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Mathematically easy,
but computationally hard!
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Sponge Construction
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• P is b-bit permutation.
• r is the rate.
• c is the capacity.
• b = r + c.

• Security: Behaves like RO up to O(2c/2) queries [2, 3].
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Our objective



A Problem
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• Padding is necessary.

• More absorption calls than if message would not be padded.

• More problematic in finite fields: Inefficient.
• Unnecessary evaluations in some settings.

• Domain separation.
• We must make all the absorbs before any squeezing takes place.
• Inflexible scheme.
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A Solution: SAFE API [1]
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Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.

• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.
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SAFECore
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• SAFECorePad? You said no padding!

• I was not lying...
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SAFECore: Security
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• State of the art does not cover security of SAFECore.
• Our contribution: Thorough analysis of SAFE API. Previous state of the art: No
proof for SAFE API.

• We prove generic security of SAFECore . . .
• . . . and apply it to SAFE API.
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Security
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Indifferentiability of the Sponge
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• General security bound [2, 3]: Indifferentiable from random oracle up to O(2c/2)
queries.

• This result is tight.
• Collision in the inner part by querying P .
• D can win the indifferentiability game with:
• O(2c/2) queries to P .
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Indifferentiable of SAFECore
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• General security bound: Indifferentiable from random oracle up to O(2c/2) queries.
• Same bound as in the sponge.

• Collision in the inner part by querying P.
• Now D can win the indifferentiability game.
• O(2c/2) queries to P .

• A new attack: Collision in the inner part by querying H.
• We lost nothing because we already had this bound in the sponge.
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Applications



Applications of SAFE API

• Plain hashing.

• Commitment schemes.

• Interactive protocols.

• Merkle trees.

• Zero Knowledge proofs: SNARKs.

• Lattice cryptography.

• ZKVMs.

• Verifiable encryption.
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• Translation to SAFECore:

Z ← SAFECore(IO , D,X1∥X2∥ · · · ∥Xℓ) .

• Generic security of SAFECore implies security of plain hashing.
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Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.
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Conclusion

• Result: Formal generic analysis of SAFE API.

• Allows for more efficient hashing in finite fields.

• Requires the use of a another hash function.

• Generic security bound is the same as normal sponge.

Thank you for your attention!
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