
Polynomial IOPs for Memory Consistency Checks in
Zero-Knowledge Virtual Machines

Yuncong Zhang1, Shi-Feng Sun1, Ren Zhang2, Dawu Gu1

1 Shanghai Jiao Tong University
2 Nervos

December 7
Asiacrypt 2023

1 / 28

Outline

1 Background

2 Our Contribution
Formalizing Existing Constructions
Our New Method

3 Conclusion

2 / 28

Outline

1 Background

2 Our Contribution
Formalizing Existing Constructions
Our New Method

3 Conclusion

3 / 28

ZKVM

program

ZKVM
x

w

y

π

Verifier

digest

0/1

4 / 28

Applications of ZKVM

zkEVM: execute EVM contracts with fewer gas and privacy
zkRollup: promising scalability solutions to blockchain
Privacy-related applications

5 / 28

How to Build a ZKVM
1 Unroll the intermediate values to execution trace

Ordinary VM

a1 a2 a3 a4 a5 a6

CPU Memory

W
rit

e

ZK VM a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

a71 a72 a73 a74 a75 a76

a81 a82 a83 a84 a85 a86

CPU
CPU

CPU
CPU

CPU
CPU

CPU
Memory

6 / 28

How to Build a ZKVM
1 Unroll the intermediate values to execution trace

Ordinary VM

a1 a2 a3 a4 a5 a6

CPU Memory

W
rit

e

ZK VM a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

a71 a72 a73 a74 a75 a76

a81 a82 a83 a84 a85 a86

CPU
CPU

CPU
CPU

CPU
CPU

CPU
Memory

6 / 28

How to Build a ZKVM

2 Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints

The prover sends potentially large vectors (polynomials) to the verifier.
The verifier checks various relations over them, without reading the whole vectors.
We have many ready-to-use building-blocks.

7 / 28

How to Build a ZKVM

2 Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints
The prover sends potentially large vectors (polynomials) to the verifier.

The verifier checks various relations over them, without reading the whole vectors.
We have many ready-to-use building-blocks.

7 / 28

How to Build a ZKVM

2 Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints
The prover sends potentially large vectors (polynomials) to the verifier.
The verifier checks various relations over them, without reading the whole vectors.

We have many ready-to-use building-blocks.

7 / 28

How to Build a ZKVM

2 Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints
The prover sends potentially large vectors (polynomials) to the verifier.
The verifier checks various relations over them, without reading the whole vectors.
We have many ready-to-use building-blocks.

7 / 28

Prove Vector Relations in PIOP

Using PIOP, the verifier can verify
Vector equation: a + b ◦ c = 0

Permutation relation: a ∼ b, for example, a = (1, 2, 2, 3) and b = (2, 3, 1, 2)
Lookup relation: a ⊂ b, for example, a = (1, 2, 2, 3) and b = (1, 2, 3, 4)

These relations can be extended to tables. For example, (a, b, c) ∼ (a′, b′, c′).

1
2
3
4
a

5
6
7
8
b

1
3
5
7
c

4
1
2
3
a′

8
5
6
7
b′

7
1
3
5
c′

8 / 28

Prove Vector Relations in PIOP

Using PIOP, the verifier can verify
Vector equation: a + b ◦ c = 0
Permutation relation: a ∼ b, for example, a = (1, 2, 2, 3) and b = (2, 3, 1, 2)

Lookup relation: a ⊂ b, for example, a = (1, 2, 2, 3) and b = (1, 2, 3, 4)
These relations can be extended to tables. For example, (a, b, c) ∼ (a′, b′, c′).

1
2
3
4
a

5
6
7
8
b

1
3
5
7
c

4
1
2
3
a′

8
5
6
7
b′

7
1
3
5
c′

8 / 28

Prove Vector Relations in PIOP

Using PIOP, the verifier can verify
Vector equation: a + b ◦ c = 0
Permutation relation: a ∼ b, for example, a = (1, 2, 2, 3) and b = (2, 3, 1, 2)
Lookup relation: a ⊂ b, for example, a = (1, 2, 2, 3) and b = (1, 2, 3, 4)

These relations can be extended to tables. For example, (a, b, c) ∼ (a′, b′, c′).

1
2
3
4
a

5
6
7
8
b

1
3
5
7
c

4
1
2
3
a′

8
5
6
7
b′

7
1
3
5
c′

8 / 28

Prove Vector Relations in PIOP

Using PIOP, the verifier can verify
Vector equation: a + b ◦ c = 0
Permutation relation: a ∼ b, for example, a = (1, 2, 2, 3) and b = (2, 3, 1, 2)
Lookup relation: a ⊂ b, for example, a = (1, 2, 2, 3) and b = (1, 2, 3, 4)

These relations can be extended to tables. For example, (a, b, c) ∼ (a′, b′, c′).

1
2
3
4
a

5
6
7
8
b

1
3
5
7
c

4
1
2
3
a′

8
5
6
7
b′

7
1
3
5
c′

8 / 28

ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components

Instruction fetching
Arithmetic operation
Memory
and so on

9 / 28

ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components
Instruction fetching

Arithmetic operation
Memory
and so on

9 / 28

ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components
Instruction fetching
Arithmetic operation

Memory
and so on

9 / 28

ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components
Instruction fetching
Arithmetic operation
Memory
and so on

9 / 28

Memory Consistency Check

ZK VM a11 a12 a13 a14 a15 a16

1 123 write a24 a25 a26

a31 a32 a33 a34 a35 a36

2 456 write a44 a45 a46

a51 a52 a53 a54 a55 a56

1 123 read a64 a65 a66

a71 a72 a73 a74 a75 a76

a81 a82 a83 a84 a85 a86

CPU
CPU

CPU
CPU

CPU
CPU

CPU

Memory

Show that if ai3 = write,
ak3 ̸= write or ak1 ̸= ai1 for i < k < j
aj3 = read and aj1 = ai1,
then aj2 = ai2

addr val op

10 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:

One row depends potentially on any previous row.
Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

guided by intuition, and never formalized or analyzed.
relatively expensive.

11 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:
One row depends potentially on any previous row.

Difficult to capture the memory constraint by simple vector equations.
There are solutions developed in the live ZKVM projects in industry, but

guided by intuition, and never formalized or analyzed.
relatively expensive.

11 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:
One row depends potentially on any previous row.
Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

guided by intuition, and never formalized or analyzed.
relatively expensive.

11 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:
One row depends potentially on any previous row.
Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

guided by intuition, and never formalized or analyzed.
relatively expensive.

11 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:
One row depends potentially on any previous row.
Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but
guided by intuition, and never formalized or analyzed.

relatively expensive.

11 / 28

Current Status of Memory Consistency Check

The memory is a history-dependent component:
One row depends potentially on any previous row.
Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but
guided by intuition, and never formalized or analyzed.
relatively expensive.

11 / 28

Our Contribution

This work is the first academic treatment on this component.

Formalize the constructions in the industry, and prove their security formally.
Reveal new direction for potentially better constructions.

12 / 28

Our Contribution

This work is the first academic treatment on this component.
Formalize the constructions in the industry, and prove their security formally.

Reveal new direction for potentially better constructions.

12 / 28

Our Contribution

This work is the first academic treatment on this component.
Formalize the constructions in the industry, and prove their security formally.
Reveal new direction for potentially better constructions.

12 / 28

Outline

1 Background

2 Our Contribution
Formalizing Existing Constructions
Our New Method

3 Conclusion

13 / 28

The Sorting Technique

ZK VM 1 a′11 a′12 a′13

3 a′21 a′22 a′23

5 a′41 a′42 a′43

7 a′51 a′52 a′53

8 a′61 a′62 a′63

2 1 123 write

6 1 123 read

4 2 456 write

CPU
CPU

CPU
CPU

CPU
CPU

CPU

Memory

Sort by: address, cycle

14 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions

1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain
c̃ycle, õp, ãddr, ṽal.

2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.

2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:

Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)

most expensive
varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)
most expensive

varies in different ZKVMs

15 / 28

The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
1 The prover sorts cycle, op, addr, val by (addr, cycle) to obtain

c̃ycle, õp, ãddr, ṽal.
2 The verifier checks memory consistency of sorted trace.

a ◦ õp←1 + b ◦ (ãddr
←1

− ãddr) − (ṽal
←1

− ṽal) = 0

3 The verifier checks that cycle, op, addr, val and c̃ycle, õp, ãddr, ṽal are
permutations of each other.

4 The final step:
Checks that c̃ycle, õp, ãddr, ṽal is sorted by (addr, cycle)
most expensive
varies in different ZKVMs

15 / 28

Contiguous Read-Only Memory

The simplest case, adopted by Cairo

The addresses form a contiguous subset of F
The sorted address becomes

1 1 1
2 2

3 3 3 3 3 · · ·

No need for op, õp, cycle and c̃ycle
1 1 1 2 2 3 3 3 3 3 · · ·addr

a a a b b c c c c c · · ·val

16 / 28

Contiguous Read-Only Memory

The simplest case, adopted by Cairo
The addresses form a contiguous subset of F

The sorted address becomes

1 1 1
2 2

3 3 3 3 3 · · ·

No need for op, õp, cycle and c̃ycle
1 1 1 2 2 3 3 3 3 3 · · ·addr

a a a b b c c c c c · · ·val

16 / 28

Contiguous Read-Only Memory

The simplest case, adopted by Cairo
The addresses form a contiguous subset of F
The sorted address becomes

1 1 1
2 2

3 3 3 3 3 · · ·

No need for op, õp, cycle and c̃ycle
1 1 1 2 2 3 3 3 3 3 · · ·addr

a a a b b c c c c c · · ·val

16 / 28

Contiguous Read-Only Memory

The simplest case, adopted by Cairo
The addresses form a contiguous subset of F
The sorted address becomes

1 1 1
2 2

3 3 3 3 3 · · ·

No need for op, õp, cycle and c̃ycle
1 1 1 2 2 3 3 3 3 3 · · ·addr

a a a b b c c c c c · · ·val

16 / 28

Read-Write Memory with 32-bit Space

The most widely used case, and the most expensive
The addresses fall in [0..232 − 1]
Adjacent addresses in the sorted trace differ by [0..232 − 1]

a1 a1 a1
a2 a2

a3 a3 a3 a3 a3 · · ·
< 232

Range check over the vector ãddr
←1

− ãddr
Can be extended to 256-bit, but very expensive

17 / 28

Read-Write Memory with Full Address Space
Efficiently support full address space.

First proposed and only adopted in Triton VM
The entire finite field F as the address space

Usually |F| ≈ 2256

Even |F| ≈ 264 is usually sufficient.
Can be extended to Fc by random-linear-combination.

Challenge: hard to check address column is sorted.
The basic idea: contiguity check

✓

v.s.

×

18 / 28

Read-Write Memory with Full Address Space
Efficiently support full address space.

First proposed and only adopted in Triton VM
The entire finite field F as the address space
Usually |F| ≈ 2256

Even |F| ≈ 264 is usually sufficient.
Can be extended to Fc by random-linear-combination.

Challenge: hard to check address column is sorted.
The basic idea: contiguity check

✓

v.s.

×

18 / 28

Read-Write Memory with Full Address Space
Efficiently support full address space.

First proposed and only adopted in Triton VM
The entire finite field F as the address space
Usually |F| ≈ 2256

Even |F| ≈ 264 is usually sufficient.
Can be extended to Fc by random-linear-combination.

Challenge: hard to check address column is sorted.

The basic idea: contiguity check

✓

v.s.

×

18 / 28

Read-Write Memory with Full Address Space
Efficiently support full address space.

First proposed and only adopted in Triton VM
The entire finite field F as the address space
Usually |F| ≈ 2256

Even |F| ≈ 264 is usually sufficient.
Can be extended to Fc by random-linear-combination.

Challenge: hard to check address column is sorted.
The basic idea: contiguity check

✓

v.s.

×

18 / 28

Comparison of Existing Protocols

Writable Address Space Efficiency

CROM

32-bit RW

Full Address RW

×

✓

✓

Contiguous

[0..232 − 1]

F

Efficient

2 Lookups

1 Lookup

19 / 28

Address Cycle Method

Better way to eliminate the history-dependency

Basic idea: making the identical addresses adjacent
Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.

Address cycle method: redefine the adjacency
Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

Better way to eliminate the history-dependency
Basic idea: making the identical addresses adjacent

Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.

Address cycle method: redefine the adjacency
Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

Better way to eliminate the history-dependency
Basic idea: making the identical addresses adjacent
Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.
Address cycle method: redefine the adjacency

Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

Better way to eliminate the history-dependency
Basic idea: making the identical addresses adjacent
Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.

Address cycle method: redefine the adjacency
Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

Better way to eliminate the history-dependency
Basic idea: making the identical addresses adjacent
Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.
Address cycle method: redefine the adjacency

Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

Better way to eliminate the history-dependency
Basic idea: making the identical addresses adjacent
Sorting paradigm: reorder the trace

Heavy: send a sorted copy for every column.
Address cycle method: redefine the adjacency

Lightweight: send a single vector representing a permutation.

20 / 28

Address Cycle Method

a1 a2 a1 a3 a2 a1 a3 a2 a1

Permutation σ

21 / 28

The first Vector

a1 a2 a1 a3 a2 a1 a3 a2 a1

Permutation σ

v1 v2 v3 v4 v5 v6 v7 v8 v9

op1 R op3 op4 W op6 op7 R op9

addr

val

op

1 1 0 1 0 0 0 0 0first

22 / 28

Permem

One vector equation: (σ(val) − val) ◦ (op − Write) ◦ (1 − first) ?= 0

One permutation check: (addr, cycle, val) ∼ (addr, σ(cycle), σ(val))
The challenge: Check σ, first are consistent with addr

23 / 28

Permem

One vector equation: (σ(val) − val) ◦ (op − Write) ◦ (1 − first) ?= 0
One permutation check: (addr, cycle, val) ∼ (addr, σ(cycle), σ(val))

The challenge: Check σ, first are consistent with addr

23 / 28

Permem

One vector equation: (σ(val) − val) ◦ (op − Write) ◦ (1 − first) ?= 0
One permutation check: (addr, cycle, val) ∼ (addr, σ(cycle), σ(val))
The challenge: Check σ, first are consistent with addr

23 / 28

Check σ and first Vector

The correctness of σ, first is guaranteed by
One lookup argument: σ(t) ≥ t only at first
Distinctness check: addr are distinct at first

a1 a2 a1 a3 a2 a1 a3 a2 a1addr

1 1 0 1 0 0 0 0 0first

24 / 28

Distinctness Check

Generalization of the contiguity check

Let f (X) :=
∏

firstt=1(X − addrt)

Compute g(X) = df (X)
dX

Prover sends s(X), t(X), g(X) to verifier such that s(X)f (X) + t(X)g(X) = 1
The verifier checks g(X) and s(z)f (z) + t(z)g(z) = 1

25 / 28

Distinctness Check

Generalization of the contiguity check
Let f (X) :=

∏
firstt=1(X − addrt)

Compute g(X) = df (X)
dX

Prover sends s(X), t(X), g(X) to verifier such that s(X)f (X) + t(X)g(X) = 1
The verifier checks g(X) and s(z)f (z) + t(z)g(z) = 1

25 / 28

Distinctness Check

Generalization of the contiguity check
Let f (X) :=

∏
firstt=1(X − addrt)

Compute g(X) = df (X)
dX

Prover sends s(X), t(X), g(X) to verifier such that s(X)f (X) + t(X)g(X) = 1
The verifier checks g(X) and s(z)f (z) + t(z)g(z) = 1

25 / 28

Distinctness Check

Generalization of the contiguity check
Let f (X) :=

∏
firstt=1(X − addrt)

Compute g(X) = df (X)
dX

Prover sends s(X), t(X), g(X) to verifier such that s(X)f (X) + t(X)g(X) = 1

The verifier checks g(X) and s(z)f (z) + t(z)g(z) = 1

25 / 28

Distinctness Check

Generalization of the contiguity check
Let f (X) :=

∏
firstt=1(X − addrt)

Compute g(X) = df (X)
dX

Prover sends s(X), t(X), g(X) to verifier such that s(X)f (X) + t(X)g(X) = 1
The verifier checks g(X) and s(z)f (z) + t(z)g(z) = 1

25 / 28

Outline

1 Background

2 Our Contribution
Formalizing Existing Constructions
Our New Method

3 Conclusion

26 / 28

Comparison

Protocol Perm. Lookup Poly. Queries A Writable
Contiguous ROM 1 0 4 0 Contiguous No
(32k)-bit RAM 1 2k 7 + 2k 0 [0..232k − 1] Yes

Full address RAM 1 1 10 + c 2 Fc Yes
Our Permem 1 1 6 + c 2 Fc Yes

27 / 28

Q&A
https://eprint.iacr.org/2023/1555

28 / 28

https://eprint.iacr.org/2023/1555

	Background
	Our Contribution
	Formalizing Existing Constructions
	Our New Method

	Conclusion

