NTT 🕐

Quantum Speed-Up for Multidimensional (Zero Correlation) Linear Distinguishers

NTT Social Informatics Laboratories Akinori Hosoyamada

Background on Classical Cryptanalysis

Linear Distinguisher (1-dimensional) [Matsui 1993] NTT ()

- P: {0,1}ⁿ → {0,1}ⁿ : permutation (random permutation or block cipher E_K)
 α, β : n-bit strings (input & output masks)
 The **linear correlation** is defined by Cor(P; α, β) := Pr [α · x = β · P(x)] - Pr [α · x ≠ β · P(x)]
- *P* : random permutation \Rightarrow |Cor(*P*; α , β)| is very small
- If $|Cor(E_K; \alpha, \beta)|$ is large, then E_K is distinguished by checking whether the proportion of x satisfying $\alpha \cdot x = \beta \cdot E_K(x)$ is likely to be much larger/smaller than 1/2.
 - Data/time complexity: $Cor(E_K; \alpha, \beta)^{-2}$

Multidimensional Linear Distinguisher [Hermelin & Nyberg 2008]

- NTT 🕐
- $V \subset (\{0,1\}^n)^2$: an $(\mathbb{F}_2$ -)vector space with a basis $(\alpha_1, \beta_1), \dots, (\alpha_d, \beta_d)$
- $\operatorname{Lin}^{P}(x) \coloneqq (\alpha_{1} \cdot x \bigoplus \beta_{1} \cdot P(x), \dots, \alpha_{d} \cdot x \bigoplus \beta_{d} \cdot P(x)) \in \{0,1\}^{d}$
 - "multidimensional linear approximation" of P (w.r.t. V and the basis)
- $p^P(z) := \Pr_x[\operatorname{Lin}^P(x) = z]$ (\rightarrow close to the uniform distribution if *P* is random)

Multidimensional Linear Distinguisher [Hermelin & Nyberg 2008]

- NTT 🕐
- $V \subset (\{0,1\}^n)^2$: an $(\mathbb{F}_2$ -)vector space with a basis $(\alpha_1, \beta_1), \dots, (\alpha_d, \beta_d)$
- $\operatorname{Lin}^{P}(x) \coloneqq (\alpha_{1} \cdot x \oplus \beta_{1} \cdot P(x), \dots, \alpha_{d} \cdot x \oplus \beta_{d} \cdot P(x)) \in \{0,1\}^{d}$
 - "multidimensional linear approximation" of P (w.r.t. V and the basis)
- $p^P(z) := \Pr_x[\operatorname{Lin}^P(x) = z]$ (\rightarrow close to the uniform distribution if *P* is random)

Fact
$$\sum_{(\alpha,\beta)\in V-\{0\}} \operatorname{Cor}(P;\alpha,\beta)^2 = \operatorname{Cap}(p^P)$$
 "capacity", related to χ^2 test statistic

Multidimensional Linear Distinguisher [Hermelin & Nyberg 2008]

- NTT 🕐
- $V \subset (\{0,1\}^n)^2$: an $(\mathbb{F}_2$ -)vector space with a basis $(\alpha_1, \beta_1), \dots, (\alpha_d, \beta_d)$
- $\operatorname{Lin}^{P}(x) \coloneqq (\alpha_{1} \cdot x \oplus \beta_{1} \cdot P(x), \dots, \alpha_{d} \cdot x \oplus \beta_{d} \cdot P(x)) \in \{0,1\}^{d}$
 - "multidimensional linear approximation" of P (w.r.t. V and the basis)
- $p^P(z) := \Pr_x[\operatorname{Lin}^P(x) = z]$ (\rightarrow close to the uniform distribution if *P* is random)

Fact
$$\sum_{(\alpha,\beta)\in V-\{0\}} \operatorname{Cor}(P;\alpha,\beta)^2 = \operatorname{Cap}(p^P)$$
 "capacity", related to χ^2 test statistic

If $\sum_{(\alpha,\beta)\in V-\{0\}} \operatorname{Cor}(E_K; \alpha, \beta)^2$ is large, then E_K can be distinguished by computing the χ^2 test statistic and checking if it is large or not Complexity: $\sqrt{2^d}/\operatorname{Cap}(p^{E_K})$

Multidimensional Zero Correlation Linear Distinguisher NTT [Bogdanov & Rijmen 2014, Bogdanov et al. 2012]

- If Cor(E_K; α, β) is exactly zero for some E_K and all (α, β) in a (F₂-)vector space V, then the corresponding Cap(p^{E_K}) is exactly zero
 If P is a random permutation, the corresponding capacity Cap(p^P) is non-zero with high probability
- Thus E_K is distinguished by computing a suitable test statistic
 - Complexity is $\approx 2^n / \sqrt{2^{\dim(V)}}$ for general cases
 - Faster for some special cases \rightarrow a link to integral distinguisher

Link to Integral Distinguishers [Bogdanov et al. 2012, Sun et al. 2015]

- *V* : the set (vector space) of input output masks
- We say that input-output masks are **linearly independent** if V is decomposed as $V = V_1 \times V_2$

- Complexity of integral distinguisher: $2^{n-\dim(V_1)}$
 - Faster than zero correlation linear distinguisher $(2^n/\sqrt{2^{\dim(V)}})$ sometimes

Background on Quantum Cryptanalysis & Motivation of Research

Attack Models

Simon's Period Finding Algorithm [Simon 1997]

Problem

Suppose a function $f: \{0,1\}^n \to S$ and a secret value $s \in \{0,1\}^n$ satisfy $\forall x \in \{0,1\}^n f(x \bigoplus s) = f(x)$. Given the (quantum) oracle of f, find s.

Classical Algorithms: Exponential Time

Simon's algorithm: Polynomial Time

- 1. Run the subroutine multiple times to get multiple α
- 2. Do some linear algebra

Quantum Amplitude Amplification (QAA) [Brassard et al. 2002]

• What is given :

Access to Boolean function $F: \{0,1\}^n \rightarrow \{0,1\}$, n-bit unitary U $p := (\text{prob. of getting } x \text{ s.t. } F(x) = 1 \text{ when measuring } U|0^n\rangle)$

• Goal :

a unitary that outputs x s.t. F(x) = 1 with high probability

• What QAA does :

Achieve the goal with $p^{-1/2}$ queries to U, U^* , and F

Kaplan et al.'s Quantum Distinguisher

 Kaplan et al. showed a quadratic speed-up for <u>1-dimensional</u> linear distinguisher [Kaplan et al. 2016]

Idea of the attack

- Define $F: \{0,1\}^n \rightarrow \{0,1\}$ by F(x) = 1 iff $\alpha \cdot x = \beta \cdot E_K(x)$
 - Classical linear distinguisher \Leftrightarrow approximately counting x s.t. F(x) = 1
- Apply quantum counting algorithm [Brassard et al. 2002]
 - Quantum counting algorithm provides a quadratic speed-up for counting x s.t. F(x) = 1 for a Boolean function F

Motivation of Research

- We want a quantum speed-up for multidimensional linear distinguishers
 - If a high-dimensional approximation is available, it makes sense to utilize it
 - The best classical linear distinguishers are often multidimensional
 - We also want a quantum speed-up for (multidimensional) zero correlation / integral distinguishers if possible
- Issue: It seems hard to extend Kaplan et al.'s technique to multidimensional cases
 - The core of their technique is to count $|F^{-1}(1)|$ for some Boolean function F
 - Multidimensional linear distinguishers are essentially χ^2 -test, and it's unclear whether there is a Boolean function corresponding to the χ^2 -test
 - A new technique is needed

How to Extract Linear Correlations into Quantum Amplitudes

Idea: Focusing on Fourier Transforms

NTT 🕐

Fact 1 Linear correlations are related to the Fourier transform

 $\operatorname{Cor}(P; \alpha, \beta) \propto \mathcal{F}(P_{\mathrm{emb}})(\alpha, \beta)$

Fourier transform of a function derived from *P*

<u>Fact 2</u> The source of some exponential quantum speed-up is quantum Fourier transform (QFT) : Shor's, Simon's, etc. (Hadamard = QFT on $(\mathbb{Z}/2\mathbb{Z})^n$)

Idea: Focusing on Fourier Transforms

NTT 🕐

Fact 1 Linear correlations are related to the Fourier transform

 $\operatorname{Cor}(P; \alpha, \beta) \propto \underline{\mathcal{F}(P_{\mathrm{emb}})}(\alpha, \beta)$

Fourier transform of a function derived from *P*

<u>Fact 2</u> The source of some exponential quantum speed-up is quantum Fourier transform (QFT) : Shor's, Simon's, etc. (Hadamard = QFT on $(\mathbb{Z}/2\mathbb{Z})^n$)

Any technique to connect linear correlations & quantum computation via Fourier transform?

Idea: Focusing on Fourier Transforms

NTT 🕐

Fact 1 Linear correlations are related to the Fourier transform

 $\operatorname{Cor}(P; \alpha, \beta) \propto \underline{\mathcal{F}(P_{\mathrm{emb}})}(\alpha, \beta)$

Fourier transform of a function derived from *P*

<u>Fact 2</u> The source of some exponential quantum speed-up is quantum Fourier transform (QFT) : Shor's, Simon's, etc. (Hadamard = QFT on $(\mathbb{Z}/2\mathbb{Z})^n$)

Any technique to connect linear correlations & quantum computation via Fourier transform?

Simon's Subroutine

(CEA: <u>Correlation</u> <u>Extraction</u> <u>A</u>lgorithm)

Quantum Speed-up for Various Distinguishers by CEA and QAA

Application of CEA to Multidim. Linear Distinguishers

- *V* : Vector space of input-output masks (for multidim. Linear approximation)
 - Assume the capacity of E_K w.r.t. V is large
- F: Boolean function s.t. $F(\alpha, \beta) = 1$ iff $(\alpha, \beta) \in V \setminus \{0\}$

$$Pr[(\alpha, \beta) \leftarrow measure CEAP|0n⟩ : F(\alpha, \beta) = 1] = \frac{capacity}{2n}$$

- If QAA is applied on CEA and F with $\sqrt{2^n/\text{capacity}}$ iterations, $(\alpha, \beta) \in V \setminus \{0\}$ s.t. $F(\alpha, \beta) = 1$ is obtained
 - with high prob. if the given oracle is E_K
 - with low prob. if the given oracle is a random permutation
- E_K is distinguished in time $\approx \sqrt{2^n/\text{capacity}}$

Application of CEA to Multidim. Linear Distinguishers

 If the input-output masks are linearly independent or linearly completely dependent, a better speed-up is obtained by applying some linear transformation on the cipher (oracle)

Linear dependency	Complexity	
Completely dependent	$\sqrt{2^{\dim(V)}/\text{capacity}}$	
Independent ($V = V_1 \times V_2$)	$\sqrt{2^{\dim(V_2)}/\text{capacity}}$	
Quadratic speed-up is obtained in some cases		

Application of CEA to Integral and Multidim. Zero Correlation Linear Distinguishers

 Similar speed-up is obtained in the same way as for multidimensional linear distinguishers

K IX	Linear dependency	Complexity	
	Completely dependent	$\sqrt{2^n}$	
	Independent ($V = V_1 \times V_2$)	$\sqrt{2^{n-\dim(V_1)}}$	
⇔ integral distinguisher based on balanced functions)		Quadratic speed-up is obtained in some cases	

Further Applications

Extension to Generalized Linear Distinguishers NTT O

- Linear cryptanalysis assumes basic operations are XORs
- Generalized linear cryptanalysis is used for other operations [Baignères et al. 2007]

2 rounds of FF3-1 (NIST standard FPE) [SP800-38G]

 Our technique also generalizes to modular additions by replacing the Hadamard operators in CEA with general quantum Fourier transforms

Possibility of More-than-Quadratic Speed-Up NTT 🕑

 Some integral properties yield <u>multiple</u> multidimensional zero correlation linear approximations, when CEA leads to a more-thanquadratic speed-up in some cases

Possibility of More-than-Quadratic Speed-Up NTT 🕑

 Some integral properties yield <u>multiple</u> multidimensional zero correlation linear approximations, when CEA leads to a more-thanquadratic speed-up in some cases

Activating the i-th input cell \Leftrightarrow The i-th byte of input mask α is zero 16 multidimenstional approximations exist

Possibility of More-than-Quadratic Speed-Up NTT 🕑

 Some integral properties yield <u>multiple</u> multidimensional zero correlation linear approximations, when CEA leads to a more-thanquadratic speed-up in some cases

If a 4-bit cell cipher has the integral property as above, the cipher can be distinguished by **just a single query**

Discussions

Limitations of Our Techniques / Future Works NTT 🕐

- Unclear how to combine our technique with FFT-based key-recovery
 - Classical attacks usually extend distinguishers to key-recovery attacks, often with advanced techniques based on FFT [Collard et al. 2007]
 - Recently Schrottenloher quantumized FFT-based key recovery [Schrottenloher 2023], but the attack is mainly 1-dimensional and the technique is completely different, so it's unclear how/whether it can be combined with ours
- Inapplicable to integral distinguishers based on zero-sum properties
 - Usually, zero-sum properties lead to breaking more rounds than balanced properties
- Investigating other more-than-quadratic speed-ups?

Summary

Summary

- (At most quadratic) quantum speed-up is obtained for multidimensional (zero correlation) linear distinguishers
- The speed-up is achieved by using a modified version of the subroutine of Simon's algorithm
- The technique can be adapted to generalized linear distinguishers
- If multiple multidimensional linear approximations are available, a more-than-quadratic speed-up is possible in some specific cases
- Further research is needed on how to combine the technique with (FFT-based) key recovery

Thank you!