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• 𝑃: 0,1 𝑛 → 0,1 𝑛 : permutation (random permutation or block cipher 𝐸𝐾)

• 𝛼, 𝛽 : n-bit strings (input & output masks)

• The linear correlation is defined by

Cor 𝑃; 𝛼, 𝛽 ≔ Pr
𝑥

𝛼 ⋅ 𝑥 = 𝛽 ⋅ 𝑃 𝑥 − Pr
𝑥

𝛼 ⋅ 𝑥 ≠ 𝛽 ⋅ 𝑃 𝑥

• 𝑃 : random permutation ⇒ Cor 𝑃; 𝛼, 𝛽 is very small

• If Cor 𝐸𝐾; 𝛼, 𝛽 is large, then 𝐸𝐾 is distinguished by checking 

whether the proportion of 𝑥 satisfying 𝛼 ⋅ 𝑥 = 𝛽 ⋅ 𝐸𝐾 𝑥 is likely to 

be much larger/smaller than 1/2.

– Data/time complexity: Cor 𝐸𝐾; 𝛼, 𝛽
−2

Linear Distinguisher (1-dimensional) [Matsui 1993]



• 𝑉 ⊂ 0,1 𝑛 2 : an (𝔽2-)vector space with a basis 𝛼1, 𝛽1 , … , 𝛼𝑑 , 𝛽𝑑

• Lin𝑃 𝑥 ≔ 𝛼1 ⋅ 𝑥 ⊕ 𝛽1 ⋅ 𝑃 𝑥 , … , 𝛼𝑑 ⋅ 𝑥 ⊕ 𝛽𝑑 ⋅ 𝑃 𝑥 ∈ 0,1 𝑑

– “multidimensional linear approximation” of 𝑃 (w.r.t. 𝑉 and the basis)

• 𝑝𝑃 𝑧 := Pr
𝑥
Lin𝑃 𝑥 = 𝑧 (→ close to the uniform distribution if 𝑃 is random)

Multidimensional Linear Distinguisher
[Hermelin & Nyberg 2008]
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𝛼,𝛽 ∈𝑉− 0

Cor 𝑃; 𝛼, 𝛽 2 = Cap 𝑝𝑃Fact

“capacity”,

related to

𝜒2 test statistic
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𝛼,𝛽 ∈𝑉− 0

Cor 𝑃; 𝛼, 𝛽 2 = Cap 𝑝𝑃Fact

If σ 𝜶,𝜷 ∈𝑽− 𝟎 𝐂𝐨𝐫 𝑬𝑲; 𝜶, 𝜷
𝟐 is large, then 𝑬𝑲 can be distinguished

by computing the 𝝌𝟐 test statistic and checking if it is large or not

Complexity: 2𝑑/Cap 𝑝𝐸𝐾

“capacity”,

related to

𝜒2 test statistic



• If Cor 𝐸𝐾; 𝛼, 𝛽 is exactly zero for some 𝐸𝐾 and all 𝛼, 𝛽 in a (𝔽2-

)vector space 𝑉, then the corresponding Cap 𝑝𝐸𝐾 is exactly zero

• If 𝑃 is a random permutation, the corresponding capacity Cap 𝑝𝑃 is 

non-zero with high probability

• Thus 𝐸𝐾 is distinguished by computing a suitable test statistic

– Complexity is ≈ 2𝑛/ 2dim(𝑉) for general cases

– Faster for some special cases → a link to integral distinguisher

Multidimensional Zero Correlation Linear Distinguisher
[Bogdanov & Rijmen 2014, Bogdanov et al. 2012]



• 𝑉 : the set (vector space) of input output masks

• We say that input-output masks are linearly independent if 𝑉 is 

decomposed as 𝑉 = 𝑉1 × 𝑉2

• Complexity of integral distinguisher: 2𝑛−dim 𝑉1

– Faster than zero correlation linear distinguisher (2𝑛/ 2dim 𝑉 ) sometimes

Multidimensional zero correlation

linear distinguisher w/ linearly independent masks 

Integral distinguisher based on

balanced functions

equivalent

Link to Integral Distinguishers
[Bogdanov et al. 2012, Sun et al. 2015]



Background on Quantum Cryptanalysis

&  Motivation of Research
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Simon’s Period Finding Algorithm [Simon 1997]

Suppose a function 𝑓: {0,1}𝑛→ 𝑆 and a secret value s ∈ {0,1}𝑛 satisfy
∀𝑥 ∈ 0,1 𝑛 𝑓 𝑥 ⊕ 𝑠 = 𝑓 𝑥 .

Given the (quantum) oracle of 𝑓, find 𝑠. 

Problem

Classical Algorithms: Exponential Time

Simon’s algorithm: Polynomial Time
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Simon’s subroutine

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚

0𝑛 (discard)

measure →𝛼

1. Run the subroutine multiple times to get multiple 𝛼
2. Do some linear algebra



• What is given :

Access to Boolean function 𝐹: {0,1}𝑛→ 0,1 , n-bit unitary 𝑈

𝑝 := (prob. of getting 𝑥 s.t. 𝐹 𝑥 = 1 when measuring 𝑈 0𝑛 )

• Goal :

• a unitary that outputs 𝑥 s.t. 𝐹 𝑥 = 1 with high probability

• What QAA does :

Achieve the goal with 𝑝−1/2 queries to 𝑈,𝑈∗, and 𝐹

13

Quantum Amplitude Amplification (QAA)
[Brassard et al. 2002]



• Kaplan et al. showed a quadratic speed-up for 1-dimensional

linear distinguisher [Kaplan et al. 2016]

Idea of the attack

• Define 𝐹: {0,1}𝑛→ 0,1 by 𝐹 𝑥 = 1 iff 𝛼 ⋅ 𝑥 = 𝛽 ⋅ 𝐸𝐾 𝑥
– Classical linear distinguisher ⇔ approximately counting 𝑥 s.t. 𝐹 𝑥 = 1

• Apply quantum counting algorithm [Brassard et al. 2002]

– Quantum counting algorithm provides a quadratic speed-up for 

counting 𝑥 s.t. 𝐹 𝑥 = 1 for a Boolean function 𝐹

14

Kaplan et al.’s Quantum Distinguisher



• We want a quantum speed-up for multidimensional linear 

distinguishers

– If a high-dimensional approximation is available, it makes sense to utilize it 

– The best classical linear distinguishers are often multidimensional

– We also want a quantum speed-up for (multidimensional) zero correlation / 

integral distinguishers if possible

• Issue: It seems hard to extend Kaplan et al.’s technique to 

multidimensional cases

– The core of their technique is to count 𝐹−1 1 for some Boolean function 𝐹

– Multidimensional linear distinguishers are essentially 𝜒2-test, and it’s unclear 

whether there is a Boolean function corresponding to the 𝜒2-test

– A new technique is needed

Motivation of Research



How to Extract Linear Correlations 

into Quantum Amplitudes
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Fact 1 Linear correlations are related to the Fourier transform

Cor 𝑃; 𝛼, 𝛽 ∝ ℱ 𝑃emb 𝛼, 𝛽

Fact 2 The source of some exponential quantum speed-up is 

• quantum Fourier transform (QFT) : Shor’s, Simon’s, etc.

(Hadamard = QFT on ℤ/2ℤ 𝑛 )

Idea: Focusing on Fourier Transforms

Fourier transform of a 

function derived from 𝑃
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Simon’s Subroutine

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚

0𝑛 (discard)

measure →𝛼
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Simon’s Subroutine, Slightly Modified

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚

0𝑛 𝐻⊗𝑛
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Simon’s Subroutine, Slightly Modified

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚

0𝑛 𝐻⊗𝑛



𝛼,𝛽 ∈𝑉− 0

Cor 𝑓; 𝛼, 𝛽 2

2𝑛
𝛼, 𝛽
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Simon’s Subroutine, Slightly Modified

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚
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𝛼,𝛽 ∈𝑉− 0

Cor 𝑓; 𝛼, 𝛽 2

2𝑛
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Correlation appears

in the amplitudes!
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Simon’s Subroutine, Slightly Modified

𝑈𝑓

𝐻⊗𝑚 𝐻⊗𝑚0𝑚

0𝑛 𝐻⊗𝑛



𝛼,𝛽 ∈𝑉− 0

Cor 𝑓; 𝛼, 𝛽 2

2𝑛
𝛼, 𝛽

Correlation appears

in the amplitudes!
Denote this by CEA𝑓

(CEA: Correlation Extraction Algorithm)



Quantum Speed-up for

Various Distinguishers

by CEA and QAA
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• 𝑉 : Vector space of input-output masks (for multidim. Linear approximation)

– Assume the capacity of 𝐸𝐾 w.r.t. 𝑉 is large

• 𝐹 : Boolean function s.t. 𝐹 𝛼, 𝛽 = 1 iff 𝛼, 𝛽 ∈ 𝑉 ∖ {0}

Pr 𝛼, 𝛽 ← measure CEA𝑃 0𝑛 ∶ 𝐹 𝛼, 𝛽 = 1 =
capacity

2𝑛

• If QAA is applied on CEA and 𝐹 with 2𝑛/capacity iterations,  

𝛼, 𝛽 ∈ 𝑉 ∖ {0} s.t. 𝐹 𝛼, 𝛽 = 1 is obtained

– with high prob. if the given oracle is 𝐸𝐾
– with low prob. if the given oracle is a random permutation

• 𝐸𝐾 is distinguished in time ≈ 2𝑛/capacity
26

Application of CEA to

Multidim. Linear Distinguishers



• If the input-output masks are linearly independent or linearly 

completely dependent, a better speed-up is obtained by applying 

some linear transformation on the cipher (oracle)

27

Linear dependency Complexity

Completely dependent 2dim 𝑉 /capacity

Independent (𝑉 = 𝑉1 × 𝑉2) 2dim 𝑉2 /capacity

Application of CEA to

Multidim. Linear Distinguishers

Quadratic speed-up is obtained in some cases



• Similar speed-up is obtained in the same way as for 

multidimensional linear distinguishers

28

Application of CEA to Integral and

Multidim. Zero Correlation Linear Distinguishers

Linear dependency Complexity

Completely dependent 2𝑛

Independent (𝑉 = 𝑉1 × 𝑉2) 2𝑛−dim(𝑉1)

Quadratic speed-up is obtained

in some cases

(⇔ integral distinguisher

based on balanced functions)



Further Applications
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• Linear cryptanalysis assumes basic operations are XORs

• Generalized linear cryptanalysis is used for other operations 
[Baignères et al. 2007]

• Our technique also generalizes to modular additions by replacing 
the Hadamard operators in CEA with general quantum Fourier 
transforms

Extension to Generalized Linear Distinguishers

2 rounds of FF3-1

(NIST standard FPE)
[SP800-38G]



• Some integral properties yield multiple multidimensional zero 

correlation linear approximations, when CEA leads to a more-than-

quadratic speed-up in some cases

Possibility of More-than-Quadratic Speed-Up

Integral property of the 2.5-round AES
[Daemen & Rijmen 1999]



• Some integral properties yield multiple multidimensional zero 

correlation linear approximations, when CEA leads to a more-than-

quadratic speed-up in some cases

Possibility of More-than-Quadratic Speed-Up

Activating the i-th input cell ⇔ The i-th byte of input mask 𝛼 is zero 

16 multidimenstional approximations exist

16 choices
Integral property of the 2.5-round AES

[Daemen & Rijmen 1999]



• Some integral properties yield multiple multidimensional zero 

correlation linear approximations, when CEA leads to a more-than-

quadratic speed-up in some cases

Possibility of More-than-Quadratic Speed-Up

If a 4-bit cell cipher has the integral property as above,

the cipher can be distinguished by just a single query

16 choices
[Daemen & Rijmen 1999]

Integral property of the 2.5-round AES



Discussions
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• Unclear how to combine our technique with FFT-based key-recovery

– Classical attacks usually extend distingiushers to key-recovery attacks, often 

with advanced techniques based on FFT [Collard et al. 2007]

– Recently Schrottenloher quantumized FFT-based key recovery [Schrottenloher 2023], 

but the attack is mainly 1-dimensional and the technique is completely different, 

so it’s unclear how/whether it can be combined with ours

• Inapplicable to integral distinguishers based on zero-sum properties

– Usually, zero-sum properties lead to breaking more rounds than balanced 

properties

• Investigating other more-than-quadratic speed-ups?

Limitations of Our Techniques / Future Works



Summary
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• (At most quadratic) quantum speed-up is obtained for 

multidimensional (zero correlation) linear distinguishers

• The speed-up is achieved by using a modified version of the 

subroutine of Simon’s algorithm

• The technique can be adapted to generalized linear distinguishers

• If multiple multidimensional linear approximations are available, a 

more-than-quadratic speed-up is possible in some specific cases

• Further research is needed on how to combine the technique with 

(FFT-based) key recovery
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Summary

Thank you!


