
Verifiable Decentralized Multi-Client Functional 
Encryption for Inner Product

Dinh Duy Nguyen

Télécom Paris, France

ASIACRYPT 2023

Duong Hieu Phan

Télécom Paris, France

David Pointcheval

École Normale Supérieure de 
Paris, France



Functional Encryption [BSW11]

(FE)

Sender Receiver

ctdata ← Enc ek, data
ctdata

dkf ← DKeyGen sk, f

f(data) ← Dec ctdata , dkf

ek, sk ← Setup 1λ
ek dkf

Authority

Verifiable DMCFE for Inner Product 2



Multi-Client Functional Encryption [GGGJKLSSZ14] 

(MCFE) 

Sender i Receiver

ctℓ,datai ← Enc eki, datai, ℓ
ctℓ,datai

dkf ← DKeyGen sk, f

f((datai)i∈ 𝑛 ) ← Dec (ctℓ,datai)i∈ 𝑛 , dkf

(eki)i∈ 𝑛 , sk ← Setup 1λ, 𝑛

eki dkf

Authority

By collecting ciphertexts of label ℓ from all senders,

Verifiable DMCFE for Inner Product 3



Decentralized MCFE [CDGPP18]

(DMCFE)

Sender i Receiver

ctℓ,datai

• eki , ski ← Setup 1λ, 𝑛

• ctℓ,datai ← Enc eki, datai, ℓ

• dkf,i ← DKeyGenShare ski, f

dkf,i
• dkf ← DKeyComb (dkf,i)i∈ 𝑛 , f

• f((datai)i∈ 𝑛 ) ← Dec (ctℓ,datai)i∈ 𝑛 , dkf, ℓ

Verifiable DMCFE for Inner Product 4



Decentralized MCFE for Inner Product
(IP-DMCFE)

• An inner product (or weighted sum) function represented by y is defined as:

fy : x ↦ x, y = σi xi yi

• In IP-DMCFE, each sender encrypts xi and generates key share for yi:

dkfy ← DKeyComb (dkyi)i∈ n , fy

x, y ← Dec (ctℓ,xi)i∈ n , dkfy , ℓ

• There are concrete DDH-based and lattice-based constructions in the literature.

• In practice, IP-DMCFE allows computing statistical analysis for private data from multiple sources. 

Verifiable DMCFE for Inner Product 5



Malicious sender i Receiver

ct′ℓ,i

(dki, yi)
• dk𝑦 ← DKeyComb (dkyj)j∈ n \{i}, dki, Ԧ𝑦

• α ← Dec (ctℓ,xj)j∈ 𝑛 \{i}, ct′ℓ,i , dk𝑦 , ℓ

where α is strongly biased from the inner

product function on the honest data set

(xj)j∈ n \{i}, i. e. σj∈ n \{i} xjyj

Verifiable DMCFE for Inner Product 6

• Produce malformed (dki, ct′ℓ,i ) 

Verifiability for IP-DMCFE*

*A concurrent work focuses on the input validation for Secure Aggregation: [BGLLMRY22]



Our contributions

• Concept: definition of verifiable DMCFE with the ability to identify 
malicious senders. 

• Techniques to facilitate verification of key share:
1. One-time Decentralized Sum (ODSUM) based on class groups. 
2. A full-fledged DSUM tailored for verification from ODSUM.  

• Scheme: Efficient range-verifiable DMCFE for inner product. 

Verifiable DMCFE for Inner Product 7



Formalization of Verifiable DMCFE

For all users:

• Let 𝓅𝔪 be a family of PPT message 
predicates and let 𝓅𝔣 be a family of PPT 
function predicates

• pp ← Setup(λ)

For each sender: 
• ski, eki , vkCT, vkDK, pk ← KeyGen pp
• Cℓ,i ← Enc(eki, xi, ℓ, Pi

𝔪 ∈ 𝓅𝔪)

• dkf,i ← DKeyGenShare(ski, ℓf, P
𝔣 ∈ 𝓅𝔣)

For a receiver:

• β ← VerifyDK( dkf,i i∈ n
, vkDK, P

𝔣)

• β ← VerifyCT( Cℓ,i i∈ n
, vkCT, Pi

𝔪
i∈ n )

where β = 1 for accepting and β = (0,ℳ𝒮) for rejecting 
along with a set of malicious senders ℳ𝒮.

• dkf ← DKeyComb( dkf,i i∈ n
, ℓf)

• f x /⊥ ← Decrypt(dkf, Cℓ,i i∈ n
)

Verifiable DMCFE for Inner Product 8



Formalization of Verifiability

Verifiability (for non-function-hiding): Given families of predicates (𝓅𝔣, 𝓅𝔪), an adversary wins by one of the following 
conditions

α ∶= VerifyCT Cℓ,i i∈ HS
, Cℓ,i i∈ CS

, vkCT, Pi
m

i∈ n

βj ∶= VerifyDK dkfj,i i∈ HS
, dkfj,i i∈ CS

, vkDK, P
f

• If α = 1 and βj = 1 for all poly. number of function queries fj, there does not exist xi i∈ n such that 

Pi
m xi = 1 ∀i and Decrypt dkfj , Cℓ,i i∈ n

= fj(x1, … , xn)

• If α = (0,ℳ𝒮𝐶𝑇) or βj = 0,ℳ𝒮𝐷𝐾 for some function query fj and  

ℳ𝒮𝐶𝑇 ∪ℳ𝒮𝐷𝐾 contains a non-corrupted sender

Verifiable DMCFE for Inner Product

Input validation

Malicious sender 
identification

9



Goal: A verifiable IP-DMCFE compatible with 
practical building blocks

Schnorr-like proof for discrete logarithm equalities:

Range proof for Pedersen commitment:

Verifiable DMCFE for Inner Product 10

ℛrange (comPed, l, r ; (x, s)) = 1 ↔ comPed = s ∙ h + x ٿ x ∈ [l, r]

ℛDL S, G; Ԧs = 1 ↔ Si = si ∙ Gi ∀ 𝑖

MCFE scheme from [CDGPP18] (simplified):

1. (eki)i = (ski)i = (si)i ← Setup 1λ, n

2. cti,ℓ = si ∙ hℓ + xi ← Enc eki, xi, ℓ where hℓ = hash(ℓ)

3. dky = σi=1
n siyi ← DKeyGen (ski)i, y



A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE 
[CDGPP20]: 

Decentralization of IP-MCFE

Sender i Receiver

ctℓ,xi

• pp ← Setup 1λ, n

• ski, pk ← KeyGen pp
• ctℓ,xi ← Enc ski, xi, ℓ • σ𝑖∈[𝑛] xi ← Dec (ctℓ,xi)i∈ 𝑛

Verifiable DMCFE for Inner Product 11



A decentralized sum (DSUM) is used as a generic compiler to transform MCFE to DMCFE 
[CDGPP20]: 

Decentralization of IP-MCFE

Sender i Receiver

ctℓ,xi

• pp ← Setup 1λ, n

• ski, pk ← KeyGen pp
• ctℓ,xi ← Enc ski, xi, ℓ • σ𝑖∈[𝑛] xi ← Dec (ctℓ,xi)i∈ 𝑛

Verifiable DMCFE for Inner Product 12

Problem: verification of generic-DSUM encryption is prohibitively expensive to be done by a NIZK, 
similarly to the verification of individual key in ACORN protocol [BGLLMRY23] (solved by MPC)

ctℓ,xi = xi +෍

i<j

PRF(NIKE(ski, skj), ℓ) −෍

i>j

PRF(NIKE(ski, skj), ℓ)



Combine-then-Descend Technique

The first attempt is to construct a proof-friendly Decentralized SUM (DSUM)
with the following properties for encryption: 

• Verification within constant costs;

• Input domain is ℤ𝑝;

• No bound on the sum to be decrypted. 

→ Hard to be instantiated in pairing-friendly groups.

Verifiable DMCFE for Inner Product 13



Preliminaries on Class Groups 

The CL framework for groups of unknown order [CL15, CCLST19, CCLST20].

• pp ← CLGen 1λ, p : 1λ computational security parameter, p > 2λ prime

• Cyclic group ෡G ≅ ෡Gp × F:
• F = f - subgroup of order p with easy DLOG.

• ෡Gp = ොgp - subgroup of p-th powers in ෡G, of unknown order.

• Hardness assumptions:
• Hidden Subgroup Membership
• Low-ORD Assumption
• Strong Root Assumption

• Advantages: 
• Can choose p freely as a large prime
• Transparent setup
• Faster and smaller than Paillier group [BCIL22]

For soundness 
of verification

For 
privacy

Verifiable DMCFE for Inner Product 14



One-time DSUM in Class Groups 
For all users:

• pp = (G ≅ Gp × F) = gp ∙ f ← Setup(λ)

For each sender: 

• ski = ti, Ti = gp
ti ← KeyGen pp

• pk = Ti i∈[n] is public

• Ci = f xi ∙ ςi<jTj ∙ ςi>jTj
−1 ti

← Enc(ski, xi, pk)

For a receiver:
• Decrypt( Ci i∈ n ):

• No decryption key is required.
• It combines ciphertexts

M = ෑ

i∈[n]

Ci = fσi∈[n] xi ෑ

i∈[n]

gp
σi<j titj − σi>j titj = fσi∈[n] xi .

• By the class group property, it descends σi∈[n] xi from DLOG of M.

Verifiable DMCFE for Inner Product 15



One-time DSUM in Class Groups 
For all users:

• pp = (G ≅ Gp × F) = gp ∙ f ← Setup(λ)

For each sender: 

• ski = ti, Ti = gp
ti ← KeyGen pp

• pk = Ti i∈[n] is public

• Ci = f xi ∙ ςi<jTj ∙ ςi>jTj
−1 ti

← Enc(ski, xi, pk)

For a receiver:
• Decrypt( Ci i∈ n ):

• No decryption key is required.
• It combines ciphertexts

M = ෑ

i∈[n]

Ci = fσi∈[n] xi ෑ

i∈[n]

gp
σi<j titj − σi>j titj = fσi∈[n] xi .

• By the class group property, it descends σi∈[n] xi from DLOG of M.

One-time DSUM is not enough to decentralize 
MCFE, as it only allows one-time secure encryption 

with the one-time mask ςi<jTj ∙ ςi>jTj
−1 ti

from 

each key generation.  

Verifiable DMCFE for Inner Product 16



Bootstrapping to Label-Supporting DSUM

• IP-MCFE supports encryption that can be re-randomized by labels, i.e.,

cti,ℓ = si ∙ hℓ + xi ← Enc eki, xi, ℓ where hℓ = hash(ℓ)

and becomes an MCFE for sum with a deterministic decryption key dk1 = σi=1
n si. 

• Both ODSUM and IP-MCFE allows ciphertext verification by Σ-protocols. 

We obtain benefits from both schemes:
1. Use ODSUM to decentralize MCFE key dk1 . 

2. Decentralized MCFE for sum becomes a full-fledged DSUM with efficient 
verifiability.

Verifiable DMCFE for Inner Product 17



Label-Supporting DSUM 

• Generate class group: G ≅ Gp × F = gp ∙ f ; ord f = p

• Generate randomly: ti, Ti = gp
ti

• Publish Ti

• Ci ∶= f si ∙ ςi<jTj ∙ ςi>jTj
−1 ti

• Send Ci to receiver 

Verifiable DMCFE for Inner Product 18

• 𝐝𝐤𝟏 = σ𝐢=𝟏
𝐧 𝐬𝐢 (𝐦𝐨𝐝 𝐩)

• α = σi=1
n cti,ℓ − hℓ ∙ dk1 = σi=1

n xi

• Compute a discrete logarithm to recover α. 

1. Setup for all users:

2. Key generation for each sender:

3. Encryption for each sender:

• Generate prime-order DDH group: 𝔾, G ; ord 𝔾 = p

• Generate randomly: si (mod p)

• cti,ℓ = si ∙ hℓ + xi ← Enc eki, xi, ℓ where hℓ = hash(ℓ)

4. Decryption for receiver:

• Combine ciphertexts

M = ෑ

i∈[n]

Ci = f
σi∈[n] si ෑ

i∈[n]

gp
σi<j titj − σi>j titj = f

σi∈[n] si

• Descend σ𝐢∈[𝐧] 𝐬𝐢 (𝐦𝐨𝐝 𝐩) from DLOG of M.

ODSUM in class group 

MCFE in prime-order group 

One-time run suffices



Using LDSUM to Decentralize MCFE

We use a pairing group (𝐺𝑇 , 𝐺1, 𝐺2, 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇 𝑠. 𝑡. 𝑒 𝑎 1, 𝑏 2 = 𝑎𝑏 𝑇) to avoid the discrete log 
calculation in LDSUM decryption.  

Verifiable DMCFE for Inner Product 19

LDSUM in 𝐺2 (with the same class group operations): 

dk𝑦 2
= σi=1

n si yi 2

MCFE in 𝐺1:
(cti,ℓ = si ∙ hℓ 1 + xi 1)i∈[n]

DMCFE inner product to decrypt in 𝐺𝑇:                                                  

[𝛼]𝑇= σ𝑖∈[𝑛] 𝑒(cti,ℓ, yi 2) − 𝑒 hℓ 1, dk𝑦 2
= σi=1

n xi yi 𝑇



Using LDSUM to Decentralize MCFE

We use a pairing group (𝐺𝑇 , 𝐺1, 𝐺2, 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇 𝑠. 𝑡. 𝑒 𝑎 1, 𝑏 2 = 𝑎𝑏 𝑇) to avoid the discrete log 
calculation in LDSUM decryption.  

Verifiable DMCFE for Inner Product 20

Key share (LDSUM encryption) verification can be done by a Σ-protocol w.r.t. committed si and public yi.  

Ciphertext (MCFE encryption) verification can be done by a range-proof + Σ-protocol  w.r.t commited si and encrypted xi.

LDSUM in 𝐺2 (with the same class group operations): 

dk𝑦 2
= σi=1

n si yi 2

MCFE in 𝐺1:
(cti,ℓ = si ∙ hℓ 1 + xi 1)i∈[n]

DMCFE inner product to decrypt in 𝐺𝑇:                                                  

[𝛼]𝑇= σ𝑖∈[𝑛] 𝑒(cti,ℓ, yi 2) − 𝑒 hℓ 1, dk𝑦 2
= σi=1

n xi yi 𝑇



Efficiency

Verifiable DMCFE for Inner Product 21

Proving time Proof size Verifying time

Each 
ciphertext

12m + 7 GE , O(m) SO 2log(m) + 7 G, 10 S 2m + 2log(m) + 19 GE, O(m) SO

Each key 
share

16 GE, O(1) SO 8 G, 6 S 24 GE

GE: group exponentiations
SO: scalar operations
G: group elements
S: scalars 
*These costs are estimated when Bulletproof is instantiated for [0, 2𝑚 − 1] range proof.

Batch Verification: Receiver can verify if all ciphertexts/key shares are correct or not
• For n key shares: 2n group exponentiations and 6 pairings                                                                    
• For n ciphertexts: 3 multi-exponentiations of size (3 + 2n), a multi-exponentiation of size 2m + 3 + n(2 log(m) + 5), and O(n · m) 

scalar operations.



Security

• Verifiability
1. Ciphertext verification: ROM + DDH Assump. (Symmetric eXternal Diffie 

Hellman pairing group).

2. Functional key share verification: ROM + Low-ORD Assump. (class group) + 
Strong Root Assump. (class group).

• Static-corruption Indistinguishability: ROM + HSM Assump. (class 
group) + SXDH Assump. (pairing group).

Verifiable DMCFE for Inner Product 22



Range-Verifiable Inner-Product DMCFE

Range Proof

ODSUM MCFE

LDSUMMCFE

Range-Verifiable DMCFE

Σ-protocol

efficient to verify label supporting

plaintext validation

decentralizing key generation

key consistency

Conclusion: 
1. The scheme supports efficiently identifying an unbounded number of malicious senders with no additional 

interactivity between users.
2. Any other Pedersen-based proof for message predicates can also be applied.
3. LDSUM can also be used as a verifiable sharing of group identity.
4. Open question: a verifiable Dynamic IP-DMCFE?

Construction path:

Verifiable DMCFE for Inner Product 23
More details at: https://ia.cr/2023/268. Thank you! 

https://ia.cr/2023/268

	Slide 1: Verifiable Decentralized Multi-Client Functional Encryption for Inner Product 
	Slide 2: Functional Encryption [BSW11]  (FE)
	Slide 3: Multi-Client Functional Encryption [GGGJKLSSZ14]   (MCFE) 
	Slide 4: Decentralized MCFE [CDGPP18]  (DMCFE)
	Slide 5: Decentralized MCFE for Inner Product (IP-DMCFE)
	Slide 6
	Slide 7: Our contributions
	Slide 8: Formalization of Verifiable DMCFE
	Slide 9: Formalization of Verifiability
	Slide 10: Goal: A verifiable IP-DMCFE compatible with practical building blocks
	Slide 11
	Slide 12
	Slide 13: Combine-then-Descend Technique
	Slide 14: Preliminaries on Class Groups 
	Slide 15: One-time DSUM in Class Groups 
	Slide 16: One-time DSUM in Class Groups 
	Slide 17: Bootstrapping to Label-Supporting DSUM
	Slide 18: Label-Supporting DSUM 
	Slide 19: Using LDSUM to Decentralize MCFE
	Slide 20: Using LDSUM to Decentralize MCFE
	Slide 21: Efficiency
	Slide 22: Security
	Slide 23: Range-Verifiable Inner-Product DMCFE

