# Polynomial IOPs for Memory Consistency Checks in Zero-Knowledge Virtual Machines 

Yuncong Zhang ${ }^{1}$, Shi-Feng Sun ${ }^{1}$, Ren Zhang ${ }^{2}$, Dawu Gu ${ }^{1}$
${ }^{1}$ Shanghai Jiao Tong University
${ }^{2}$ Nervos
December 7
Asiacrypt 2023

## Outline

(1) Background
(2) Our Contribution

- Formalizing Existing Constructions
- Our New Method
(3) Conclusion


## Outline

(1) Background
(2) Our Contribution

- Formalizing Existing Constructions
- Our New Method
(3) Conclusion



## Applications of ZKVM

- zkEVM: execute EVM contracts with fewer gas and privacy
- zkRollup: promising scalability solutions to blockchain
- Privacy-related applications


## How to Build a ZKVM

(1) Unroll the intermediate values to execution trace

## How to Build a ZKVM

(1) Unroll the intermediate values to execution trace


ZK VM


## How to Build a ZKVM

(2) Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints

## How to Build a ZKVM

(2) Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints

- The prover sends potentially large vectors (polynomials) to the verifier.


## How to Build a ZKVM

(2) Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints

- The prover sends potentially large vectors (polynomials) to the verifier.
- The verifier checks various relations over them, without reading the whole vectors.


## How to Build a ZKVM

(2) Design a Polynomial IOP (PIOP) to prove the trace satisfies some constraints

- The prover sends potentially large vectors (polynomials) to the verifier.
- The verifier checks various relations over them, without reading the whole vectors.
- We have many ready-to-use building-blocks.


## Prove Vector Relations in PIOP

Using PIOP, the verifier can verify

- Vector equation: $\mathbf{a}+\mathbf{b} \circ \mathbf{c}=\mathbf{0}$


## Prove Vector Relations in PIOP

Using PIOP, the verifier can verify

- Vector equation: $\mathbf{a}+\mathbf{b} \circ \mathbf{c}=\mathbf{0}$
- Permutation relation: $\mathbf{a} \sim \mathbf{b}$, for example, $\mathbf{a}=(1,2,2,3)$ and $\mathbf{b}=(2,3,1,2)$


## Prove Vector Relations in PIOP

Using PIOP, the verifier can verify

- Vector equation: $\mathbf{a}+\mathbf{b} \circ \mathbf{c}=\mathbf{0}$
- Permutation relation: $\mathbf{a} \sim \mathbf{b}$, for example, $\mathbf{a}=(1,2,2,3)$ and $\mathbf{b}=(2,3,1,2)$
- Lookup relation: $\mathbf{a} \subset \mathbf{b}$, for example, $\mathbf{a}=(1,2,2,3)$ and $\mathbf{b}=(1,2,3,4)$


## Prove Vector Relations in PIOP

Using PIOP, the verifier can verify

- Vector equation: $\mathbf{a}+\mathbf{b} \circ \mathbf{c}=\mathbf{0}$
- Permutation relation: $\mathbf{a} \sim \mathbf{b}$, for example, $\mathbf{a}=(1,2,2,3)$ and $\mathbf{b}=(2,3,1,2)$
- Lookup relation: $\mathbf{a} \subset \mathbf{b}$, for example, $\mathbf{a}=(1,2,2,3)$ and $\mathbf{b}=(1,2,3,4)$

These relations can be extended to tables. For example, ( $\mathbf{a}, \mathbf{b}, \mathbf{c}) \sim\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)$.

| 1 | 5 | 1 |
| :--- | :--- | :--- |
| 2 | 6 | 3 |
| 3 | 7 | 5 |
| 4 | 8 | 7 |
| $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ |
| 1 | 5 | 1 |
| 2 | 6 | 3 |
| 3 | 7 | 5 |
| $\mathbf{\mathbf { a } ^ { \prime }}$ | $\mathbf{b}^{\prime}$ | $\mathbf{c}^{\prime}$ |

## ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components

## ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components

- Instruction fetching


## ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components

- Instruction fetching
- Arithmetic operation


## ZKVM Constraints

The ZKVM constraints are very complex, so divide them into components

- Instruction fetching
- Arithmetic operation
- Memory
- and so on


## Memory Consistency Check

Show that if $a_{i 3}=$ write,
$a_{k 3} \neq$ write or $a_{k 1} \neq a_{i 1}$ for $i<k<j$
$a_{j 3}=\mathrm{read}$ and $a_{j 1}=a_{i 1}$,
then $a_{j 2}=a_{i 2}$
ZK VM


## Current Status of Memory Consistency Check

The memory is a history-dependent component:

## Current Status of Memory Consistency Check

The memory is a history-dependent component:

- One row depends potentially on any previous row.


## Current Status of Memory Consistency Check

The memory is a history-dependent component:

- One row depends potentially on any previous row.
- Difficult to capture the memory constraint by simple vector equations.


## Current Status of Memory Consistency Check

The memory is a history-dependent component:

- One row depends potentially on any previous row.
- Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

## Current Status of Memory Consistency Check

The memory is a history-dependent component:

- One row depends potentially on any previous row.
- Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

- guided by intuition, and never formalized or analyzed.


## Current Status of Memory Consistency Check

The memory is a history-dependent component:

- One row depends potentially on any previous row.
- Difficult to capture the memory constraint by simple vector equations.

There are solutions developed in the live ZKVM projects in industry, but

- guided by intuition, and never formalized or analyzed.
- relatively expensive.


## Our Contribution

This work is the first academic treatment on this component.

## Our Contribution

This work is the first academic treatment on this component.

- Formalize the constructions in the industry, and prove their security formally.


## Our Contribution

This work is the first academic treatment on this component.

- Formalize the constructions in the industry, and prove their security formally.
- Reveal new direction for potentially better constructions.


## Outline

## (1) Background

(2) Our Contribution

- Formalizing Existing Constructions
- Our New Method


## The Sorting Technique

Sort by: address, cycle


## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions

## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}, \widetilde{\text { addr }}, \widetilde{\text { val. }}$

## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}$, addr, val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}} r^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}, \widetilde{\text { addr, }}$ val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}} r^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

(3) The verifier checks that cycle, op, addr, val and cycle, $\widetilde{\text { op }}, \widetilde{\text { addr }}, \widetilde{\text { val }}$ are permutations of each other.

## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}, \widetilde{\text { addr, }}$ val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}} r^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

(3) The verifier checks that cycle, op, addr, val and cycle, $\widetilde{\text { op }}, \widetilde{\text { addr, }}, \widetilde{\text { val }}$ are permutations of each other.
( - The final step:

## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}, \widetilde{\text { addr, }}$ val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}}{ }^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

(3) The verifier checks that cycle, op, addr, val and $\widetilde{\text { cycle }}, \widetilde{\text { op }}, \widetilde{\text { addr, }}, \widetilde{\text { val }}$ are permutations of each other.
(1) The final step:

- Checks that cycle, $\widetilde{\text { op }}, \widetilde{\text { addr }, ~ v a l ~ i s ~ s o r t e d ~ b y ~(a d d r, ~ c y c l e) ~}$


## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}$, addr, val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}} r^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

(3) The verifier checks that cycle, op, addr, val and cycle, $\widetilde{\text { op }}, \widetilde{\text { addr, }}, \widetilde{\text { val }}$ are permutations of each other.
(1) The final step:

- Checks that cycle, $\widetilde{\text { op }}, \widetilde{\text { addr }}, \widetilde{\text { val }}$ is sorted by (addr, cycle)
- most expensive


## The Sorting Paradigm

We propose sorting paradigm that captures all existing constructions
(1) The prover sorts cycle, op, addr, val by (addr, cycle) to obtain cycle, $\widetilde{\text { op }}$, addr, val.
(2) The verifier checks memory consistency of sorted trace.

$$
\mathbf{a} \circ \widetilde{\mathbf{o p}}^{\leftarrow 1}+\mathbf{b} \circ\left(\widetilde{\mathbf{a d d r}}{ }^{\leftarrow 1}-\widetilde{\mathbf{a d d r}}\right)-\left(\widetilde{\mathbf{v a l}}{ }^{\leftarrow 1}-\widetilde{\mathbf{v a l}}\right)=\mathbf{0}
$$

(3) The verifier checks that cycle, op, addr, val and $\widetilde{\text { cycle }}, \widetilde{\text { op }}, \widetilde{\text { addr, }}, \widetilde{\text { val }}$ are permutations of each other.
(1) The final step:

- Checks that cycle, $\widetilde{\text { op }}, \widetilde{\text { addr }}, \widetilde{\text { val }}$ is sorted by (addr, cycle)
- most expensive
- varies in different ZKVMs


## Contiguous Read-Only Memory

The simplest case, adopted by Cairo

## Contiguous Read-Only Memory

The simplest case, adopted by Cairo

- The addresses form a contiguous subset of $\mathbb{F}$


## Contiguous Read-Only Memory

The simplest case, adopted by Cairo

- The addresses form a contiguous subset of $\mathbb{F}$
- The sorted address becomes



## Contiguous Read-Only Memory

The simplest case, adopted by Cairo

- The addresses form a contiguous subset of $\mathbb{F}$
- The sorted address becomes

- No need for op, $\widetilde{\text { op}}$, cycle and cycle
addr

| 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\ldots$ |  |  |  |  |  |  |  |  |  |
| $a$ | $a$ | $a$ | $b$ | $b$ | $c$ | $c$ | $c$ | $c$ | $c$ |

## Read-Write Memory with 32 -bit Space

The most widely used case, and the most expensive

- The addresses fall in $\left[0.2^{32}-1\right]$
- Adjacent addresses in the sorted trace differ by $\left[0 . .2^{32}-1\right]$


Can be extended to 256-bit, but very expensive

## Read-Write Memory with Full Address Space

Efficiently support full address space.

- First proposed and only adopted in Triton VM
- The entire finite field $\mathbb{F}$ as the address space


## Read-Write Memory with Full Address Space

Efficiently support full address space.

- First proposed and only adopted in Triton VM
- The entire finite field $\mathbb{F}$ as the address space
- Usually $|\mathbb{F}| \approx 2^{256}$
- Even $|\mathbb{F}| \approx 2^{64}$ is usually sufficient.
- Can be extended to $\mathbb{F}^{c}$ by random-linear-combination.


## Read-Write Memory with Full Address Space

Efficiently support full address space.

- First proposed and only adopted in Triton VM
- The entire finite field $\mathbb{F}$ as the address space
- Usually $|\mathbb{F}| \approx 2^{256}$
- Even $|\mathbb{F}| \approx 2^{64}$ is usually sufficient.
- Can be extended to $\mathbb{F}^{c}$ by random-linear-combination.
- Challenge: hard to check address column is sorted.


## Read-Write Memory with Full Address Space

Efficiently support full address space.

- First proposed and only adopted in Triton VM
- The entire finite field $\mathbb{F}$ as the address space
- Usually $|\mathbb{F}| \approx 2^{256}$
- Even $|\mathbb{F}| \approx 2^{64}$ is usually sufficient.
- Can be extended to $\mathbb{F}^{c}$ by random-linear-combination.
- Challenge: hard to check address column is sorted.
- The basic idea: contiguity check

V.S.



## Comparison of Existing Protocols

|  | Writable | Address Space | Efficiency |
| ---: | :---: | :---: | :---: |
| CROM | $\times$ | Contiguous | Efficient |
| 32-bit RW | $\checkmark$ | $\left[0 . .2^{32}-1\right]$ | 2 Lookups |
| Full Address RW | $\checkmark$ | $\mathbb{F}$ | 1 Lookup |

## Address Cycle Method

Better way to eliminate the history-dependency

## Address Cycle Method

Better way to eliminate the history-dependency

- Basic idea: making the identical addresses adjacent


## Address Cycle Method

Better way to eliminate the history-dependency

- Basic idea: making the identical addresses adjacent
- Sorting paradigm: reorder the trace


## Address Cycle Method

Better way to eliminate the history-dependency

- Basic idea: making the identical addresses adjacent
- Sorting paradigm: reorder the trace
- Heavy: send a sorted copy for every column.


## Address Cycle Method

Better way to eliminate the history-dependency

- Basic idea: making the identical addresses adjacent
- Sorting paradigm: reorder the trace
- Heavy: send a sorted copy for every column.
- Address cycle method: redefine the adjacency


## Address Cycle Method

Better way to eliminate the history-dependency

- Basic idea: making the identical addresses adjacent
- Sorting paradigm: reorder the trace
- Heavy: send a sorted copy for every column.
- Address cycle method: redefine the adjacency
- Lightweight: send a single vector representing a permutation.

Address Cycle Method

Permutation $\sigma$


## The first Vector

$$
\text { Permutation } \sigma
$$



## Permem

- One vector equation: $(\sigma($ val $)-$ val $) \circ(\mathbf{o p}-\mathbf{W r i t e}) \circ(\mathbf{1}-\mathbf{f i r s t}) \stackrel{?}{=} \mathbf{0}$


## Permem

- One vector equation: $(\sigma($ val $)-$ val $) \circ(\mathbf{o p}-\mathbf{W r i t e}) \circ(\mathbf{1}-\mathbf{f i r s t}) \stackrel{?}{=} \mathbf{0}$
- One permutation check: (addr, cycle, val) $\sim($ addr $, \sigma($ cycle $), \sigma($ val $))$


## Permem

- One vector equation: $(\sigma($ val $)-$ val $) \circ(\mathbf{o p}-\mathbf{W r i t e}) \circ(\mathbf{1}-\mathbf{f i r s t}) \stackrel{?}{=} \mathbf{0}$
- One permutation check: (addr, cycle, val) $\sim($ (addr, $\sigma($ cycle $), \sigma($ val $))$
- The challenge: Check $\sigma$, first are consistent with addr


## Check $\sigma$ and first Vector

The correctness of $\sigma$, first is guaranteed by

- One lookup argument: $\sigma(t) \geq t$ only at first
- Distinctness check: addr are distinct at first



## Distinctness Check

Generalization of the contiguity check

## Distinctness Check

Generalization of the contiguity check

- Let $f(X):=\prod_{\text {first }_{t}=1}\left(X-\right.$ addr $\left._{t}\right)$


## Distinctness Check

Generalization of the contiguity check

- Let $f(X):=\prod_{\text {first }_{t}=1}\left(X-a d d r_{t}\right)$
- Compute $g(X)=\frac{d f(X)}{d X}$


## Distinctness Check

Generalization of the contiguity check

- Let $f(X):=\prod_{\text {first }_{t}=1}\left(X-a d d r_{t}\right)$
- Compute $g(X)=\frac{d f(X)}{d X}$
- Prover sends $s(X), t(X), g(X)$ to verifier such that $s(X) f(X)+t(X) g(X)=1$


## Distinctness Check

Generalization of the contiguity check

- Let $f(X):=\prod_{\text {first }_{t}=1}\left(X-a d d r_{t}\right)$
- Compute $g(X)=\frac{d f(X)}{d X}$
- Prover sends $s(X), t(X), g(X)$ to verifier such that $s(X) f(X)+t(X) g(X)=1$
- The verifier checks $g(X)$ and $s(z) f(z)+t(z) g(z)=1$


## Outline

(1) Background
(2) Our Contribution

- Formalizing Existing Constructions
- Our New Method
(3) Conclusion


## Comparison

| Protocol | Perm. | Lookup | Poly. | Queries | $\mathcal{A}$ | Writable |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contiguous ROM | 1 | 0 | 4 | 0 | Contiguous | No |
| (32k)-bit RAM | 1 | $2 k$ | $7+2 k$ | 0 | $\left[0 . .2^{32 k}-1\right]$ | Yes |
| Full address RAM | 1 | 1 | $10+c$ | 2 | $\mathbb{F}^{c}$ | Yes |
| Our Permem | 1 | 1 | $6+c$ | 2 | $\mathbb{F}^{c}$ | Yes |

## Q\&A

https://eprint.iacr.org/2023/1555

