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The McEliece cryptosystem

° with fast encryption and decryption but huge public key

o is [McEliece 1978]

° is a at NIST Standardization Process
e based on

e originally built upon
° several on other families:
GRS codes

Quasi-cyclic Goppa codes

Reed-Muller codes

[ ]
[ ]

Quasi-dyadic Goppa codes

Algebraic Geometry codes Wild Goppa codes

e etc... e etc...
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The Goppa distinguishing problem

Goppa codes
e asymptotically meet

e have the as random codes

e have

Goppa distinguishing (GD) problem

Distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.

[Faugére, Gauthier-Umaiia, Otmani, Perret, Tillich 2011]

The GD hardness assumption is in the regime
° to Classic McEliece
° to signature [Courtois, Finiasz, Sendrier 2001]
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Overview of cryptanalysis on McEliece and our contributions

20(n) 20(n) s=n—k
old key message
attack attack
e n— Q(S2)
20(s) 20(s) polynomial polynomial
old key message distinguisher
attack attack [FGOPT11]
e n=0(s%), ae€c(l,2)
50(s) 20(s) 20(*~ % log(s)) (subexponential)
old key message
attack attack
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Alternant and Goppa codes: an alternative definition

e Goppa codes are of GRS codes over a ground field
e In this talk: Extension of a code ¥ C ]Fg over a Fgm
Cr.,, =(c|ceF)
Extension of the of an over a
Define the support x = (x1,...,x,) € Fgm and the multiplier y = (y1,...,yn) € Fgm,
such that x; # x; and y; # 0. Then d,(x,y)fqm is spanned by the

_ m—1 m—1 o m—1
A:(yaxya"'axr 1y7'”7yq 7(xy)q 7'”7(xr 1y)q )

~~

9(x,I e o (x,y) s.t.

def 1 ,
yi = ——, withl € Fgm[z], deg(l') =r
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Quadratic relationships

There exist in A

m—1

r—1

m—1 r— m—1
A= (y,xy,....x" Ty ...y (xy)d T, (xTLy)d)

Example

Xyxy—(xy)?=0

More in general, for a basis V,
E CijVi * Vi = 0
i<j
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Quadratic forms and the matrix code of relationships

Any ¢ = (cij)i<i<j<ks ZISI cijvixvj =0, defines a
Qelx1, -+, xk) = Z GG
i<j

The bilinear map given by the of the quadratic form Q. corresponds to a
M. = (mij ) such that, for all x,y € Ffn
def def . .
mj; = mj; = Cjj, 1<i<j<k,
xMcy™ = Qe(x+y) = Qe(x) — Qe(y) — Tt _
m11*2cll; 1<i<k

Let € be an [n, k] linear code over F and let V = (v1,..., vk) be a basis of &,

| Cc = (Cl,j)1<l <k S (grel( )} - Sym(ka)
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m—1

_ m—1 o m—1
A= (y,xy,...,x" Ly ..y C(xy)T L (xT 1y)‘7 ).

Example: x%y xy — (xy)*2 =0, ie ajxaz—ay=0

y xy x%
y /0 O 1
xy |0 -2 0 0
. 3, odd ch.
m,— Xyt ¢ 0 € Grat(A), rank(Mc) =
2, ch. 2
0 0

Low-rank matrices in G mat(.A) ‘
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Isometry of matrix codes

But we have access to the basis
B=(b1,...,bm).

Proposition
Let A and B be two different bases of the same [n, k] code ¥ C F”, with P € GL(TF)

. Then
Cgmat(fl) = PTcgmat(B)P.
e The is an invariant wrt d(X,Y) & rank(X — Y).
matrices in Gmat(B) too
e The is an invariant
k+1
dimp Gmat(V) = dimp €a(V) = < ; > — dimp €
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Let V be a basis of a [n, s] code. Does € mat(V) contain low-rank matrices?
Proposition

Let # be an [n, k] random code over Fg and V a basis of %FLqm' If , then
%mat (V) contains rank 3 (rank 2 in ch. 2) matrices with

’ Classic McEliece ‘ n ‘ m ‘ r ‘ R ‘

kem/mceliece348864 | 3488 | 12 | 64 | 0.77982

kem/mceliece460896 | 4608 | 13 | 96 | 0.72917 Potential
kem/mceliece6688128 | 6688 | 13 | 128 | 0.75120 for rates

kem/mceliece6960119 | 6960 | 13 | 119 | 0.77773
kem/mceliece8192128 | 8192 | 13 | 128 | 0.79688
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Characteristic 2: a special case

problem for rank d
Let My, -, Mk € Sym(N,F). Findan M € (My,---, Mg ) of rank < d.

rank(M) < d <= Minors(M,d + 1) = {0}

e In , Gmat(B) C Skew(rm,Fqm)

e The of a 2/ x 2/ skew-symmetric matrix is the
in its entries, called

0 a b

C
2 0 d

Pf(N)? = det(N), Pf _Z o ‘; — af — be + de.
—c —e —f O
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The Pfaffian ideal

Pfaffian ideal for rank 2
The of rank 2 for M in characteristic 2 is

f . .
PQ(M) d:e <m;’jmk7, + mj kmj |+ mjm;j ’ 1<i<y< k<l < rm>.

V(P2(M)) = V(Z(Minors(M, 3)))

M € Gmat(B), rank(M) <2 (characteristic 2)

Variables: m;;, 1 <i < j < rm, entries of M (rén) var.s
Equations:
o mjimy;+ mjmj;+ mjmj, =0 (T) quadratic eq.s
e [;=0,---,L; =0 expressing that M € G pat (r;n) — dim @mat linear eq.s
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The complexity of solving the system through the Hilbert Series

o HFK[Z]/Z(d) d:ef dimK K[Z]d — dimKId,

7T C K[z] homogeneous ideal

def

o HSk(z/7(2) = Y gs0 HFk[z)/z(d)2?

PH(M) E Py(M) + (Ly, ..., L)
—_——

e Alternant/Goppa code:
quadratic equations <
linear equations —
Fact:
Let P5 (M) <" P(M) + (Ly, ..., Ly). Then

Vd € N,

linear

} complexity analysis is
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e Random code:

easy to analyze knowing the

quadratic equations < non random
linear equations + random

behavior of quadratic equations
Theorem [Ghorpade, Krattenthaler 2004]
Let M = (m; ;)i ; be the generic s x s skew-symmetric matrix over F. Then

i ()" - ()(ED) =

HSE mlm/Pa(m) (2) = T

Heuristic: random case

Let Lq,..., Ly be the k linear relationships relative to the matrix code %,at associated
to a random [n, s]-code as above. Let P5 (M) def P(M) + (L1,...,Lg). Then

s—3 2
_os s—2 s—=3\[(s—1
o= [0-0E((5)-(2)(23) ] -
= +  13/15



Asymptotics for the degree of regularity

Conjecture:

Let P5(M) be the Pfaffian ideal associated with a random [n, k] code and s = n — k with
rate > 2/3. Let dy = min{d : }. Then

2

s . 1
dorvc? with ¢ ~ 2

Since HFg[,1/z(d) can be computed in time O (md(”+‘;_1)w) ,

Exponential Subexponential Polynomial
AL A

- ~~ ~

' :
1 2

neos® = C = 20(2 log(s))
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Conclusions...

e New approach based on quadratic forms and the rank invariant

e Modeling for characteristic 2 case in terms of a Pfaffian ideal

e Upper bound of the complexity of the distinguisher from the Hilbert series

— smoothly ranges between polynomial and exponential (subexponential)

e Efficient attack on some parameters distinguishable by [FGOPT11]:

’ code ‘ technique/paper ‘ r(>3) ‘ q ‘
(generic ) distinguishable alternant code | [this] + filtration from any any
[Bardet, M., Tillich 23]
distinguishable Goppa codes [this] <qg—1| any

...and open questions

e Deeper analysis of HF could lead to sharper complexity estimates

e Transform the new distinguisher into an attack for corresponding parameters
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Thank you for the attention

for more details, eprint.iacr.org/2023/950




