ASIACRYPT 2023

Verifiable Decentralized Multi-Client Functional
Encryption for inner Product

Dinh Duy Nguyen Duong Hieu Phan David Pointcheval

Telécom Paris, France Teléecom Paris, France Ecole Normale Supérieure de
Paris, France

Functional Encryption eswm

(FE)

Authority

Sender ek, sk « Setup(1%) Receiver

@ dk¢ < DKeyGen(sk, f) @

E Kk d Clgata
Ctgata < Enc(ek, data) > f(data) « Dec(ctyata , dky)

Multi-Client Functional Encryption weewsszu

(MCFE)
Authority
Sender i (eKy)ie[n] » Sk < Setup(1%,n) Receiver
ﬂ dk¢ < DKeyGen(sk, f) @
th,datai . .
Ctpdata, < Enc(ek;, data;,) » By collecting ciphertexts of label ¢ from all senders,

f((data;)iefn)) < Dec ((cty datapietn), dKr)

Decentralized MCFE [CDGPP18]

(DMCFE)
Sender i Receiver
N dkg;
* ek;,sk; « Setup(l ,n) > o dk¢ « DKeyComb((dkf,i)ie[n],f)
* Clydata; < Enc(ek;, data;, £) Cty data; * f((datai)iE[n]) « Dec ((Ct{’,datai)ie[n]r dkg, f)

 dk¢; < DKeyGenShare(sk;,) N

Decentralized MICFE for Inner Product

(IP-DMCEFE)

« Aninner product (or weighted sum) function represented by y is defined as:
fy: X = (XY) = XiXiVi
* In IP-DMCFE, each sender encrypts x; and generates key share for y;:

dk¢, < DKeyComb((dky,)iefny, fy)

(X,y) < Dec ((Ct&xi)ie[n]r dkf? ,f)

« There are concrete DDH-based and lattice-based constructions in the literature.

* In practice, IP-DMCFE allows computing statistical analysis for private data from multiple sources.

Verifiability for IP-DMCFE*

Malicious sender i Receiver

0

dk;:, v:
» Produce malformed (dk;, ct’,;) (dk;, 1)

v

. dky < DKeyComb ((dkyj)je[n]\{i}' dki’y)
ct &i

R e o« Dec ((Ct&xj)jE[n]\{i}’ Ct,&i ’ dki’ €>

where a is strongly biased from the inner
product function on the honest data set

(X)jemn G I & Zjemiy XiY;

*A concurrent work focuses on the input validation for Secure Aggregation: [BGLLMRY22]

Our contributions

* Concept: definition of verifiable DMCFE with the ability to identify
malicious senders.
* Techniques to facilitate verification of key share:
1. One-time Decentralized Sum (ODSUM) based on class groups.
2. A full-fledged DSUM tailored for verification from ODSUM.
* Scheme: Efficient range-verifiable DMCFE for inner product.

Formalization of Verifiable DMCFE

For all users:

Let »™ be a family of PPT message
predicates and let ' be a family of PPT
function predicates

pp < Setup(}A)

For each sender:

¢ [(Skii eki)i VkCTJ VkDKJ pk] « KeyGen(pp)
e Cf,i — Enc(eki, X, f, Pim (S pm)

* dk¢j < DKeyGenShare(sk;, £, Pl € pN

For a receiver:

« Be VerifyDK((dkf’i)iE[n],VkDK, P

* Be VerifyCT((C{’,i)ie[n]»VkCT» (P™ie[n))

where 3 = 1 for accepting and 3 = (0, M'S) for rejecting

along with a set of malicious senders M'S.
e dks < DKeyComb((dkf,i)ie[n], £

* f(x)/L1 < Decrypt(dkg, (Cf»i)ie[n])

Verifiable DMCFE for Inner Product 8

Formalization of Veritfiability

Verifiability (for non-function-hiding): Given families of predicates (pf, ™), an adversary wins by one of the following
conditions

a := VerifyCT ((Cf'i)ie[HS]' (C{)'i)ie[CS]' vKer, (Pim)ie[n])

. , _ f
B, := VerifyDK <(dkfj,i)ie[Hs] , (dkf].,l)ie[cs] ,vkp, P >

* Ifa=1andB; = 1 for all poly. number of function queries fj, there does not exist (X;)je[n) such that

P™(x;) = 1 Viand Decrypt (dkf]-» (C{’,i)ie[n]) = fj(Xy, ., Xn) mmmmmm) Input validation
* Ifa = (0,MScr) or Bj = (0, MSpg) for some function query f; and Malicious sender
MS-r UMSpk contains a non-corrupted sender) cntification

Verifiable DMCFE for Inner Product

Goal: A verifiable IP-DMCFE compatible with
oractical building blocks

Schnorr-like proof for discrete logarithm equalities:

RDL(g,E;g) =1 (—)Si :Si'GiVi

Range proof for Pedersen commitment:

Rrange((comped,], r); (x,5)) =1 e compgq =s-[h] +[x] Ax € []r]

MCFE scheme from [CDGPP18] (simplified):

1. (ekp)i = (sky)i = (si); « Setup(1*,n)
2. ctip = s; - [hy] + [xi] < Enc(ek;, x;, £) where [h,] = hash(¥)

3. dky = Y siyi « DKeyGen((sk;); y)

Decentralization of IP-MICFE

A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE

[CDGPP20]:

Sender i

©

°* pp <« Setup(ll, n)
ski, pk < KeyGen(pp)
Ctpx, < Enc(sk;, xj,¢)

Receiver

0O

* Xiem)Xi < Dec ((th,xi)ie[n])

Decentralization of IP-MICFE

A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE
[CDGPP20]:

Sender i Receiver

°* pp <« Setup(ll, n)

* skj, pk « KeyGen(pp) Ctpy.
* ctpy, < Enc(skj, x;,£) — * diemiXi < Dec ((Cte,xi)ie[n])

Problem: verification of generic-DSUM encryption is prohibitively expensive to be done by a NIZK,
similarly to the verification of individual key in ACORN protocol [BGLLMRY23] (solved by MPC)

Ctyy =X + 2 PRF(NIKE(sk;, sk;), £) — z PRF(NIKE(sk;, sk;), £)

i<j i>j

Verifiable DMCFE for Inner Product 12

Combine-then-Descend Technique

The first attempt is to construct a proof-friendly Decentralized SUM (DSUM)
with the following properties for encryption:

e Verification within constant costs;
* Input domain is Z,;

* No bound on the sum to be decrypted.

— Hard to be instantiated in pairing-friendly groups.

Preliminaries on Class Groups

The CL framework for groups of unknown order [CL15, CCLST19, CCLST20].

°* pp < CLGen(lA, p): 1% computational security parameter, p > 2% prime
* Cyclic group G = GP x F:

e F = (f) - subgroup of order p with easy DLOG.

« GP = (gp) - subgroup of p-th powers in G, of unknown order.

* Hardness assumptions:
* Hidden Subgroup Membership = "

privacy

* Low-ORD Assumption } For soundness
« Strong Root Assumption of verification

* Advantages:
* Can choose p freely as a large prime
* Transparent setup
e Faster and smaller than Paillier group [BCIL22]

One-time DSUM in Class Groups

For all users:

* pp = (G =GP xF) = (g, - f) « Setup(d)

For each sender:

+ (ski =t;, T; = g) « KeyGen(pp)

* pk = (Tiieqn) is public

e C;=1fx. (]_[i<]- T - [1is T]-_l)ti < Enc(sk;, x;, pk)
For a receiver:

* Decrypt((Cyie[n)):
* No decryption key is required.
* [t combines ciphertexts

M = 1_[C; = fLie[n] Xi 1_[gpZi<j titj — Zisj tity — fliem) Xi
i€[n]

i€[n]
e By the class group property, it descends Zie[n] X; from DLOG of M.

One-time DSUM in Class Groups

For all users:
—'| One-time DSUM is not enough to decentralize
. =(G=GP XF) = - f) « Setup(A =
bP () (gp) p() MCEFE, as it only allows one-time secure encryption
For each sender: with the one-time mask (HK]- T - [1is T]-_l)ti from
i .
. (Ski =t, T} = gpl) « KeyGen(pp) each key generation.

* pk = (Tiieqn) is public
: —1\t
e C;=1fx. (Hi<j T[> T 1) < Enc(sk;, x;, pk)

For a receiver:

* Decrypt((Cyie[n)):
* No decryption key is required.
* [t combines ciphertexts

M = 1_[C; = fLie[n] Xi 1_[gpZi<j titi — Zisj tity — fliem)Xi
i€[n] i€[n]

e By the class group property, it descends Zie[n] X; from DLOG of M.

Bootstrapping to Label-Supporting DSUM

* |IP-MCFE supports encryption that can be re-randomized by labels, i.e.,
cti, = si - [he] + [xi] < Enc(ek;, x;, £) where [h,] = hash(¥)

and becomes an MCFE for sum with a deterministic decryption key dk; = il s;.

 Both ODSUM and IP-MCFE allows ciphertext verification by 2-protocols.

We obtain benefits from both schemes:
1. Use ODSUM to decentralize MCFE key dk> .

2. Decentralized MCFE for sum becomes a full-fledged DSUM with efficient
verifiability.

Labe‘—Supportlng DSUM ODSUM in class group

MCEFE in prime-order group

1. Setup for all users:

* Generate class group: (G = GP x F) = (g, - f); ord({f)) = p Generate prime-order DDH group: (G, G); ord(G) = p

2. Key generation for each sender:

* Generate randomly: (ti, T = gg Generate randomly: s; (mod p)

* PublishTj

: -1\t
© G=1% ([li T [Iis;)
* Send Cj to receiver

3. Encryption for each sender:

ctip = si - [hy] + [x;] < Enc(ek;, x;,) where [h,] = hash(¥)

4. Decryption for receiver:

* Combine ciphertexts

M = H Ci — fzie[n] Sj l_[ngKj tit]‘ _Zi>j tit]' — fzie[n] Si
i€[n]

i€[n]
* Descend Yiepy Si (mod p) from DLOG of M.

dk; = YiL;s; (mod p)

@ * [a] =Xt ctip—[hy] - dky = [XiL;xi]

One-time run suffices . Compute a discrete logarithm to recover a.

Using LDSUM to Decentralize MCFE

We use a pairing group (Gr, G1,G,,e: Gy X G, = G s.t. e(|aly, [b],) = [ab];) to avoid the discrete log
calculation in LDSUM decryption.

MCFE in G1: LDSUM in G, (with the same class group operations):
(ctip = si - [hely + [Xi]1)igm) [dki]z = [Xiz1sivil2

A 4

DMCFE inner product to decrypt in Gp:
[a]r= Xiem e(ctie lyil2) — e ([hf]p [dky]z) = [Xit1xiyilr

Using LDSUM to Decentralize MCFE

We use a pairing group (Gr, G1,G,,e: Gy X G, = G s.t. e(|aly, [b],) = [ab];) to avoid the discrete log

calculation in LDSUM decryption.

MCFE in Gy:
(ctip = si - [hels + [Xil1)igpmy

LDSUM in G, (with the same class group operations):
[dky], = [Ziysivil2

A 4

DMCFE inner product to decrypt in Gp:
[a]r= Xiem e(ctie lyil2) — e ([hf]p [dky]z) = [Xit1xiyilr

_ Key share (LDSUM encryption) verification can be done by a Z-protocol w.r.t. committed s; and public y;.

_ Ciphertext (MCFE encryption) verification can be done by a range-proof + X-protocol w.r.t commited s; and encrypted x;.

Verifiable DMCFE for Inner Product 20

Efficiency
| Peweme | PP | Vewneme

Each 12m + 7 GE, O(m) SO 2log(m)+7G,10S 2m + 2log(m) + 19 GE, O(m) SO
ciphertext
Each key 16 GE, O(1) SO 8G,6S 24 GE
share

GE: group exponentiations

SO: scalar operations

G: group elements

S: scalars

*These costs are estimated when Bulletproof is instantiated for [0, 2" — 1] range proof.

Batch Verification: Receiver can verify if all ciphertexts/key shares are correct or not

* For n key shares: 2n group exponentiations and 6 pairings

* For n ciphertexts: 3 multi-exponentiations of size (3 + 2n), a multi-exponentiation of size 2m + 3 + n(2 log(m) + 5), and O(n - m)
scalar operations.

Verifiable DMCFE for Inner Product 21

Security

* Verifiability
1. Ciphertext verification: ROM + DDH Assump. (Symmetric eXternal Diffie
Hellman pairing group).

2. Functional key share verification: ROM + Low-ORD Assump. (class group) +
Strong Root Assump. (class group).

e Static-corruption Indistinguishability: ROM + HSM Assump. (class
group) + SXDH Assump. (pairing group).

Range-Verifiable Inner-Product DMCFE

Construction path:

efficient to verify label supporting
ODSUM MCFE
plaintext validation key consistency
Y
Range Proof MCFE LDSUM 2-protocol
decentralizing key generation

A 4

Range-Verifiable DMCFE

Conclusion:

1. The scheme supports efficiently identifying an unbounded number of malicious senders with no additional
interactivity between users.

2. Any other Pedersen-based proof for message predicates can also be applied.

LDSUM can also be used as a verifiable sharing of group identity.

4. Open question: a verifiable Dynamic IP-DMCFE?

w

More details at: https://ia.cr/2023/268. Thank you!

https://ia.cr/2023/268

	Slide 1: Verifiable Decentralized Multi-Client Functional Encryption for Inner Product
	Slide 2: Functional Encryption [BSW11] (FE)
	Slide 3: Multi-Client Functional Encryption [GGGJKLSSZ14] (MCFE)
	Slide 4: Decentralized MCFE [CDGPP18] (DMCFE)
	Slide 5: Decentralized MCFE for Inner Product (IP-DMCFE)
	Slide 6
	Slide 7: Our contributions
	Slide 8: Formalization of Verifiable DMCFE
	Slide 9: Formalization of Verifiability
	Slide 10: Goal: A verifiable IP-DMCFE compatible with practical building blocks
	Slide 11
	Slide 12
	Slide 13: Combine-then-Descend Technique
	Slide 14: Preliminaries on Class Groups
	Slide 15: One-time DSUM in Class Groups
	Slide 16: One-time DSUM in Class Groups
	Slide 17: Bootstrapping to Label-Supporting DSUM
	Slide 18: Label-Supporting DSUM
	Slide 19: Using LDSUM to Decentralize MCFE
	Slide 20: Using LDSUM to Decentralize MCFE
	Slide 21: Efficiency
	Slide 22: Security
	Slide 23: Range-Verifiable Inner-Product DMCFE

