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The McEliece cryptosystem

• PKE with fast encryption and decryption but huge public key

• is 45 years old [McEliece 1978]

• Classic McEliece is a finalist at NIST PQ Standardization Process

• based on error correcting codes

• originally built upon Goppa codes
• broken several variants on other families:

• GRS codes

• Reed-Muller codes

• Algebraic Geometry codes

• etc. . .

• Quasi-cyclic Goppa codes

• Quasi-dyadic Goppa codes

• Wild Goppa codes

• etc...
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The Goppa distinguishing problem

Goppa codes
• asymptotically meet Gilbert-Varshamov bound

• have the same weight distribution as random codes

• have trivial permutation group

Goppa distinguishing (GD) problem
Distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.

[Faugère, Gauthier-Umaña, Otmani, Perret, Tillich 2011]
The GD hardness assumption is false in the high-rate regime

• does not apply to Classic McEliece

• applies to CFS signature [Courtois, Finiasz, Sendrier 2001]
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Overview of cryptanalysis on McEliece and our contributions

s
def
= n − k .

• n = Θ(s)

old key

attack

message

attack

2O(n) 2O(n)

• n = Ω(s2)

old key

attack

message

attack
new key

attack (q > r + 1)

distinguisher

[FGOPT11]

2O(s) 2O(s) polynomial polynomial

• n = Θ(sα), α ∈ (1, 2)

old key

attack

message

attack

new

distinguisher

2O(s) 2O(s) 2O(s2−α log(s)) (subexponential)
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Alternant and Goppa codes: an alternative definition

• Goppa codes are subfield subcodes of GRS codes over a ground field Fq

• In this talk: Extension of a code C ⊆ Fn
q over a field extension Fqm

CFqm
= ⟨c | c ∈ C ⟩Fqm

.

Extension of the dual of an alternant code over a field extension

Define the support x = (x1, . . . , xn) ∈ Fn
qm and the multiplier y = (y1, . . . , yn) ∈ Fn

qm ,

such that xi ̸= xj and yi ̸= 0. Then Ar (x , y)⊥Fqm
is spanned by the (secret) canonical

basis
A = (y , xy , . . . , x r−1y︸ ︷︷ ︸, . . . , yqm−1

, (xy)q
m−1

, . . . , (x r−1y)q
m−1︸ ︷︷ ︸)

Goppa code: G (x , Γ) def
= Ar (x , y) s.t.

yi
def
=

1
Γ(xi )

, with Γ ∈ Fqm [z ], deg(Γ) = r
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Quadratic relationships

There exist quadratic relationships in A

A = (y , xy , . . . , x r−1y , . . . , yqm−1
, (xy)qm−1

, . . . , (x r−1y)qm−1
)

Example

x2y ⋆ y − (xy)⋆2 = 0

More in general, for a basis V,

∑
i≤j

ci ,jv i ⋆ v j = 0
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Quadratic forms and the matrix code of relationships

Any c = (ci ,j)1≤i≤j≤k ,
∑

i≤j ci ,jv i ⋆ v j = 0, defines a quadratic form:

Qc(x1, · · · , xk) =
∑
i≤j

ci ,jxixj .

The bilinear map given by the polar form of the quadratic form Qc corresponds to a
matrix Mc = (mi ,j) such that, for all x , y ∈ Fk

qm ,

xMcy⊺ = Qc(x +y)−Qc(x)−Qc(y) →

mi ,j
def
= mj ,i

def
= ci ,j , 1 ≤ i < j ≤ k ,

mi ,i
def
= 2ci ,i , 1 ≤ i ≤ k .

Matrix code of relationships

Let C be an [n, k] linear code over F and let V = (v1, . . . , vk) be a basis of C ,

Cmat(V)
def
= {Mc = (mi ,j)1≤i≤k

1≤j≤k
| c = (ci ,j)1≤i≤j≤k ∈ Crel(V)} ⊆ Sym(k,F).
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A = (y , xy , . . . , x r−1y , . . . , yqm−1
, (xy)q

m−1
, . . . , (x r−1y)q

m−1
).

Example: x2y ⋆ y − (xy)⋆2 = 0, i.e. a1 ⋆ a3 − a⋆2
2 = 0

Mc =

y xy x2y . . .



y 0 0 1
xy 0 −2 0 0
x2y 1 0 0

... 0 0

∈ Cmat(A), rank(Mc) =

3, odd ch.

2, ch. 2

Low-rank matrices in Cmat(A)
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Isometry of matrix codes

But we have access to the public basis

B = (b1, . . . ,brm).

Proposition

Let A and B be two different bases of the same [n, k] code C ⊆ Fn, with P ∈ GLk(F)
transition matrix. Then

Cmat(A) = P⊺Cmat(B)P.

• The weight distribution is an invariant wrt rank-metric d(X ,Y )
def
= rank(X − Y ).

Low-rank matrices in Cmat(B) too

• The dimension is an invariant

dimF Cmat(V) = dimF Crel(V) =
(
k + 1

2

)
− dimF C ⋆2
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Random code

Let V be a basis of a random [n, s] code. Does Cmat(V) contain low-rank matrices?

Proposition

Let R be an [n, k] random code over Fq and V a basis of R⊥
Fqm

. If k
n > 2

3 , then
Cmat(V) contains rank 3 (rank 2 in ch. 2) matrices with negligible probability.

Classic McEliece n m r R

kem/mceliece348864 3488 12 64 0.77982
kem/mceliece460896 4608 13 96 0.72917
kem/mceliece6688128 6688 13 128 0.75120
kem/mceliece6960119 6960 13 119 0.77773
kem/mceliece8192128 8192 13 128 0.79688

Potential distinguisher
for Classic McEliece rates
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Characteristic 2: a special case

Symmetric MinRank problem for rank d

Let M1, · · · ,MK ∈ Sym(N,F). Find an M ∈ ⟨M1, · · · ,MK ⟩F of rank ≤ d .

rank(M) ≤ d ⇐⇒ Minors(M , d + 1) = {0}

• In characteristic 2, Cmat(B) ⊂ Skew(rm,Fqm)

• The determinant of a 2l × 2l skew-symmetric matrix is the square of a polynomial
in its entries, called Pfaffian:

Pf(N)2 = det(N), Pf




0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0


 = af − be + dc .
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The Pfaffian ideal

Pfaffian ideal for rank 2
The Pfaffian ideal of rank 2 for M in characteristic 2 is

P2(M)
def
= ⟨mi ,jmk,l +mi ,kmj ,l +mi ,lmj ,k | 1 ≤ i < j < k < l ≤ rm⟩.

V (P2(M)) = V (I(Minors(M , 3)))

Modeling: M ∈ Cmat(B), rank(M) ≤ 2 (characteristic 2)

Variables: mi ,j , 1 ≤ i < j ≤ rm, entries of M
(rm

2

)
var.s

Equations:

• mi ,jmk,l +mi ,kmj ,l +mi ,lmj ,k = 0
(rm

4

)
quadratic eq.s

• L1 = 0, · · · , Lt = 0 expressing that M ∈ Cmat
(rm

2

)
− dimCmat linear eq.s
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The complexity of solving the system through the Hilbert Series

I ⊆ K[z ] homogeneous ideal
• HFK[z]/I(d)

def
= dimKK[z ]d − dimK Id ,

• HSK[z]/I(z)
def
=
∑

d≥0 HFK[z]/I(d)z
d

P+
2 (M)

def
= P2(M)︸ ︷︷ ︸

quadratic

+ ⟨L1, . . . , Lt⟩︸ ︷︷ ︸
linear

• Alternant/Goppa code:

quadratic equations ← non random

linear equations ← non random

}
complexity analysis is difficult

Fact: alternant/Goppa case

Let P+
2 (M)

def
= P(M) + ⟨L1, . . . , Lk⟩. Then

∀d ∈ N, HFK[z]/P+
2 (M)(d) > 0.
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• Random code:

quadratic equations ← non random

linear equations ← random

}
easy to analyze knowing the
behavior of quadratic equations

Theorem [Ghorpade, Krattenthaler 2004]

Let M = (mi ,j)i ,j be the generic s × s skew-symmetric matrix over F. Then

HSFqm [m]/P2(M)(z) =

∑s−3
d=0

((s−2
d

)2 − (s−3
d−1

)(s−1
d+1

))
zd

(1− z)2s−3 .

Heuristic: random case
Let L1, . . . , Lk be the k linear relationships relative to the matrix code Cmat associated
to a random [n, s]-code as above. Let P+

2 (M)
def
= P(M) + ⟨L1, . . . , Lk⟩. Then

HSK[z]/P+
2 (M)(z) =

[
(1− z)k−2s+3

s−3∑
d=0

((
s − 2
d

)2

−
(
s − 3
d − 1

)(
s − 1
d + 1

))
zd

]
+

.
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Asymptotics for the degree of regularity

Conjecture: asymptotics random case

Let P+
2 (M) be the Pfaffian ideal associated with a random [n, k] code and s = n − k with

rate > 2/3. Let d0 = min{d : HFF[m]/P+
2 (M)(d) = 0}. Then

d0 ∼ c
s2

k
with c ≈ 1

4
.

Since HFK[z]/I(d) can be computed in time O
(
md
(
n+d−1

d

)ω)
,

1 2 α

Exponential Subexponential

n ∼ sα ⇒ C = 2O(s
2−α log(s))

Polynomial
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Conclusions...

• New approach based on quadratic forms and the rank invariant

• Modeling for characteristic 2 case in terms of a Pfaffian ideal

• Upper bound of the complexity of the distinguisher from the Hilbert series
→ smoothly ranges between polynomial and exponential (subexponential)

• Efficient attack on some parameters distinguishable by [FGOPT11]:

code technique/paper r(≥ 3) q

(generic ) distinguishable alternant code [this] + filtration from any any
[Bardet, M., Tillich 23]

distinguishable Goppa codes [this] < q − 1 any

...and open questions

• Deeper analysis of HF could lead to sharper complexity estimates

• Transform the new distinguisher into an attack for corresponding parameters
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Thank you for the attention
for more details, eprint.iacr.org/2023/950


