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Functional Encryption eswm

(FE)

Authority

Sender ek, sk « Setup(1%) Receiver

@ dk¢ < DKeyGen(sk, f) @

E Kk d Clgata
Ctgata < Enc(ek, data) > f(data) « Dec(ctyata , dky)




Multi-Client Functional Encryption weewsszu

(MCFE)
Authority
Sender i (eKy)ie[n] » Sk < Setup(1%,n) Receiver
ﬂ dk¢ < DKeyGen(sk, f) @
th,datai . .
Ctpdata, < Enc(ek;, data;, ) » By collecting ciphertexts of label ¢ from all senders,

f((data;)iefn)) < Dec ( (cty datapietn), dKr)



Decentralized MCFE [CDGPP18]

(DMCFE)
Sender i Receiver
N dkg;
* ek;,sk; « Setup(l ,n) > o dk¢ « DKeyComb((dkf,i)ie[n],f)
* Clydata; < Enc(ek;, data;, £ ) Cty data; * f((datai)iE[n]) « Dec ((Ct{’,datai)ie[n]r dkg, f)

 dk¢; < DKeyGenShare(sk;, ) N



Decentralized MICFE for Inner Product

(IP-DMCEFE)

« Aninner product (or weighted sum) function represented by y is defined as:
fy: X = (XY) = XiXiVi
* In IP-DMCFE, each sender encrypts x; and generates key share for y;:

dk¢, < DKeyComb((dky,)iefny, fy )

(X,y) < Dec ((Ct&xi)ie[n]r dkf? ,f)

« There are concrete DDH-based and lattice-based constructions in the literature.

* In practice, IP-DMCFE allows computing statistical analysis for private data from multiple sources.



Verifiability for IP-DMCFE*

Malicious sender i Receiver

0

dk;:, v:
» Produce malformed (dk;, ct’,;) (dk;, 1)

v

. dky < DKeyComb ((dkyj)je[n]\{i}' dki’y)
ct &i

R e o« Dec ((Ct&xj)jE[n]\{i}’ Ct,&i ’ dki’ €>

where a is strongly biased from the inner
product function on the honest data set

(X)jemn G I & Zjemiy XiY;

*A concurrent work focuses on the input validation for Secure Aggregation: [BGLLMRY22]



Our contributions

* Concept: definition of verifiable DMCFE with the ability to identify
malicious senders.
* Techniques to facilitate verification of key share:
1. One-time Decentralized Sum (ODSUM) based on class groups.
2. A full-fledged DSUM tailored for verification from ODSUM.
* Scheme: Efficient range-verifiable DMCFE for inner product.



Formalization of Verifiable DMCFE

For all users:

Let »™ be a family of PPT message
predicates and let ' be a family of PPT
function predicates

pp < Setup(}A)

For each sender:

¢ [(Skii eki)i VkCTJ VkDKJ pk] « KeyGen(pp)
e Cf,i — Enc(eki, X, f, Pim (S pm)

* dk¢j < DKeyGenShare(sk;, £, Pl € pN

For a receiver:

« Be VerifyDK((dkf’i)iE[n],VkDK, P

* Be VerifyCT((C{’,i)ie[n]»VkCT» (P™ie[n))

where 3 = 1 for accepting and 3 = (0, M'S) for rejecting

along with a set of malicious senders M'S.
e dks < DKeyComb((dkf,i)ie[n], £

* f(x)/L1 < Decrypt(dkg, (Cf»i)ie[n])
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Formalization of Veritfiability

Verifiability (for non-function-hiding): Given families of predicates (pf, ™), an adversary wins by one of the following
conditions

a := VerifyCT ((Cf'i)ie[HS]' (C{)'i)ie[CS]' vKer, (Pim)ie[n])

. , _ f
B, := VerifyDK <(dkfj,i)ie[Hs] , (dkf].,l)ie[cs] ,vkp, P >

* Ifa=1andB; = 1 for all poly. number of function queries fj, there does not exist (X;)je[n) such that

P™(x;) = 1 Viand Decrypt (dkf]-» (C{’,i)ie[n]) = fj(Xy, ., Xn) mmmmmm) Input validation
* Ifa = (0,MScr) or Bj = (0, MSpg) for some function query f; and Malicious sender
MS-r UMSpk contains a non-corrupted sender ) cntification

Verifiable DMCFE for Inner Product




Goal: A verifiable IP-DMCFE compatible with
oractical building blocks

Schnorr-like proof for discrete logarithm equalities:

RDL(g,E;g) =1 (—)Si :Si'GiVi

Range proof for Pedersen commitment:

Rrange((comped, ], r); (x,5)) =1 e compgq =s-[h] +[x] Ax € []r]

MCFE scheme from [CDGPP18] (simplified):

1. (ekp)i = (sky)i = (si); « Setup(1*,n)
2. ctip = s; - [hy] + [xi] < Enc(ek;, x;, £) where [h,] = hash(¥)

3. dky = Y siyi « DKeyGen((sk;); y)




Decentralization of IP-MICFE

A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE

[CDGPP20]:

Sender i

©

°* pp <« Setup(ll, n)
ski, pk < KeyGen(pp)
Ctpx, < Enc(sk;, xj,¢)

Receiver

0O

* Xiem)Xi < Dec ((th,xi)ie[n])



Decentralization of IP-MICFE

A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE
[CDGPP20]:

Sender i Receiver

°* pp <« Setup(ll, n)

* skj, pk « KeyGen(pp) Ctpy.
* ctpy, < Enc(skj, x;,£) — * diemiXi < Dec ((Cte,xi)ie[n])

Problem: verification of generic-DSUM encryption is prohibitively expensive to be done by a NIZK,
similarly to the verification of individual key in ACORN protocol [BGLLMRY23] (solved by MPC)

Ctyy =X + 2 PRF(NIKE(sk;, sk;), £) — z PRF(NIKE(sk;, sk;), £)

i<j i>j
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Combine-then-Descend Technique

The first attempt is to construct a proof-friendly Decentralized SUM (DSUM)
with the following properties for encryption:

e Verification within constant costs;
* Input domain is Z,;

* No bound on the sum to be decrypted.

— Hard to be instantiated in pairing-friendly groups.



Preliminaries on Class Groups

The CL framework for groups of unknown order [CL15, CCLST19, CCLST20].

°* pp < CLGen(lA, p): 1% computational security parameter, p > 2% prime
* Cyclic group G = GP x F:

e F = (f) - subgroup of order p with easy DLOG.

« GP = (gp) - subgroup of p-th powers in G, of unknown order.

* Hardness assumptions:
* Hidden Subgroup Membership = "

privacy

* Low-ORD Assumption } For soundness
« Strong Root Assumption of verification

* Advantages:
* Can choose p freely as a large prime
* Transparent setup
e Faster and smaller than Paillier group [BCIL22]



One-time DSUM in Class Groups

For all users:

* pp = (G =GP xF) = (g, - f) « Setup(d)

For each sender:

+ (ski =t;, T; = g) « KeyGen(pp)

* pk = (Tiieqn) is public

e C;=1fx. (]_[i<]- T - [1is T]-_l)ti < Enc(sk;, x;, pk)
For a receiver:

* Decrypt((Cyie[n)):
* No decryption key is required.
* [t combines ciphertexts

M = 1_[ C; = fLie[n] Xi 1_[ gpZi<j titj — Zisj tity — fliem) Xi
i€[n]

i€[n]
e By the class group property, it descends Zie[n] X; from DLOG of M.



One-time DSUM in Class Groups

For all users:
—'| One-time DSUM is not enough to decentralize
. =(G=GP XF) = - f) « Setup(A =
bP ( ) (gp ) p( ) MCEFE, as it only allows one-time secure encryption
For each sender: with the one-time mask (HK]- T - [1is T]-_l)ti from
i .
. (Ski =t, T} = gpl) « KeyGen(pp) each key generation.

* pk = (Tiieqn) is public
: —1\t
e C;=1fx. (Hi<j T[> T 1) < Enc(sk;, x;, pk)

For a receiver:

* Decrypt((Cyie[n)):
* No decryption key is required.
* [t combines ciphertexts

M = 1_[ C; = fLie[n] Xi 1_[ gpZi<j titi — Zisj tity — fliem)Xi
i€[n] i€[n]

e By the class group property, it descends Zie[n] X; from DLOG of M.



Bootstrapping to Label-Supporting DSUM

* |IP-MCFE supports encryption that can be re-randomized by labels, i.e.,
cti, = si - [he] + [xi] < Enc(ek;, x;, £) where [h,] = hash(¥)

and becomes an MCFE for sum with a deterministic decryption key dk; = il s;.

 Both ODSUM and IP-MCFE allows ciphertext verification by 2-protocols.

We obtain benefits from both schemes:
1. Use ODSUM to decentralize MCFE key dk> .

2. Decentralized MCFE for sum becomes a full-fledged DSUM with efficient
verifiability.




Labe‘—Supportlng DSUM ODSUM in class group

MCEFE in prime-order group

1. Setup for all users:

*  Generate class group: (G = GP x F) = (g, - f); ord({f)) = p Generate prime-order DDH group: (G, G); ord(G) = p

2. Key generation for each sender:

*  Generate randomly: (ti, T = gg Generate randomly: s; (mod p)

*  PublishTj

: -1\t
© G=1% ([li T [Iis; )
* Send Cj to receiver

3. Encryption for each sender:

ctip = si - [hy] + [x;] < Enc(ek;, x;, ) where [h,] = hash(¥)

4. Decryption for receiver:

*  Combine ciphertexts

M = H Ci — fzie[n] Sj l_[ ngKj tit]‘ _Zi>j tit]' — fzie[n] Si
i€[n]

i€[n]
* Descend Yiepy Si (mod p) from DLOG of M.

dk; = YiL;s; (mod p)

@ *  [a] =Xt ctip—[hy] - dky = [XiL;xi]

One-time run suffices . Compute a discrete logarithm to recover a.




Using LDSUM to Decentralize MCFE

We use a pairing group (Gr, G1,G,,e: Gy X G, = G s.t. e(|aly, [b],) = [ab];) to avoid the discrete log
calculation in LDSUM decryption.

MCFE in G1: LDSUM in G, (with the same class group operations):
(ctip = si - [hely + [Xi]1)igm) [dki]z = [Xiz1sivil2

A 4

DMCFE inner product to decrypt in Gp:
[a]r= Xiem e(ctie lyil2) — e ([hf]p [dky]z) = [Xit1xiyilr




Using LDSUM to Decentralize MCFE

We use a pairing group (Gr, G1,G,,e: Gy X G, = G s.t. e(|aly, [b],) = [ab];) to avoid the discrete log

calculation in LDSUM decryption.

MCFE in Gy:
(ctip = si - [hels + [Xil1)igpmy

LDSUM in G, (with the same class group operations):
[dky], = [Ziysivil2

A 4

DMCFE inner product to decrypt in Gp:
[a]r= Xiem e(ctie lyil2) — e ([hf]p [dky]z) = [Xit1xiyilr

_ Key share (LDSUM encryption) verification can be done by a Z-protocol w.r.t. committed s; and public y;.

_ Ciphertext (MCFE encryption) verification can be done by a range-proof + X-protocol w.r.t commited s; and encrypted x;.
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Efficiency
| Peweme | PP | Vewneme

Each 12m + 7 GE, O(m) SO 2log(m)+7G,10S 2m + 2log(m) + 19 GE, O(m) SO
ciphertext
Each key 16 GE, O(1) SO 8G,6S 24 GE
share

GE: group exponentiations

SO: scalar operations

G: group elements

S: scalars

*These costs are estimated when Bulletproof is instantiated for [0, 2" — 1] range proof.

Batch Verification: Receiver can verify if all ciphertexts/key shares are correct or not

* For n key shares: 2n group exponentiations and 6 pairings

* For n ciphertexts: 3 multi-exponentiations of size (3 + 2n), a multi-exponentiation of size 2m + 3 + n(2 log(m) + 5), and O(n - m)
scalar operations.

Verifiable DMCFE for Inner Product 21



Security

* Verifiability
1. Ciphertext verification: ROM + DDH Assump. (Symmetric eXternal Diffie
Hellman pairing group).

2. Functional key share verification: ROM + Low-ORD Assump. (class group) +
Strong Root Assump. (class group).

e Static-corruption Indistinguishability: ROM + HSM Assump. (class
group) + SXDH Assump. (pairing group).



Range-Verifiable Inner-Product DMCFE

Construction path:

efficient to verify label supporting
ODSUM MCFE
plaintext validation key consistency
Y
Range Proof MCFE LDSUM 2-protocol
decentralizing key generation

A 4

Range-Verifiable DMCFE

Conclusion:

1. The scheme supports efficiently identifying an unbounded number of malicious senders with no additional
interactivity between users.

2. Any other Pedersen-based proof for message predicates can also be applied.

LDSUM can also be used as a verifiable sharing of group identity.

4. Open question: a verifiable Dynamic IP-DMCFE?

w

More details at: https://ia.cr/2023/268. Thank you!



https://ia.cr/2023/268
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