A new approach based on quadratic forms to attack the McEliece cryptosystem

Alain Couvreur, Rocco Mora and Jean-Pierre Tillich
Asiacrypt 2023 - December 7th, 2023

The McEliece cryptosystem

- PKE with fast encryption and decryption but huge public key
- is 45 years old [McEliece 1978]
- Classic McEliece is a finalist at NIST PQ Standardization Process
- based on error correcting codes
- originally built upon Goppa codes
- broken several variants on other families:
- GRS codes
- Reed-Muller codes
- Algebraic Geometry codes
- etc...
- Quasi-cyclic Goppa codes
- Quasi-dyadic Goppa codes
- Wild Goppa codes
- etc...

The Goppa distinguishing problem

Goppa codes

- asymptotically meet Gilbert-Varshamov bound
- have the same weight distribution as random codes
- have trivial permutation group

Goppa distinguishing (GD) problem

Distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.

> [Faugère, Gauthier-Umaña, Otmani, Perret, Tillich 2011]
> The GD hardness assumption is false in the high-rate regime

- does not apply to Classic McEliece
- applies to CFS signature [Courtois, Finiasz, Sendrier 2001]

Overview of cryptanalysis on McEliece and our contributions

- $n=\Theta(s)$

$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(n)}$
old key	message
attack	attack

$$
s \stackrel{\text { def }}{=} n-k
$$

- $n=\Omega\left(s^{2}\right)$

$2^{\mathcal{O}(s)}$	$2^{\mathcal{O}(s)}$	polynomial	polynomial
old key	message	new key	distinguisher
attack	attack	attack $(q>r+1)$	[FGOPT11]

- $n=\Theta\left(s^{\alpha}\right), \quad \alpha \in(1,2)$

$2^{\mathcal{O}(s)}$	$2^{\mathcal{O}(s)}$	$2^{\mathcal{O}\left(s^{2-\alpha} \log (s)\right)}($ subexponential $)$
old key	message	new
attack	attack	distinguisher

Alternant and Goppa codes: an alternative definition

- Goppa codes are subfield subcodes of GRS codes over a ground field \mathbb{F}_{q}
- In this talk: Extension of a code $\mathscr{C} \subseteq \mathbb{F}_{q}^{n}$ over a field extension $\mathbb{F}_{q^{m}}$

$$
\mathscr{C}_{\mathbb{F}_{q^{m}}}=\langle\boldsymbol{c} \mid \boldsymbol{c} \in \mathscr{C}\rangle_{\mathbb{F}_{q^{m}}} .
$$

Extension of the dual of an alternant code over a field extension

Define the support $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$ and the multiplier $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$, such that $x_{i} \neq x_{j}$ and $y_{i} \neq 0$. Then $\mathscr{A}_{r}(\boldsymbol{x}, \boldsymbol{y})_{\mathbb{F}_{q^{m}}}^{\perp}$ is spanned by the (secret) canonical basis

$$
\mathcal{A}=(\underbrace{\boldsymbol{y}, x \boldsymbol{y}, \ldots, \boldsymbol{x}^{r-1} \boldsymbol{y}}, \ldots, \underbrace{\boldsymbol{y}^{q^{m-1}},(x \boldsymbol{y})^{q^{m-1}}, \ldots,\left(\boldsymbol{x}^{r-1} \boldsymbol{y}\right)^{q^{m-1}}})
$$

Goppa code: $\mathscr{G}(\boldsymbol{x}, \Gamma) \stackrel{\text { def }}{=} \mathscr{A}_{r}(\boldsymbol{x}, \boldsymbol{y})$ s.t.

$$
y_{i} \stackrel{\text { def }}{=} \frac{1}{\Gamma\left(x_{i}\right)}, \quad \text { with } \Gamma \in \mathbb{F}_{q^{m}}[z], \operatorname{deg}(\Gamma)=r
$$

Quadratic relationships

There exist quadratic relationships in \mathcal{A}

$$
\mathcal{A}=\left(\boldsymbol{y}, x y, \ldots, x^{r-1} y, \ldots, \boldsymbol{y}^{q^{m-1}},(x y)^{q^{m-1}}, \ldots,\left(x^{r-1} y\right)^{q^{m-1}}\right)
$$

Example

$$
x^{2} y \star y-(x y)^{\star 2}=0
$$

More in general, for a basis \mathcal{V},

$$
\sum_{i \leq j} c_{i, j} \boldsymbol{v}_{i} \star \boldsymbol{v}_{j}=0
$$

Quadratic forms and the matrix code of relationships

Any $\boldsymbol{c}=\left(c_{i, j}\right)_{1 \leq i \leq j \leq k}, \quad \sum_{i \leq j} c_{i, j} \boldsymbol{v}_{i} \star \boldsymbol{v}_{j}=0$, defines a quadratic form:

$$
Q_{\boldsymbol{c}}\left(x_{1}, \cdots, x_{k}\right)=\sum_{i \leq j} c_{i, j} x_{i} x_{j}
$$

The bilinear map given by the polar form of the quadratic form $Q_{\boldsymbol{c}}$ corresponds to a matrix $\boldsymbol{M}_{\boldsymbol{c}}=\left(m_{i, j}\right)$ such that, for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{\boldsymbol{q}^{m}}^{k}$,

$$
\boldsymbol{x} \boldsymbol{M}_{\boldsymbol{c}} \boldsymbol{y}^{\top}=Q_{\boldsymbol{c}}(\boldsymbol{x}+\boldsymbol{y})-Q_{\boldsymbol{c}}(\boldsymbol{x})-Q_{\boldsymbol{c}}(\boldsymbol{y}) \quad \rightarrow \quad \begin{cases}m_{i, j} \stackrel{\text { def }}{=} m_{j, i} \stackrel{\text { def }}{=} c_{i, j}, & 1 \leq i<j \leq k \\ m_{i, i} \stackrel{\text { def }}{=} 2 c_{i, i}, & 1 \leq i \leq k\end{cases}
$$

Matrix code of relationships

Let \mathscr{C} be an $[n, k]$ linear code over \mathbb{F} and let $\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$ be a basis of \mathscr{C},

$$
\mathscr{C}_{\text {mat }}(\mathcal{V}) \stackrel{\text { def }}{=}\left\{\boldsymbol{M}_{\boldsymbol{c}}=\left(m_{i, j}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq k}} \mid \boldsymbol{c}=\left(c_{i, j}\right)_{1 \leq i \leq j \leq k} \in \mathscr{C}_{\text {rel }}(\mathcal{V})\right\} \subseteq \operatorname{Sym}(k, \mathbb{F})
$$

$$
\mathcal{A}=\left(\boldsymbol{y}, \boldsymbol{x} \boldsymbol{y}, \ldots, \boldsymbol{x}^{r-1} \boldsymbol{y}, \ldots, \boldsymbol{y}^{q^{m-1}},(x \boldsymbol{y})^{q^{m-1}}, \ldots,\left(\boldsymbol{x}^{r-1} \boldsymbol{y}\right)^{q^{m-1}}\right)
$$

Example: $x^{2} y \star y-(x y)^{\star 2}=0$, i.e. $\quad a_{1} \star a_{3}-a_{2}^{\star 2}=0$

$$
\left.M_{\boldsymbol{c}}=\begin{array}{c}
y \\
x y \\
x^{2} y \\
\vdots \\
\\
\\
0
\end{array} \begin{array}{cccc}
y & x y & x^{2} y & \cdots \\
0 & 0 & 1 & \\
1 & 0 & 0 & 0
\end{array}\right) \in \mathscr{C}_{\text {mat }}(\mathcal{A}), \quad \operatorname{rank}\left(\boldsymbol{M}_{\boldsymbol{c}}\right)= \begin{cases}3, & \text { odd ch. } \\
2, & \text { ch. } 2\end{cases}
$$

Isometry of matrix codes

But we have access to the public basis

$$
\mathcal{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{r m}\right) .
$$

Proposition

Let \mathcal{A} and \mathcal{B} be two different bases of the same $[n, k]$ code $\mathscr{C} \subseteq \mathbb{F}^{n}$, with $\boldsymbol{P} \in G L_{k}(\mathbb{F})$ transition matrix. Then

$$
\mathscr{C}_{\text {mat }}(\mathcal{A})=\boldsymbol{P}^{\top} \mathscr{C}_{\text {mat }}(\mathcal{B}) \boldsymbol{P}
$$

- The weight distribution is an invariant wrt rank-metric $d(\boldsymbol{X}, \boldsymbol{Y}) \stackrel{\text { def }}{=} \operatorname{rank}(\boldsymbol{X}-\boldsymbol{Y})$.

$$
\text { Low-rank matrices in } \mathscr{C}_{\text {mat }}(\mathcal{B}) \text { too }
$$

- The dimension is an invariant

$$
\operatorname{dim}_{\mathbb{F}} \mathscr{C}_{\text {mat }}(\mathcal{V})=\operatorname{dim}_{\mathbb{F}} \mathscr{C}_{\text {rel }}(\mathcal{V})=\binom{k+1}{2}-\operatorname{dim}_{\mathbb{F}} \mathscr{C}^{\star 2}
$$

Random code

Let \mathcal{V} be a basis of a random $[n, s]$ code. Does $\mathscr{C}_{\text {mat }}(\mathcal{V})$ contain low-rank matrices?

Proposition

Let \mathscr{R} be an $[n, k]$ random code over \mathbb{F}_{q} and \mathcal{V} a basis of $\mathscr{R}_{\mathbb{F}_{q^{m}}}^{\perp}$. If $\frac{k}{n}>\frac{2}{3}$, then $\mathscr{C}_{\text {mat }}(\mathcal{V})$ contains rank 3 (rank 2 in ch. 2) matrices with negligible probability.

Classic McEliece	n	m	r	R
kem/mceliece348864	3488	12	64	0.77982
kem/mceliece460896	4608	13	96	0.72917
kem/mceliece6688128	6688	13	128	0.75120
kem/mceliece6960119	6960	13	119	0.77773
kem/mceliece8192128	8192	13	128	0.79688

>	Potential distinguisher
for Classic McEliece rates	

Characteristic 2: a special case

Symmetric MinRank problem for rank d
Let $\boldsymbol{M}_{1}, \cdots, \boldsymbol{M}_{K} \in \operatorname{Sym}(\boldsymbol{N}, \mathbb{F})$. Find an $\boldsymbol{M} \in\left\langle\boldsymbol{M}_{1}, \cdots, \boldsymbol{M}_{K}\right\rangle_{\mathbb{F}}$ of rank $\leq \boldsymbol{d}$.

$$
\operatorname{rank}(\boldsymbol{M}) \leq d \Longleftrightarrow \operatorname{Minors}(\boldsymbol{M}, d+1)=\{0\}
$$

- In characteristic $2, \mathscr{C}_{\text {mat }}(\mathcal{B}) \subset \operatorname{Skew}\left(r m, \mathbb{F}_{q^{m}}\right)$
- The determinant of a $2 I \times 2 /$ skew-symmetric matrix is the square of a polynomial in its entries, called Pfaffian:

$$
\operatorname{Pf}(\boldsymbol{N})^{2}=\operatorname{det}(\boldsymbol{N}), \quad \operatorname{Pf}\left(\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]\right)=a f-b e+d c
$$

The Pfaffian ideal

Pfaffian ideal for rank 2

The Pfaffian ideal of rank 2 for \boldsymbol{M} in characteristic 2 is

$$
\mathcal{P}_{2}(\boldsymbol{M}) \stackrel{\text { def }}{=}\left\langle m_{i, j} m_{k, l}+m_{i, k} m_{j, l}+m_{i, l} m_{j, k} \mid 1 \leq i<j<k<l \leq r m\right\rangle .
$$

$$
\boldsymbol{V}\left(\mathcal{P}_{2}(\boldsymbol{M})\right)=\boldsymbol{V}(\mathcal{I}(\operatorname{Minors}(\boldsymbol{M}, 3)))
$$

Modeling: $\quad \boldsymbol{M} \in \mathscr{C}_{\text {mat }}(\mathcal{B}), \operatorname{rank}(\boldsymbol{M}) \leq 2 \quad$ (characteristic 2)

Variables: $m_{i, j}, 1 \leq i<j \leq r m$, entries of \boldsymbol{M}
Equations:

- $m_{i, j} m_{k, l}+m_{i, k} m_{j, l}+m_{i, l} m_{j, k}=0$
- $L_{1}=0, \cdots, L_{t}=0$ expressing that $\boldsymbol{M} \in \mathscr{C}_{\text {mat }}$
$\binom{r m}{4}$ quadratic eq.s
$\binom{r m}{2}-\operatorname{dim} \mathscr{C}_{\text {mat }}$ linear eq.s
$\mathcal{I} \subseteq \mathbb{K}[z]$ homogeneous ideal
- $H F_{\mathbb{K}[z] / \mathcal{I}}(d) \stackrel{\text { def }}{=} \operatorname{dim}_{\mathbb{K}} \mathbb{K}[z]_{d}-\operatorname{dim}_{\mathbb{K}} \mathcal{I}_{d}$,
- $H S_{\mathbb{K}[z] / \mathcal{I}}(z) \stackrel{\text { def }}{=} \sum_{d \geq 0} H F_{\mathbb{K}[z] / \mathcal{I}}(d) z^{d}$

$$
\mathcal{P}_{2}^{+}(\boldsymbol{M}) \stackrel{\text { def }}{=} \underbrace{\mathcal{P}_{2}(\boldsymbol{M})}_{\text {quadratic }}+\underbrace{\left\langle L_{1}, \ldots, L_{t}\right\rangle}_{\text {linear }}
$$

- Alternant/Goppa code:
$\left.\begin{array}{ll}\text { quadratic equations } & \leftarrow \text { non random } \\ \text { linear equations } & \leftarrow \text { non random }\end{array}\right\}$ complexity analysis is difficult

Fact: alternant/Goppa case

Let $\mathcal{P}_{2}^{+}(\boldsymbol{M}) \stackrel{\text { def }}{=} \mathcal{P}(\boldsymbol{M})+\left\langle L_{1}, \ldots, L_{k}\right\rangle$. Then

$$
\forall d \in \mathbb{N}, \quad H F_{\mathbb{K}[z] / \mathcal{P}_{2}^{+}(M)}(d)>0
$$

- Random code:

quadratic equations \leftarrow non random
 linear equations \leftarrow random
 easy to analyze knowing the behavior of quadratic equations

Theorem [Ghorpade, Krattenthaler 2004]

Let $\boldsymbol{M}=\left(m_{i, j}\right)_{i, j}$ be the generic $s \times s$ skew-symmetric matrix over \mathbb{F}. Then

$$
H S_{\mathbb{F}_{q^{m}}[\boldsymbol{m}] / \mathcal{P}_{2}(M)}(z)=\frac{\sum_{d=0}^{s-3}\left(\binom{s-2}{d}^{2}-\binom{s-3}{d-1}\binom{s-1}{d+1}\right) z^{d}}{(1-z)^{2 s-3}}
$$

Heuristic: random case

Let L_{1}, \ldots, L_{k} be the k linear relationships relative to the matrix code $\mathscr{C}_{\text {mat }}$ associated to a random $[n, s]$-code as above. Let $\mathcal{P}_{2}^{+}(\boldsymbol{M}) \stackrel{\text { def }}{=} \mathcal{P}(\boldsymbol{M})+\left\langle L_{1}, \ldots, L_{k}\right\rangle$. Then

$$
H S_{\mathbb{K}[z] / \mathcal{P}_{2}^{+}(M)}(z)=\left[(1-z)^{k-2 s+3} \sum_{d=0}^{s-3}\left(\binom{s-2}{d}^{2}-\binom{s-3}{d-1}\binom{s-1}{d+1}\right) z^{d}\right]_{+} .
$$

Asymptotics for the degree of regularity

Conjecture: asymptotics random case

Let $\mathcal{P}_{2}^{+}(\boldsymbol{M})$ be the Pfaffian ideal associated with a random $[n, k]$ code and $s=n-k$ with rate $>2 / 3$. Let $d_{0}=\min \left\{d: H F_{\mathbb{F}[m] / \mathcal{P}_{2}^{+}(M)}(d)=0\right\}$. Then

$$
d_{0} \sim c \frac{s^{2}}{k} \quad \text { with } c \approx \frac{1}{4} .
$$

Since $H F_{\mathbb{K}[z] / \mathcal{I}}(d)$ can be computed in time $\mathcal{O}\left(m d\binom{n+d-1}{d}^{\omega}\right)$,

Conclusions...

- New approach based on quadratic forms and the rank invariant
- Modeling for characteristic 2 case in terms of a Pfaffian ideal
- Upper bound of the complexity of the distinguisher from the Hilbert series
\rightarrow smoothly ranges between polynomial and exponential (subexponential)
- Efficient attack on some parameters distinguishable by [FGOPT11]:

code	technique/paper	$r(\geq 3)$	q
(generic) distinguishable alternant code	[this] + filtration from [Bardet, M., Tillich 23]	any	any
distinguishable Goppa codes	[this]	$<q-1$	any

...and open questions

- Deeper analysis of HF could lead to sharper complexity estimates
- Transform the new distinguisher into an attack for corresponding parameters

Thank you for the attention

for more details, eprint.iacr.org/2023/950

