Exploiting the Symmetry of \mathbb{Z}^{n} : Randomization and the Automorphism Problem

Kaijie Jiang Anyu Wang ${ }^{(\boxtimes)}$ Hengyi Luo Guoxiao Liu Yang Yu Xiaoyun Wang

Speaker: Kaijie Jiang
Tsinghua University
December 6, 2023

Lattice: $\mathcal{L}=\mathcal{L}(\mathbf{B})=\left\{\mathbf{B z}: \mathbf{z} \in \mathbb{Z}^{n}\right\} . \mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ is a basis of \mathcal{L}.

- Shortest Vector Problem (SVP): Given B, find a nonzero shortest vector in \mathcal{L}.
- Closest Vector Problem (CVP): Given B and a target \mathbf{t}, find a vector $\mathbf{v} \in \mathcal{L}$ closest to \mathbf{t}.

LIP

Given lattices bases $\mathbf{B}_{1}, \mathbf{B}_{2} \in G L_{n}(\mathbb{R})$ of isomorphic lattices, find $\mathbf{O} \in \mathcal{O}_{n}(\mathbb{R})$ and $\mathbf{U} \in \mathrm{GL}_{n}(\mathbb{Z})$ s.t. $\mathbf{B}_{1}=\mathbf{O B}_{2} \mathbf{U}$.

- Algorithm: [PS97, GS02, Szy03, GS03, SSV09, HR14, JS14, JS17, DSHVvW20, BGPS23, DG23, Duc23].
- Cryptography: [BM21, BGPS23, DPPvW22, DvW22].

$\mathbb{Z S V P}$ and \mathbb{Z} LIP

- In SVP, If $\mathcal{L} \cong \mathbb{Z}^{n}$, we call this problem $\mathbb{Z S V P}$.
- In LIP, If $\mathbf{B}_{1}=\mathbf{I}_{n}$, we call this problem \mathbb{Z} LIP.
- Note that \mathbb{Z} LIP $=\mathbb{Z}$ SVP.
- Algorithm:[GS02, Szy03, GS03, JS14, JS17, BGPS23, Duc23].
- Cryptography:[BM21, BGPS23, DPPvW22].

However, the theoretical complexity of \mathbb{Z} LIP is still not well understood.

Key observation of this work: Symmetry of \mathbb{Z}^{n}
\mathbb{Z}^{n} (and its rotations) possesses a remarkable degree of symmetry.

- For lattice $\mathbb{Z}^{n}, \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=\mathcal{S}_{n}^{ \pm} .\left|\mathcal{S}_{n}^{ \pm}\right|=2^{n} \cdot n$! which is known to be the largest possible for any lattice in \mathbb{R}^{n} when $n>10$.

Key observation of this work: Symmetry of \mathbb{Z}^{n}
\mathbb{Z}^{n} (and its rotations) possesses a remarkable degree of symmetry.

- For lattice $\mathbb{Z}^{n}, \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=\mathcal{S}_{n}^{ \pm} .\left|\mathcal{S}_{n}^{ \pm}\right|=2^{n} \cdot n$! which is known to be the largest possible for any lattice in \mathbb{R}^{n} when $n>10$.
- Q1: Can the symmetry be used to help solve or the reduction of the computational problems related to \mathbb{Z}^{n} ?
- Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice isomorphic to \mathbb{Z}^{n} ?

Key observation of this work: Symmetry of \mathbb{Z}^{n}

\mathbb{Z}^{n} (and its rotations) possesses a remarkable degree of symmetry.

- For lattice $\mathbb{Z}^{n}, \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=\mathcal{S}_{n}^{ \pm} .\left|\mathcal{S}_{n}^{ \pm}\right|=2^{n} \cdot n!$ which is known to be the largest possible for any lattice in \mathbb{R}^{n} when $n>10$.
- Q1: Can the symmetry be used to help solve or the reduction of the computational problems related to \mathbb{Z}^{n} ?
- Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice isomorphic to \mathbb{Z}^{n} ?
- A1: Yes! We provide a randomization framework, which can be roughly thought of as 'applying random automorphisms' in $\operatorname{Aut}(\mathcal{L})$ to the output of an oracle, without knowing the specific elements in $\operatorname{Aut}(\mathcal{L})$.
- A2: No! It is equivalent to \mathbb{Z} LIP, i.e., \mathbb{Z} LIP $=\mathbb{Z}$ LAP.

Main Results

- Introduce a randomization framework.
- For any constant γ, \mathbb{Z} SVP $=\gamma-\mathbb{Z}$ SVP.
- $\mathbb{Z L I P}=\mathbb{Z} S C V P$, which is a special case of CVP.
- \mathbb{Z} LIP $=\mathbb{Z}$ LAP.

Randomization

Toy example

- $\square_{\frac{\pi}{4}} \rightarrow \rho\left(\square_{\frac{\pi}{4}}\right)=\square_{\theta}$, for $\rho \in \mathbb{R} /(2 \pi \mathbb{Z})$.
- $\theta \in\left[0, \frac{\pi}{2}\right), \theta[\rho]=\theta\left[\rho+\frac{\pi}{2}\right]$.
- Oracle \mathcal{O} that takes any \square_{θ} as input and outputs an arbitrary vertex of \square_{θ}

Randomization

1) generate a $\rho \in \mathbb{R} /(2 \pi \mathbb{Z})$ uniformly at random;
2) invoke the oracle \mathcal{O} with input $\rho\left(\square_{\frac{\pi}{4}}\right)=\square_{\theta}$ and obtain an arbitrary vertex of \square_{θ};
3) apply ρ^{-1} to the obtained vertex and output a vertex of $\square_{\frac{\pi}{4}}$.

Using the randomness of ρ, it can be shown that the obtained vertex is uniformly distributed.

Randomization Framework for lattices

Randomization for Lattices

1) Given a basis \mathbf{B} of lattice \mathcal{L}, generate a $\mathbf{O} \in \mathcal{O}_{n}(\mathbb{R})$ uniformly at random.
2) invoke the oracle \mathcal{O} with input \mathbf{B}^{\prime} and obtain an arbitrary response of \mathcal{L}^{\prime};
3) apply \mathbf{O}^{-1} to the obtained response and output a response in \mathcal{L}.

Randomization for Lattices

1) Given a basis \mathbf{B} of lattice \mathcal{L}, generate a $\mathbf{O} \in \mathcal{O}_{n}(\mathbb{R})$ uniformly at random.
2) invoke the oracle \mathcal{O} with input \mathbf{B}^{\prime} and obtain an arbitrary response of \mathcal{L}^{\prime};
3) apply \mathbf{O}^{-1} to the obtained response and output a response in \mathcal{L}.

- In Step 2), we randomized the basis $\mathbf{O B}$ in lattice $\mathbf{O} \mathcal{L}=\mathcal{L}^{\prime}$ to get a \mathbf{B}^{\prime} by discrete Gaussian sampling. A similar technique was used in [HR14,DvW22,BGPS23].
- The Randomization Framework which can be roughly thought of as 'applying random automorphisms' in $\operatorname{Aut}(\mathcal{L})$ to the output of an oracle, without knowing Aut (\mathcal{L}).

Main Reductions

- For any constant $\gamma, \mathbb{Z} \mathbf{S V P}=\gamma-\mathbb{Z} \mathbf{S V P}$.
- $\mathbb{Z L I P}=\mathbb{Z} S C V P$.
- \mathbb{Z} LIP $=\mathbb{Z}$ LAP.

From $\mathbb{Z S V P}$ to $\gamma-\mathbb{Z S V P}$

Theorem

There is an efficient randomized reduction from $\mathbb{Z S V P}$ to $\gamma-\mathbb{Z S V P ~ f o r ~ a n y ~ c o n s t a n t ~}$ $\gamma=O(1)$.

Proof sketch

Suppose that $\mathcal{L} \cong \mathbb{Z}^{n}$. Denote $A=\mathcal{L} \cap \gamma \mathcal{B}_{2}^{n}$, then by [RS17] it has $|A|=\left|\mathbb{Z}^{n} \cap \gamma \mathcal{B}_{2}^{n}\right| \leq n^{c}$ for some constant c.
The reduction proceeds as follows:

1) Using the randomization framework, we can invoke the $\gamma-\mathbb{Z S V P}$ oracle $m=\operatorname{poly}(n)$ times, with $m>n^{c}$, yielding a vector set $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subseteq A$.
2) Then we compute $\mathbf{x}_{i}-\mathbf{x}_{j}$ for all $i, j \in[m]$, and check if it is a multiple of the shortest vector.
3) Repeating the above process $O\left(n^{c+1}\right)$ times.

Proof sketch

Consider the action of $\operatorname{Aut}(\mathcal{L})$ on A. Write $A=\cup_{\mathbf{v} \in \bar{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}}=\{\mathbf{O v}: \mathbf{O} \in \operatorname{Aut}(\mathcal{L})\}$
It can be shown that:

- Each $\mathbf{x}_{i} \in X$ is independently and uniformly distributed in its own orbit by the randomization.

Proof sketch

Consider the action of $\operatorname{Aut}(\mathcal{L})$ on A. Write $A=\cup_{\mathbf{v} \in \bar{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}}=\{\mathbf{O v}: \mathbf{O} \in \operatorname{Aut}(\mathcal{L})\}$
It can be shown that:

- Each $\mathbf{x}_{i} \in X$ is independently and uniformly distributed in its own orbit by the randomization.
- Since $m>n^{c} \geq|\bar{A}|$, there must exist \mathbf{x}_{i} and \mathbf{x}_{j} fall in the same orbit

Proof sketch

Consider the action of $\operatorname{Aut}(\mathcal{L})$ on A. Write $A=\cup_{\mathbf{v} \in \bar{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}}=\{\mathbf{O v}: \mathbf{O} \in \operatorname{Aut}(\mathcal{L})\}$
It can be shown that:

- Each $\mathbf{x}_{i} \in X$ is independently and uniformly distributed in its own orbit by the randomization.
- Since $m>n^{c} \geq|\bar{A}|$, there must exist \mathbf{x}_{i} and \mathbf{x}_{j} fall in the same orbit
- the probability that $\mathbf{x}_{i}-\mathbf{x}_{j}$ is a multiple of a shortest vector of \mathcal{L} is at least $1 /\left|A_{v}\right| \geq 1 / n^{c}$.

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to $\gamma-\mathbb{Z S V P : ~ i l l u s t r a t i o n ~}$

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to γ-ZSVPP: illustration

Δ lattice vectors of one orbit - obtained lattice vectors

From $\mathbb{Z S V P}$ to $\gamma-\mathbb{Z S V P : ~ i l l u s t r a t i o n ~}$

From $\mathbb{Z S V P}$ to $\gamma-\mathbb{Z S V P : ~ i l l u s t r a t i o n ~}$

Main Reductions

- For any constant $\gamma, \mathbb{Z S V P}=\gamma-\mathbb{Z S V P}$.
- $\mathbb{Z} \mathbf{L I P}=\mathbb{Z} \mathbf{S C V P}$.
- $\mathbb{Z L I P}=\mathbb{Z}$ LAP.

A lattice \mathcal{L} is said to be unimodular if $\mathcal{L}=\mathcal{L}^{*}$.

Characteristic Vector

Suppose \mathcal{L} is a unimodular lattice. A vector $\mathbf{w} \in \mathcal{L}$ is called a characteristic vector of \mathcal{L} if it has $\langle\mathbf{w}, \mathbf{v}\rangle \equiv\langle\mathbf{v}, \mathbf{v}\rangle \bmod 2$ for all $\mathbf{v} \in \mathcal{L}$. We denote the set of characteristic vectors as $\chi(\mathcal{L})$.

Note that $\chi(\mathcal{L})=\mathbf{w}+2 \mathcal{L}$ for any $\mathbf{w} \in \chi(\mathcal{L})$.

Shortest Characteristic Vector Problem (SCVP)

Given a basis of a unimodular lattice \mathcal{L}, find a shortest characteristic vector $\mathbf{w} \in \chi(\mathcal{L})$. In particular, if $\mathcal{L} \cong \mathbb{Z}^{n}$, we call this problem $\mathbb{Z S C V P}$.

$\mathbb{Z S C V P}$ is a very special case of CVP

For $\mathcal{L} \cong \mathbb{Z}^{n}, \mathbb{Z} S C V P$ is very special.

- We can efficiently compute a $\mathbf{t} \in \chi(\mathcal{L})$ from a basis of \mathcal{L}.
- The deep holes of $2 \mathcal{L}$ are exactly $\chi(\mathcal{L})$.
- The $\mathbb{Z S C V P}$ can be thought of as a CVP in the lattice $2 \mathcal{L}$, with a deep hole as the target vector \mathbf{t}.

Suppose $\mathcal{L}=\mathbf{O} \cdot \mathbb{Z}^{n}$. The shortest characteristic vectors of \mathcal{L} are exactly $\left\{\mathbf{O z}: \mathbf{z}_{i}= \pm 1, \forall i \in[n]\right\}$.

Step. 1 Randomization

Given a $\mathbb{Z S C V P}$ oracle \mathcal{O}, we can sample uniformly and independently from the set of shortest characteristic vectors of \mathcal{L} by randomization.

Step. 2 Recovery

Given a basis \mathbf{B} of a lattice $\mathcal{L} \cong \mathbb{Z}^{n}$, and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p o l y(n)} \in \chi(\mathcal{L})$ that are drawn uniformly and independently from the set of shortest characteristic vectors of \mathcal{L}. The goal is to find the shortest vectors of \mathcal{L}.

- The method we used is the same as that used in [NR06], but the distribution is different.
- So we can get good approximations shortest vectors of \mathcal{L}.
- Finally, we can efficiently recover the shortest vectors from its approximations by some simple tricks.

Main Reductions

- For any constant γ, \mathbb{Z} SVP $=\gamma-\mathbb{Z S V P}$.
- $\mathbb{Z L I P}=\mathbb{Z} S C V P$.
- $\mathbb{Z} \mathbf{L I P}=\mathbb{Z} \mathbf{L A P}$.

Lattice Automorphism Problem (LAP)

Given a basis of a lattice \mathcal{L}, find an automorphism $\mathbf{O} \in \operatorname{Aut}(\mathcal{L})$ such that $\mathbf{O} \neq \pm \mathbf{I}_{n}$. If $\mathcal{L} \cong \mathbb{Z}^{n}$, we call this problem \mathbb{Z} LAP.

Given a $\mathbb{Z} L A P$ oracle, we can generate automorphisms uniformly distributed over their own conjugacy class by the randomization framework.

- In $\operatorname{Aut}(\mathcal{L})$, two automorphisms ϕ_{1} and ϕ_{2} are conjugate if there exists an automorphism $\phi \in \operatorname{Aut}(\mathcal{L})$ such that $\phi_{1}=\phi \phi_{2} \phi^{-1}$, which is denoted by $\phi_{1} \sim \phi_{2}$.
- Conjugation is an equivalence relation that divides $\operatorname{Aut}(\mathcal{L})$ into disjoint conjugacy classes.
- For the lattice $\mathbb{Z}^{n}, \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=\mathcal{S}_{n}^{ \pm}$and the number of conjugacy classes of Aut $\left(\mathbb{Z}^{n}\right)$ is expontential in n.

So, it's hard to efficiently sample automorphisms from one conjugacy class.

In order to sample automorphisms from one conjugate class, we are particularly interested in the following three types of conjugacy classes.

- $\boldsymbol{T}_{i, j, k}=\operatorname{diag}\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \ldots,\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),-\boldsymbol{I}_{i}, \boldsymbol{I}_{j}\right\}$, where $i, j<n$.
- $\mathbf{T}_{p, k}=\operatorname{diag}\left\{\mathbf{P}_{p}, \ldots, \mathbf{P}_{p}, \mathbf{I}_{n-p k}\right\}, p$ is an odd prime number and $\mathbf{P}_{p}=\left(\begin{array}{cc}0 & 1 \\ \mathbf{I}_{p-1} & 0\end{array}\right)$.
- $\mathbf{T}_{n}=\operatorname{diag}\left\{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \ldots,\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\}$, where n is even.

Note that the number of these types of conjugacy classes is a polynomial of n.

From \mathbb{Z} LIP to $\mathbb{Z} L A P$: illustration

$$
\stackrel{\phi}{\psi}_{\phi \in \operatorname{Aut}\left(\mathcal{L}^{\prime}\right)}^{P(\phi):=\phi^{\operatorname{order}(\phi) / p}, p \text { is depend on } \phi}
$$

From \mathbb{Z} LIP to $\mathbb{Z} L A P$: illustration

From \mathbb{Z} LIP to \mathbb{Z} LAP: illustration

Utilizing the structure of $\mathcal{S}_{n}^{ \pm}$and some tricks, we can efficiently sample automorphisms from one conjugacy class:

Preprocessing and Randomization

Assume that n is odd and the lattice $\mathcal{L} \cong \mathbb{Z}^{n}$. Given a \mathbb{Z} LAP oracle \mathcal{O} for dimension n. Then there exists i, j, k such that we efficiently obtain poly (n) samples $\phi_{1}, \phi_{2}, \ldots, \phi_{\text {poly }(n)} \in \operatorname{Aut}(\mathcal{L})$ that are independently and uniformly distributed over the conjugacy class $\left\{\phi \in \operatorname{Aut}(\mathcal{L}) \mid \phi \sim \mathbf{T}_{i, j, k}\right\}$.

Recovery

Given a basis B of a lattice $\mathcal{L} \cong \mathbb{Z}^{n}$, and a set of automorphisms $\phi_{1}, \phi_{2}, \ldots, \phi_{\text {poly }(n)} \in \operatorname{Aut}(\mathcal{L})$ that are drawn uniformly and independently from a conjugacy class $\mathfrak{C}_{\phi_{0}}$, where $\phi_{0} \sim \mathbf{T}_{k_{1}, k_{2}, l}$ and k_{1}, k_{2}, l are fixed. The goal is to find the shortest vectors of \mathcal{L}.

- The method we used is inspired by [NR06], we consider the function:

$$
g_{k}(\mathbf{x})=\mathbb{E}\left[\langle\phi \mathbf{x}, \mathbf{x}\rangle^{k}\right], \mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{Z}^{+}
$$

- So we can find good approximations shortest vectors of \mathcal{L}.
- Finally, we can efficiently recover the shortest vectors from its approximations by some tricks.

Thanet for your attention/
Q \& A

