quad \beta_A := \Pr(Y = U | A \text{ outputs } Y \neq \bot)$$

1) Linear test attack:

$$\alpha_A = 1, \quad \beta_A = \varepsilon_1^2 \Longrightarrow \operatorname{adv}_A^{\operatorname{CS}} = \varepsilon_1^2$$

2) Inversion attack:

$$\alpha_A = 2\varepsilon_2, \quad \beta_A = 1/4 \Longrightarrow \operatorname{adv}_A^{\operatorname{CS}} = \varepsilon_2/2$$

Bit security framework of WY21

Winning condition of outer adversary (decision)

Bit security definition of WY21

Bit security is defined as

$$BS_{G}^{\mu} := \min_{A,B} \left\{ \log \left(N \cdot T_{A} \right) : \Pr \left(B \text{ wins } \right) \ge 1 - \mu \right\}$$
eg) $\mu = 0.01$
inner outer

Characterization of Bit security of WY21

Theorem [WY21]

Bit security can be characterized as

$$\mathrm{BS}_{G}^{\mu} := \min_{A} \left\{ \log \left(\frac{T_{A}}{\mathrm{adv}_{A}} \right) \right\} + \mathcal{O}(1)$$

where $adv_A = adv_A^{Renyi} := D_{1/2}(A_0 || A_1)$

 A_u : probability distribution of output a by A when secret is u

$$D_{1/2}(A_0 \| A_1) = -2 \ln \sum_a \sqrt{A_0(a)A_1(a)}$$
 Rényi divergence of order 1/2

WY21 did not consider \perp , but the result in unchanged even if we consider \perp .

- Upper bound is derived using the likelihood ratio test for Bayesian hypothesis testing.
- Lower bound is derived using an inequality between Rényi divergence and TV distance.
 (Fuchs-van de Graaf inequality)

Open problems in WY21

WY bit security behaves mostly the same as MW bit security.

Particularly,

1) Linear test attack: $\mathrm{adv}_A^{\mathrm{Renyi}} = \Theta(\varepsilon_1^2)$

2) Inversion attack:
$$\operatorname{adv}_A^{\operatorname{Renyi}} = \Theta(arepsilon_2)$$

However,

- -tightness of Goldreich-Levin reduction
- -connection between WY bit security and MW bit security

remained unsolved.

Relation between MW and WY (1)

Theorem 1

For any adversary A ,

$$\operatorname{Adv}_A^{\operatorname{CS}} \le 4\operatorname{Adv}_A^{\operatorname{Renyi}}$$

Implication of Theorem 1:

If a decision game G is λ bit secure in the sense of WY,

then, up to a constant bit, G is λ bit secure in the sense of MW.

The proof is via bounding the CS advantage by the Hellinger distance, and then using a connection between Rényi divergence and Hellinger distance.

Relation between MW and WY (2)

Theorem 2

For an adversary A such that $\operatorname{Adv}_A^{\operatorname{Renyi}} \leq 1$, there exists an adversary \widetilde{A} such that

$$\mathrm{Adv}_A^{\mathrm{Renyi}} \leq 12 \ \mathrm{Adv}_{\tilde{A}}^{\mathrm{CS}}$$

and $ilde{A}\,$ has the same cost as A .

Implication of Theorem 2:

The assumption $\operatorname{Adv}_A^{\operatorname{Renyi}} \leq 1$ is not restrictive:

Even if $\operatorname{Adv}_A^{\operatorname{Renyi}} > 1$, we can consider $\theta A + (1 - \theta) A_{\operatorname{triv}}$ and apply Theorem 2 to A_{θ} .

If a decision game G is λ bit secure in the sense of MW,

then, up to a constant bit, G is λ bit secure in the sense of WY.

Proof outline of Theorem 2

```
Lemma (relabeling [MW18])
```

For an adversary A and $z \in \{0, 1, \bot\}$, let \tilde{A}^z be an adversary such that

run A and obtain output a

output 0 if a = z and $A_0(z) \ge A_1(z)$ output 1 if a = z and $A_0(z) < A_1(z)$

only one of these occurs

```
otherwise (a 
eq z ), output ot
```

Then,

$$Adv_{\tilde{A}^z}^{CS} = \frac{1}{2} \frac{(A_0(z) - A_1(z))^2}{A_0(z) + A_1(z)}$$

Non-verifiable primitive

$$\begin{array}{ccc} u = 0 & (g^{x}, g^{y}, g^{xy}) & & & \\ & & \text{or} & & & \\ u = 1 & (g^{x}, g^{y}, g^{z}) & & & & A' & \\ \end{array} \xrightarrow{} A' \xrightarrow{} & \text{estimate } u \end{array}$$

Attack DDH using CDH oracle: probability of \perp is 0

$$A_0 = (\varepsilon_{A'}^{\text{cdh}}, 1 - \varepsilon_{A'}^{\text{cdh}}, 0) \qquad A_1 = (\varepsilon_{A'}^{\text{cdh}}/p, 1 - \varepsilon_{A'}^{\text{cdh}}/p, 0)$$

$$\mathrm{adv}_A^{\mathrm{CS}} = (\mathrm{adv}_A^{\mathrm{TV}})^2 = (1 - 1/p)^2 (\varepsilon_{A'}^{\mathrm{cdh}})^2 \quad \mathrm{adv}_A^{\mathrm{Renyi}} = \Omega(\varepsilon_{A'}^{\mathrm{cdh}})$$

The CS advantage is much smaller than the Renyi advantage

Non-verifiable primitive

Decision Diffie-Hellman (DDH):

$$\begin{array}{ccc} u = 0 & (g^{x}, g^{y}, g^{xy}) & & & & \\ & & \text{or} & & & & \\ u = 1 & (g^{x}, g^{y}, g^{z}) & & & & & & \\ \end{array} \xrightarrow{} A' \xrightarrow{} & & & \text{estimate } u \end{array}$$

Apply Lemma (relabeling) with z=0

$$A_{0} = (\varepsilon_{A'}^{\text{cdh}}, 1 - \varepsilon_{A'}^{\text{cdh}}, 0) \qquad A_{1} = (\varepsilon_{A'}^{\text{cdh}}/p, 1 - \varepsilon_{A'}^{\text{cdh}}/p, 0)$$
$$\tilde{A}_{0}^{z} = (\varepsilon_{A'}^{\text{cdh}}, 0, 1 - \varepsilon_{A'}^{\text{cdh}}) \qquad \tilde{A}_{1}^{z} = (\varepsilon_{A'}^{\text{cdh}}/p, 0, 1 - \varepsilon_{A'}^{\text{cdh}}/p)$$

$$\operatorname{adv}_{\tilde{A}^z}^{\operatorname{CS}} = \Omega(\varepsilon_{A'}^{\operatorname{cdh}})$$

Summary of advantages for various attacks

Attacks	Adv^{TV}	Adv^{CS}	$Adv^{\operatorname{Renyi}}$
Balanced attack without \perp $A_0 = (1/2 + \delta, 1/2 - \delta)$ $A_1 = (1/2, 1/2)$	δ	δ^2	$\Theta(\delta^2)$
e.g.) Linear test attack for PRG			
Unbalanced attack with \perp			
$egin{aligned} A_0 &= (\delta, 0, 1-\delta) \ A_1 &= (\delta/2, \delta/2, 1-\delta) \end{aligned}$	$\delta/2$	$\delta/2$	$\Theta(\delta)$
e.g.) Inversion attack for PRG			
Unbalanced attack without \perp $A_0 = (\delta, 1 - \delta)$ $A_1 = (\delta/p, 1 - \delta/p)$ e.g.) CDH oracle attack for DDH	$(1-1/p)\delta$	$(1-1/p)^2\delta^2$	$\Theta(\delta)$
Balanced 0/1-unbalanced \perp attack $A_0 = (1/2 - \delta/2, 1/2 - \delta/2, \delta)$ $A_1 = (1/2 - \delta/4, 1/2 - \delta/4, \delta/2)$ e.g.) Inversion attack using \perp	$\delta/2$	0	$\Theta(\delta)$

The CS advantage is sensitive to "labeling", but after relabeling,

the CS advantage and the Rényi advantage lead to essentially the same bit security.