Exploiting the Symmetry of \mathbb{Z}^n : Randomization and the Automorphism Problem

Kaijie Jiang Anyu Wang^(⊠) Hengyi Luo Guoxiao Liu Yang Yu Xiaoyun Wang

Speaker: Kaijie Jiang

Tsinghua University

December 6, 2023

Lattice: $\mathcal{L} = \mathcal{L}(\mathbf{B}) = \{\mathbf{B}\mathbf{z} : \mathbf{z} \in \mathbb{Z}^n\}$. $\mathbf{B} = (\mathbf{b}_1, ..., \mathbf{b}_n)$ is a basis of \mathcal{L} .

- Shortest Vector Problem (SVP): Given **B**, find a nonzero shortest vector in \mathcal{L} .
- Closest Vector Problem (CVP): Given **B** and a target **t**, find a vector $\mathbf{v} \in \mathcal{L}$ closest to **t**.

Lattices Isomorphism Problem

LIP

Given lattices bases $\mathbf{B}_1, \mathbf{B}_2 \in GL_n(\mathbb{R})$ of isomorphic lattices, find $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$ and $\mathbf{U} \in GL_n(\mathbb{Z})$ s.t. $\mathbf{B}_1 = \mathbf{OB}_2\mathbf{U}$.

- Algorithm: [PS97, GS02, Szy03, GS03, SSV09, HR14, JS14, JS17, DSHVvW20, BGPS23, DG23, Duc23].
- Cryptography: [BM21, BGPS23, DPPvW22, DvW22].

Computational Problems related to \mathbb{Z}^n

$\mathbb{Z}\mathsf{SVP}$ and $\mathbb{Z}\mathsf{LIP}$

- In SVP, If $\mathcal{L} \cong \mathbb{Z}^n$, we call this problem $\mathbb{Z}SVP$.
- In LIP, If $\mathbf{B}_1 = \mathbf{I}_n$, we call this problem \mathbb{Z} LIP.
- Note that $\mathbb{Z}LIP = \mathbb{Z}SVP$.
- Algorithm: [GS02, Szy03, GS03, JS14, JS17, BGPS23, Duc23].
- Cryptography:[BM21, BGPS23, DPPvW22].

However, the theoretical complexity of $\mathbb{Z}\text{LIP}$ is still not well understood.

Key observation of this work: Symmetry of \mathbb{Z}^n

 \mathbb{Z}^n (and its rotations) possesses a remarkable degree of symmetry.

• For lattice \mathbb{Z}^n , $\operatorname{Aut}(\mathbb{Z}^n) = S_n^{\pm}$. $|S_n^{\pm}| = 2^n \cdot n!$ which is known to be the largest possible for any lattice in \mathbb{R}^n when n > 10.

Reduction results for ZLIP

Key observation of this work: Symmetry of \mathbb{Z}^n

- \mathbb{Z}^n (and its rotations) possesses a remarkable degree of symmetry.
 - For lattice \mathbb{Z}^n , $\operatorname{Aut}(\mathbb{Z}^n) = S_n^{\pm}$. $|S_n^{\pm}| = 2^n \cdot n!$ which is known to be the largest possible for any lattice in \mathbb{R}^n when n > 10.
 - Q1: Can the symmetry be used to help solve or the reduction of the computational problems related to \mathbb{Z}^n ?
 - Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice isomorphic to \mathbb{Z}^n ?

Reduction results for ZLIP

Key observation of this work: Symmetry of \mathbb{Z}^n

- \mathbb{Z}^n (and its rotations) possesses a remarkable degree of symmetry.
 - For lattice \mathbb{Z}^n , $\operatorname{Aut}(\mathbb{Z}^n) = S_n^{\pm}$. $|S_n^{\pm}| = 2^n \cdot n!$ which is known to be the largest possible for any lattice in \mathbb{R}^n when n > 10.
 - Q1: Can the symmetry be used to help solve or the reduction of the computational problems related to \mathbb{Z}^n ?
 - Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice isomorphic to \mathbb{Z}^n ?
 - A1: Yes! We provide a *randomization framework*, which can be roughly thought of as 'applying random automorphisms' in Aut(\mathcal{L}) to the output of an oracle, without knowing the specific elements in Aut(\mathcal{L}).
 - A2: No! It is equivalent to $\mathbb{Z}LIP$, i.e., $\mathbb{Z}LIP = \mathbb{Z}LAP$.

Our Results

Main Results

- Introduce a randomization framework.
- For any constant γ , $\mathbb{Z}SVP = \gamma \mathbb{Z}SVP$.
- $\mathbb{Z}LIP = \mathbb{Z}SCVP$, which is a special case of CVP.
- $\mathbb{Z}LIP = \mathbb{Z}LAP$.

Reduction results for \mathbb{Z} LIP

Randomization

Reduction results for ZLIP

Toy example

- $\Box_{\frac{\pi}{4}} \to \rho(\Box_{\frac{\pi}{4}}) = \Box_{\theta}$, for $\rho \in \mathbb{R}/(2\pi\mathbb{Z})$.
- $\theta \in [0, \frac{\pi}{2}), \ \theta[\rho] = \theta[\rho + \frac{\pi}{2}].$
- Oracle \mathcal{O} that takes any \Box_{θ} as input and outputs an arbitrary vertex of \Box_{θ}

Toy example

Randomization

- 1) generate a $ho \in \mathbb{R}/(2\pi\mathbb{Z})$ uniformly at random;
- 2) invoke the oracle \mathcal{O} with input $\rho(\Box_{\frac{\pi}{4}}) = \Box_{\theta}$ and obtain an arbitrary vertex of \Box_{θ} ;
- 3) apply ρ^{-1} to the obtained vertex and output a vertex of $\Box_{\frac{\pi}{4}}$.

Using the randomness of ρ , it can be shown that the obtained vertex is uniformly distributed.

Randomization Framework for lattices

Randomization for Lattices

- 1) Given a basis **B** of lattice \mathcal{L} , generate a $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$ uniformly at random.
- 2) invoke the oracle ${\cal O}$ with input ${\boldsymbol B}'$ and obtain an arbitrary response of ${\cal L}';$
- 3) apply \mathbf{O}^{-1} to the obtained response and output a response in \mathcal{L} .

Randomization Framework for lattices

Randomization for Lattices

- 1) Given a basis **B** of lattice \mathcal{L} , generate a $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$ uniformly at random.
- 2) invoke the oracle ${\cal O}$ with input ${\boldsymbol B}'$ and obtain an arbitrary response of ${\cal L}';$
- 3) apply \mathbf{O}^{-1} to the obtained response and output a response in \mathcal{L} .
- In Step 2), we randomized the basis **OB** in lattice $\mathbf{OL} = \mathcal{L}'$ to get a **B**' by discrete Gaussian sampling. A similar technique was used in [HR14,DvW22,BGPS23].
- The Randomization Framework which can be roughly thought of as 'applying random automorphisms' in $Aut(\mathcal{L})$ to the output of an oracle, without knowing $Aut(\mathcal{L})$.

Main Reductions

- For any constant γ , $\mathbb{Z}SVP = \gamma \mathbb{Z}SVP$.
- $\mathbb{Z}LIP = \mathbb{Z}SCVP$.
- $\mathbb{Z}LIP = \mathbb{Z}LAP$.

Theorem

There is an efficient randomized reduction from $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$ for any constant $\gamma = O(1)$.

Proof sketch

Suppose that $\mathcal{L} \cong \mathbb{Z}^n$. Denote $A = \mathcal{L} \cap \gamma \mathcal{B}_2^n$, then by [RS17] it has $|A| = |\mathbb{Z}^n \cap \gamma \mathcal{B}_2^n| \le n^c$ for some constant *c*. The reduction proceeds as follows:

- 1) Using the randomization framework, we can invoke the γ -ZSVP oracle m = poly(n) times, with $m > n^c$, yielding a vector set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \subseteq A$.
- 2) Then we compute $\mathbf{x}_i \mathbf{x}_j$ for all $i, j \in [m]$, and check if it is a multiple of the shortest vector.
- 3) Repeating the above process $O(n^{c+1})$ times.

Proof sketch

Consider the action of Aut(\mathcal{L}) on A. Write $A = \bigcup_{\mathbf{v} \in \overline{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}} = \{\mathbf{Ov} : \mathbf{O} \in Aut(\mathcal{L})\}$ It can be shown that:

 Each x_i ∈ X is independently and uniformly distributed in its own orbit by the randomization.

Proof sketch

Consider the action of Aut(\mathcal{L}) on A. Write $A = \bigcup_{\mathbf{v} \in \overline{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}} = \{\mathbf{Ov} : \mathbf{O} \in Aut(\mathcal{L})\}$ It can be shown that:

- Each $\mathbf{x}_i \in X$ is independently and uniformly distributed in its own orbit by the randomization.
- Since $m > n^c \ge |\bar{A}|$, there must exist \mathbf{x}_i and \mathbf{x}_j fall in the same orbit

Proof sketch

Consider the action of Aut(\mathcal{L}) on A. Write $A = \bigcup_{\mathbf{v} \in \overline{A}} A_{\mathbf{v}}$ to be the disjoint union of distinct orbits, where $A_{\mathbf{v}} = \{\mathbf{Ov} : \mathbf{O} \in Aut(\mathcal{L})\}$ It can be shown that:

- Each $\mathbf{x}_i \in X$ is independently and uniformly distributed in its own orbit by the randomization.
- Since $m > n^c \ge |\bar{A}|$, there must exist \mathbf{x}_i and \mathbf{x}_j fall in the same orbit
- the probability that $\mathbf{x}_i \mathbf{x}_j$ is a multiple of a shortest vector of \mathcal{L} is at least $1/|A_{\mathbf{v}}| \geq 1/n^c$.

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- \blacktriangle lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- \blacktriangle lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- \blacktriangle lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- \blacktriangle lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- ▲ lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Reduction results for ZLIP

From $\mathbb{Z}SVP$ to γ - $\mathbb{Z}SVP$: illustration

- \blacktriangle lattice vectors of one orbit
- obtained lattice vectors

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Main Reductions

- For any constant γ , $\mathbb{Z}SVP = \gamma \mathbb{Z}SVP$.
- $\mathbb{Z}LIP = \mathbb{Z}SCVP.$
- $\mathbb{Z}LIP = \mathbb{Z}LAP$.

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}SCVP$: SCVP and $\mathbb{Z}SCVP$

A lattice \mathcal{L} is said to be unimodular if $\mathcal{L} = \mathcal{L}^*$.

Characteristic Vector

Suppose \mathcal{L} is a unimodular lattice. A vector $\mathbf{w} \in \mathcal{L}$ is called a characteristic vector of \mathcal{L} if it has $\langle \mathbf{w}, \mathbf{v} \rangle \equiv \langle \mathbf{v}, \mathbf{v} \rangle \mod 2$ for all $\mathbf{v} \in \mathcal{L}$. We denote the set of characteristic vectors as $\chi(\mathcal{L})$.

Note that
$$\chi(\mathcal{L}) = \mathbf{w} + 2\mathcal{L}$$
 for any $\mathbf{w} \in \chi(\mathcal{L})$.

Shortest Characteristic Vector Problem (SCVP)

Given a basis of a unimodular lattice \mathcal{L} , find a shortest characteristic vector $\mathbf{w} \in \chi(\mathcal{L})$. In particular, if $\mathcal{L} \cong \mathbb{Z}^n$, we call this problem \mathbb{Z} SCVP.

$\mathbb{Z}SCVP$ is a very special case of CVP

For $\mathcal{L} \cong \mathbb{Z}^n$, \mathbb{Z} SCVP is very special.

- We can efficiently compute a $\mathbf{t} \in \chi(\mathcal{L})$ from a basis of \mathcal{L} .
- The deep holes of $2\mathcal{L}$ are exactly $\chi(\mathcal{L})$.
- The $\mathbb{Z}SCVP$ can be thought of as a CVP in the lattice 2L, with a deep hole as the target vector t.

K.Jiang et al.

Exploiting the Symmetry of \mathbb{Z}^n

From $\mathbb{Z}LIP$ to $\mathbb{Z}SCVP$

Suppose $\mathcal{L} = \mathbf{O} \cdot \mathbb{Z}^n$. The shortest characteristic vectors of \mathcal{L} are exactly $\{\mathbf{Oz} : \mathbf{z}_i = \pm 1, \forall i \in [n]\}.$

Step.1 Randomization

Given a $\mathbb{Z}SCVP$ oracle \mathcal{O} , we can sample uniformly and independently from the set of shortest characteristic vectors of \mathcal{L} by randomization.

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

From $\mathbb{Z}LIP$ to $\mathbb{Z}SCVP$

Step.2 Recovery

Given a basis **B** of a lattice $\mathcal{L} \cong \mathbb{Z}^n$, and $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_{poly(n)} \in \chi(\mathcal{L})$ that are drawn uniformly and independently from the set of shortest characteristic vectors of \mathcal{L} . The goal is to find the shortest vectors of \mathcal{L} .

- The method we used is the same as that used in [NR06], but the distribution is different.
- \bullet So we can get good approximations shortest vectors of $\mathcal{L}.$
- Finally, we can efficiently recover the shortest vectors from its approximations by some simple tricks.

Main Reductions

- For any constant γ , $\mathbb{Z}SVP = \gamma \mathbb{Z}SVP$.
- $\mathbb{Z}LIP = \mathbb{Z}SCVP$.
- $\mathbb{Z}LIP = \mathbb{Z}LAP$.

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$

Lattice Automorphism Problem (LAP)

Given a basis of a lattice \mathcal{L} , find an automorphism $\mathbf{O} \in Aut(\mathcal{L})$ such that $\mathbf{O} \neq \pm \mathbf{I}_n$. If $\mathcal{L} \cong \mathbb{Z}^n$, we call this problem $\mathbb{Z}LAP$.

Given a $\mathbb{Z}LAP$ oracle, we can generate automorphisms uniformly distributed over their own conjugacy class by the randomization framework.

Conjugacy Classes

- In Aut(\mathcal{L}), two automorphisms ϕ_1 and ϕ_2 are conjugate if there exists an automorphism $\phi \in Aut(\mathcal{L})$ such that $\phi_1 = \phi \phi_2 \phi^{-1}$, which is denoted by $\phi_1 \sim \phi_2$.
- \bullet Conjugation is an equivalence relation that divides ${\rm Aut}(\mathcal{L})$ into disjoint conjugacy classes.
- For the lattice Zⁿ, Aut(Zⁿ) = S[±]_n and the number of conjugacy classes of Aut(Zⁿ) is expontential in n.
- So, it's hard to efficiently sample automorphisms from one conjugacy class.

Conjugacy Classes of \mathbb{Z}^n

In order to sample automorphisms from one conjugate class, we are particularly interested in the following three types of conjugacy classes.

- $\mathsf{T}_{i,j,k} = \operatorname{diag}\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, -\mathsf{I}_i, \mathsf{I}_j \right\}$, where i, j < n.
- $\mathbf{T}_{p,k} = \text{diag}\{\mathbf{P}_p, \dots, \mathbf{P}_p, \mathbf{I}_{n-pk}\}, p \text{ is an odd prime number and } \mathbf{P}_p = \begin{pmatrix} 0 & 1 \\ \mathbf{I}_{p-1} & 0 \end{pmatrix}$.
- $\mathbf{T}_n = \text{diag}\left\{ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$, where *n* is even.

Note that the number of these types of conjugacy classes is a **polynomial of** n.

Randomizatio

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

$$\begin{array}{l} \phi \in Aut \left(\mathcal{L}' \right) \\ \downarrow \qquad P(\phi) := \phi^{\operatorname{order}(\phi)/p}, \ p \text{ is depend on } \phi \\ P(\phi) \end{array}$$

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Randomizatio

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

$$\phi \in Aut (\mathcal{L}')$$

$$\downarrow \qquad P(\phi) := \phi^{\operatorname{order}(\phi)/p}, \ p \text{ is depend on } \phi$$

$$P(\phi)$$

$$\swarrow \qquad \vdots \qquad T_{p,k} \quad T_{i,j,k} \quad T_n$$

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Randomizatio

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

$$\begin{split} \phi &\in \operatorname{Aut} \left(\mathcal{L}' \right) \\ & \downarrow \qquad P(\phi) := \phi^{\operatorname{order}(\phi)/p}, \ p \text{ is depend on } \phi \end{split}$$
 $P(\phi)$ $\begin{array}{ccc} \swarrow & \uparrow & \ddots \\ T_{p,k} & T_{i,j,k} & T_n \end{array}$ (It disappears when n is odd)

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Randomizatio

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

Randomizatio

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

$$\begin{split} \phi &\in \textit{Aut} (\mathcal{L}') \\ \downarrow \quad P(\phi) &:= \phi^{\textit{order}(\phi)/p}, \ p \text{ is depend on } \phi \end{split}$$
 $P(\phi)$ $T_{p,k}$ $T_{i,i,k}$ ϕ_2 With probability> $\frac{1}{n^4}$ $\phi_1\phi_2$

Randomizatio

Reduction results for ZLIP

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$: illustration

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$

Utilizing the structure of S_n^{\pm} and some tricks, we can efficiently sample automorphisms from one conjugacy class:

Preprocessing and Randomization

Assume that *n* is odd and the lattice $\mathcal{L} \cong \mathbb{Z}^n$. Given a \mathbb{Z} LAP oracle \mathcal{O} for dimension *n*. Then there exists *i*, *j*, *k* such that we efficiently obtain poly(n) samples $\phi_1, \phi_2, \ldots, \phi_{poly(n)} \in Aut(\mathcal{L})$ that are independently and uniformly distributed over the conjugacy class { $\phi \in Aut(\mathcal{L}) | \phi \sim \mathbf{T}_{i,j,k}$ }.

From $\mathbb{Z}LIP$ to $\mathbb{Z}LAP$

Recovery

Given a basis **B** of a lattice $\mathcal{L} \cong \mathbb{Z}^n$, and a set of automorphisms $\phi_1, \phi_2, \ldots, \phi_{poly(n)} \in \operatorname{Aut}(\mathcal{L})$ that are drawn uniformly and independently from a conjugacy class \mathfrak{C}_{ϕ_0} , where $\phi_0 \sim \mathbf{T}_{k_1,k_2,l}$ and k_1, k_2, l are fixed. The goal is to find the shortest vectors of \mathcal{L} .

 $\bullet\,$ The method we used is inspired by [NR06], we consider the function:

$$g_k(\mathbf{x}) = \mathbb{E}[\langle \phi \mathbf{x}, \mathbf{x}
angle^k], \mathbf{x} \in \mathbb{R}^n, k \in \mathbb{Z}^+.$$

- \bullet So we can find good approximations shortest vectors of $\mathcal L.$
- Finally, we can efficiently recover the shortest vectors from its approximations by some tricks.

Thanks for your attention!

Q & A

K.Jiang et al. Exploiting the Symmetry of \mathbb{Z}^n