Two-Round Concurrent 2PC from Sub-Exponential LWE

Behzad Abdolmaleki ${ }^{1}$, Saikrishna Badrinarayanan, ${ }^{2}$ Rex Fernando ${ }^{3}$, Giulio Malavolta, ${ }^{4,5}$ Ahmadreza Rahimi ${ }^{5}$, and Amit Sahai ${ }^{6}$

1. University of Sheffield, UK
2. LinkedIn, USA
3. Carnegie Mellon University, USA
4. Bocconi University, Italy
5. Max Planck Institute for Security and Privacy, Germany
6. UCLA, USA

Problem Statement of Concurrent 2PC

-Def.:Two-party computation (2PC) protocols where both parties receive output $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

Problem Statement of Concurrent 2PC

-Def.:Two-party computation (2PC) protocols where both parties receive output $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

Security Goal:

- Adversary should learn nothing besides the output z.
- Formally: simulation-based security.

Concurrent Security:

- Where adversary sees many instances of the protocol are executed in parallel.

Problem Statement of Concurrent 2PC

-Def.:Two-party computation (2PC) protocols where both parties receive output $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

Security Goal:

- Adversary should learn nothing besides the output z.
- Formally: simulation-based security.

Concurrent Security:

- Where adversary sees many instances of the protocol are executed in parallel.

Can we achieve two-round concurrently secure two-party computation under simple, post-quantum assumptions, in the plain model?

The Concurrent Setting

- A more realistic setting allows parties to participate concurrently in arbitrarily many instances.

Impossibility Result:

[BPS06]: Achieving the standard definition of concurrent security is impossible in any rounds in the plain model, without a trusted setup

The Concurrent Setting

- A more realistic setting allows parties to participate concurrently in arbitrarily many instances.

Impossibility Result:

[BPS06]: Achieving the standard definition of concurrent security is impossible in any rounds in the plain model, without a trusted setup

Overcome the above mentioned impossibility results:

- The bounded concurrent model [Pass04],
- In the multiple ideal-query model [GoyJai13],
- input-indistinguishable computation [MicPas06].
-And an standard relaxation of simulation security: the notion of super-polynomial simulation, or SPS [Pass03]. (which is widely used to circumvent many lower-bound results)

The Concurrent Setting

- A more realistic setting allows parties to participate concurrently in arbitrarily many instances.

Impossibility Result:

[BPS06]: Achieving the standard definition of concurrent security is impossible in any rounds in the plain model, without a trusted setup

Overcome the above mentioned impossibility results:

- The bounded concurrent model [Pass04],
- In the multiple ideal-query model [GoyJai13],
- input-indistinguishable computation [MicPas06].
-And an standard relaxation of simulation security: the notion of super-polynomial simulation, or SPS [Pass03]. (which is widely used to circumvent many lower-bound results)

The Round Complexity

- In 2PC (with two-side output) setting, a round is defined in the simultaneous exchange message model

The Round Complexity

- In 2PC (with two-side output) setting, a round is defined in the simultaneous exchange message model
- In every round, two parties can simultaneously send the next round message to each other parties

The Round Complexity

- In 2PC (with two-side output) setting, a round is defined in the simultaneous exchange message model
- In every round, two parties can simultaneously send the next round message to each other parties

Time line and Results:
[GGJS12, KMO14]: Constant-round protocols (approximately 20 rounds). [GKP17] : 5 rounds with SPS security from standard sub-exponential assumptions.
[BGJKS17]: Concurrent MPC in four-round with SPS security.

The Round Complexity

- In 2PC (with two-side output) setting, a round is defined in the simultaneous exchange message model
- In every round, two parties can simultaneously send the next round message to each other parties

Time line and Results:

[GGJS12, KMO14]: Constant-round protocols (approximately 20 rounds).
[GKP17] : 5 rounds with SPS security from standard sub-exponential assumptions.
[BGJKS17]: Concurrent MPC in four-round with SPS security.
[ABGKM21] : Two-round MPC with standalone security in the plain model assuming subexponential NIWI arguments, the subexponential SXDH assumption, and the existence of non-interactive NMC
[FJK22]: Concurrent two-round MPC protocol, assuming subexponential quantum hardness of LWE, subexponential classical hardness of SXDH, the existence of a subexponentially-secure (classicallyhard) iO , and time-lock puzzles

Standard Simulation-Real Ideal Paradigm

Real

Ideal

Standard Simulation-Real Ideal Paradigm

Real

Ideal

Standard Simulation-Real Ideal Paradigm

Real

Computationally Indistinguishable

```
Idea
```


SPS Simulation Paradigm [Pass03, PS04, BS05, BGJKS17]

Real

Computationally Indistinguishable

```
Idea
```


SPS Simulation Paradigm [Pass03, PS04, BS05, BGJKS17]

Our Results

Main Result:

Our Results

Main Result:

A two-round, concurrent-secure, two-party secure computation based on a single, standard, post-quantum assumption, namely sub-exponential the hardness of LWE problem.

Our Results

Main Result:

A two-round, concurrent-secure, two-party secure computation based on a single, standard, post-quantum assumption, namely sub-exponential the hardness of LWE problem.

First two-round concurrent-secure 2PC thaty does not require:

- The existence of a one-round NMC. Instead, we are able to use the two-round NMCs of [KhuSah17], which is instantiable from sub-exponential LWE.
- The existence of non-interactive witness indistinguishable arguments or time-lock puzzles.

Our Results

Main Result:

A two-round, concurrent-secure, two-party secure computation based on a single, standard, post-quantum assumption, namely sub-exponential the hardness of LWE problem.

First two-round concurrent-secure 2PC thaty does not require:

- The existence of a one-round NMC. Instead, we are able to use the two-round NMCs of [KhuSah17], which is instantiable from sub-exponential LWE.
- The existence of non-interactive witness indistinguishable arguments or time-lock puzzles.

The Applications:

1) The first two-round PAKE scheme in the plain model, resolving a longstanding open problem in the area
2) The first concurrent 2PC for quantum functionalities (in the plain model) with classical inputs and outputs

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

$Z=f(x, y)$

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

$Z=f(x, y)$

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Observarion: The 2PC Construction

Observarion from [ABGKM21] -The need for Verifiability

Intuition: Alternative Approach

Observarion from [ABGKM21] -The need for Verifiability

Intuition: Alternative Approach

Observarion from [ABGKM21] -The need for Verifiability

Intuition: Alternative Approach

Observarion from [ABGKM21] -The need for Verifiability

Our Technique/Construction

Four main tools in our construction:

Our Technique/Construction

Four main tools in our construction:

$P_{\text {_ }}$ i: Two different types of commitments to its input, (NMC1 and OT1 message).

Our Technique/Construction

Four main tools in our construction:

the OT1 message will be used by party $P_{\text {_ }}$ i in reconstructing its own output

$Z=f(x, y)$

NMC1 will be used to help P1-i to reconstruct its output
$P_{\text {_i }}$ i: Two different types of commitments to its input, (NMC1 and OT1 message).

Our Technique/Construction

Four main tools in our construction:

the OT1 message will be used by party $P_{\text {_ }} \mathrm{i}$ in reconstructing its own output

$Z=f(x, y)$

NMC :To prevent the honest party from learning "mauled" outputs
$P_{\text {_ }}$ i: Two different types of commitments to its input, (NMC and OT1 message).

NMC will be used to help P1-i to reconstruct its output

Our Technique/Construction

Four main tools in our construction:

the OT1 message will be used by party P_i in reconstructing its own output

How do we prevent the adversary from learning $f(x, y)$, then?

$Z=f(x, y)$ from learning "mauled" outputs
$P_{\text {_ }}$ i: Two different types of commitments to its input, (NMC1 and OT1 message).

NMC :To prevent the honest party

$$
Z=f(x, y)
$$

Our Technique/Construction

Four main tools in our construction:

the OT1 message will be used by party $P_{\text {_ }} \mathrm{i}$ in reconstructing its own output

NMC :To prevent the honest party from learning "mauled" outputs
$P_{\text {_ }}$ i: Two different types of commitments to its input, (NMC1 and OT1 message).

How do we prevent the adversary from learning $f(x, y)$, then? The SSP OT: an adversary can only unlock the protocol output if it knows the input of its OT1 message.

$$
Z=f(x, y)
$$

Our Technique/Construction

Four main tools in our construction:

the OT1 message will be used by party $P_{\text {_ }} \mathrm{i}$ in reconstructing its own output

$Z=f(x, y)$

NMC :To prevent the honest party from learning "mauled" outputs
$P_{\text {_ }}$ i: Two different types of commitments to its input, (NMC1 and OT1 message).

How do we prevent the adversary from learning $f(x, y)$, then? The SSP OT: an adversary can only unlock the protocol output if it knows the input of its OT1 message.

NMC1 will be used to help P1-i to reconstruct its output

Our Technique/Construction

Four main tools in our construction:
$Z=f(x, y)$

P_i: Two different types of commitments to its input, (NMC1 and OT1 message).

How do we prevent the adversary from learning $f(x, y)$, then?
The SSP OT: an adversary can only unlock the protocol output if it knows the input of its OT1 message.

$$
Z=f\left(x^{\prime}, y\right)
$$

Our Technique/Construction

Four main tools in our construction:

we must somehow connect the
 NMC1 with the OT1

P_i: Two different types of commitments to its input, (NMC1 and OT1 message).

How do we prevent the adversary from learning $f(x, y)$, then?
The SSP OT: an adversary can only unlock the protocol output if it knows the input of its OT1 message.

Our Technique/Construction

Four main tools in our construction:

P_i: Two different types of commitments to its input: NMC1 and OT1 message).
$P_{-} \mathbf{i}$: Commit to the randomness used for its NMC1

Our Technique/Construction

Four main tools in our construction:

P_i: Two different types of commitments to its input: NMC1 and OT1 message).
$P_{-} \mathbf{i}$: Commit to the randomness used for its NMC1

Our Technique/Construction

Four main tools in our construction:

P1-i: can construct its garbled circuit to only reveal the output if this randomness is correct.

P_i: Two different types of commitments to its input: NMC1 and OT1 message).
P_{-}i: Commit to the randomness used for its NMC1

$$
Z=f(x, y)
$$

Our Technique/Construction

Four main tools in our construction:

P1-i: can construct its garbled circuit to only reveal the output if this randomness is correct.

P_i: Two different types of commitments to its input: NMC1 and OT1 message).
P_{-}i: Commit to the randomness used for its NMC1

$$
Z=f(x, y)
$$

Done!

$$
Z=f(x, y)
$$

Thanks

