
Generic Security of the SAFE API and Its
Applications

Dmitry Khovratovich, Mario Marhuenda Beltrán, Bart Mennink

December 8, 2023

1 / 14

Cryptographic Hash Functions

M H h* \n

• Collision resistant • Preimage resistant

M

H

M ′

H

h

* *
M

H

h

*

2 / 14

Cryptographic Hash Functions

M H h* \n

• Collision resistant • Preimage resistant

M

H

M ′

H

h

* *
M

H

h

*

2 / 14

Cryptographic Hash Functions

M H h* \n

• Collision resistant • Preimage resistant

M

H

M ′

H

h

* *
M

H

h

*

Mathematically easy,
but computationally hard!

2 / 14

Sponge Construction

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• P is b-bit permutation.
• r is the rate.
• c is the capacity.
• b = r + c.

• Security: Behaves like RO up to O(2c/2) queries [2, 3].

3 / 14

Sponge Construction

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• P is b-bit permutation.
• r is the rate.
• c is the capacity.
• b = r + c.

• Security: Behaves like RO up to O(2c/2) queries [2, 3].

3 / 14

Sponge Construction

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• P is b-bit permutation.
• r is the rate.
• c is the capacity.
• b = r + c.

• Security: Behaves like RO up to O(2c/2) queries [2, 3]. 3 / 14

Our objective

A Problem

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• Padding is necessary.

• More absorption calls than if message would not be padded.

• More problematic in finite fields: Inefficient.
• Unnecessary evaluations in some settings.

• Domain separation.
• We must make all the absorbs before any squeezing takes place.
• Inflexible scheme.

4 / 14

A Problem

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• Padding is necessary.
• More absorption calls than if message would not be padded.

• More problematic in finite fields: Inefficient.
• Unnecessary evaluations in some settings.

• Domain separation.
• We must make all the absorbs before any squeezing takes place.
• Inflexible scheme.

4 / 14

A Problem

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• Padding is necessary.
• More absorption calls than if message would not be padded.
• More problematic in finite fields: Inefficient.
• Unnecessary evaluations in some settings.

• Domain separation.
• We must make all the absorbs before any squeezing takes place.
• Inflexible scheme.

4 / 14

A Problem

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• Padding is necessary.
• More absorption calls than if message would not be padded.
• More problematic in finite fields: Inefficient.
• Unnecessary evaluations in some settings.

• Domain separation.
• We must make all the absorbs before any squeezing takes place.
• Inflexible scheme.

4 / 14

A Solution: SAFE API [1]

Start Absorb

0

H

outer
inner

H

IO , D

\

r

\

c

P P P

M1 M2 M3

Squeeze Finish

P P P

truncr \

Ok

5 / 14

A Solution: SAFE API [1]

Start Absorb

0

H

outer
inner

H

IO , D

\

r

\

c

P P P

M1 M2 M3

Squeeze Finish

P P P

truncr \

Ok

5 / 14

Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.

• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.

6 / 14

Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.
• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.

6 / 14

Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.
• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.

6 / 14

Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.
• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.

6 / 14

Features of SAFE API

• Fix padding:

• Make the IV dependent on the message length.
• Make the IV dependent on the absorb/squeeze order.
• No more padding!

• IO fixes message length.

• Allows to alternate absorbs and squeezes.

• Include additional data in D.

Security proofs of the sponge do not carry over.

• SAFECore: A variant of the sponge.

• Security: Behaves like RO up to O(2c/2) queries.

6 / 14

SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• SAFECorePad? You said no padding!

• I was not lying...

7 / 14

SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• SAFECorePad? You said no padding!

• I was not lying...

7 / 14

SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• SAFECorePad? You said no padding!

• I was not lying...

7 / 14

SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• SAFECorePad? You said no padding!

• I was not lying...

7 / 14

IO

M
SAFECorePadr

I1, O1, . . .
M1 · · ·MI1

0
O1· · · 0

...

SAFECore: Security

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\
c

\

r

\
c

\

Ok

• State of the art does not cover security of SAFECore.
• Our contribution: Thorough analysis of SAFE API. Previous state of the art: No
proof for SAFE API.

• We prove generic security of SAFECore . . .
• . . . and apply it to SAFE API.

8 / 14

SAFECore: Security

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\
c

\

r

\
c

\

Ok

• State of the art does not cover security of SAFECore.

• Our contribution: Thorough analysis of SAFE API. Previous state of the art: No
proof for SAFE API.

• We prove generic security of SAFECore . . .
• . . . and apply it to SAFE API.

8 / 14

SAFECore: Security

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\
c

\

r

\
c

\

Ok

• State of the art does not cover security of SAFECore.
• Our contribution: Thorough analysis of SAFE API. Previous state of the art: No

proof for SAFE API.
• We prove generic security of SAFECore . . .
• . . . and apply it to SAFE API.

8 / 14

Security

Indifferentiability

Indifferentiability framework

RO SP ,SP−1

D

Ideal world

H P, P−1

D

Real world

9 / 14

Indifferentiability of the Sponge

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• General security bound [2, 3]: Indifferentiable from random oracle up to O(2c/2)
queries.

• This result is tight.
• Collision in the inner part by querying P .
• D can win the indifferentiability game with:
• O(2c/2) queries to P .

10 / 14

Indifferentiability of the Sponge

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• General security bound [2, 3]: Indifferentiable from random oracle up to O(2c/2)
queries.

• This result is tight.
• Collision in the inner part by querying P .
• D can win the indifferentiability game with:

• O(2c/2) queries to P .

10 / 14

Indifferentiability of the Sponge

0

IV

outer
inner P P P P P P

absorbing squeezing

M padr truncr Z

\

r

\

c

\

r

\

c

\

n

• General security bound [2, 3]: Indifferentiable from random oracle up to O(2c/2)
queries.

• This result is tight.
• Collision in the inner part by querying P .
• D can win the indifferentiability game with:
• O(2c/2) queries to P .

10 / 14

Indifferentiable of SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• General security bound: Indifferentiable from random oracle up to O(2c/2) queries.
• Same bound as in the sponge.

• Collision in the inner part by querying P.
• Now D can win the indifferentiability game.
• O(2c/2) queries to P .

• A new attack: Collision in the inner part by querying H.
• We lost nothing because we already had this bound in the sponge.

11 / 14

Indifferentiable of SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• General security bound: Indifferentiable from random oracle up to O(2c/2) queries.
• Same bound as in the sponge.

• Collision in the inner part by querying P.
• Now D can win the indifferentiability game.

• O(2c/2) queries to P .
• A new attack: Collision in the inner part by querying H.
• We lost nothing because we already had this bound in the sponge.

11 / 14

Indifferentiable of SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• General security bound: Indifferentiable from random oracle up to O(2c/2) queries.
• Same bound as in the sponge.

• Collision in the inner part by querying P.
• Now D can win the indifferentiability game.
• O(2c/2) queries to P .

• A new attack: Collision in the inner part by querying H.
• We lost nothing because we already had this bound in the sponge.

11 / 14

Indifferentiable of SAFECore

0

H

outer
inner P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

• General security bound: Indifferentiable from random oracle up to O(2c/2) queries.
• Same bound as in the sponge.

• Collision in the inner part by querying P.
• Now D can win the indifferentiability game.
• O(2c/2) queries to P .

• A new attack: Collision in the inner part by querying H.
• We lost nothing because we already had this bound in the sponge.

11 / 14

Applications

Applications of SAFE API

• Plain hashing.

• Commitment schemes.

• Interactive protocols.

• Merkle trees.

• Zero Knowledge proofs: SNARKs.

• Lattice cryptography.

• ZKVMs.

• Verifiable encryption.

12 / 14

• Translation to SAFECore:

Z ← SAFECore(IO , D,X1∥X2∥ · · · ∥Xℓ) .

• Generic security of SAFECore implies security of plain hashing.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅

3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)

6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Applications of SAFE API: Commitment Scheme

• Suppose you want to commit to a l-tuple: (X1, . . . , Xl) ∈ Fl
q.

1: IO ← (l, µ)
2: D ← ∅
3: START(IO ,D)

4: ABSORB(ℓ · d+ 1, X1 ∥ X2 ∥ · · · ∥ Xℓ ∥ R), R
$←− Fq

5: Z ← SQUEEZE(µ)
6: FINISH()
7: return Z

• Translation to SAFECore:

Z ← SAFECore((l, µ),∅, X1∥X2∥ · · · ∥Xℓ∥R) .

• Generic security of SAFECore implies security of commitment scheme.

13 / 14

Conclusion

• Result: Formal generic analysis of SAFE API.

• Allows for more efficient hashing in finite fields.

• Requires the use of a another hash function.

• Generic security bound is the same as normal sponge.

Thank you for your attention!

14 / 14

Conclusion

• Result: Formal generic analysis of SAFE API.

• Allows for more efficient hashing in finite fields.

• Requires the use of a another hash function.

• Generic security bound is the same as normal sponge.

Thank you for your attention!

14 / 14

Bibliography

Aumasson, J., Khovratovich, D., Quine, P.: SAFE (Sponge API for Field Elements)
– A Toolbox for ZK Hash Applications (2022), https://safe-hash.dev/

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) Advances in Cryptology -
EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 4965, pp. 181–197. Springer
(2008), https://doi.org/10.1007/978-3-540-78967-3_11

Naito, Y., Ohta, K.: Improved Indifferentiable Security Analysis of PHOTON. In:
Abdalla, M., Prisco, R.D. (eds.) Security and Cryptography for Networks - 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8642, pp. 340–357. Springer
(2014), https://doi.org/10.1007/978-3-319-10879-7_20

15 / 14

https://safe-hash.dev/
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-319-10879-7_20

	Our objective
	Security
	Applications

