Oblivious Transfer from Zero-Knowledge Proofs

or How to Achieve Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs on Quantum States

Léo Colisson, Garazi Muguruza, Florian Speelman

UNIVERSITY OF Amsterdam
(1)uSoft

ASIACRYPT 2023

[

E
E

OT: state of the art

Oblivious Transfer (OT) : studied a lot ([Rab81], [EGL85], [PVW08], [BD18], [GLSV22], [BCKM21]...)

State of the art

Classical

Quantum

No structure is necessary
(= hash function)

7 messages ([CK88]/[BBCS92]...)
$\rightarrow 3$ messages ([Авкк23])
With pre-shared EPR pairs:
[BKS23]: 1-message random receiver bit string OT \& 2-message OT
[Agarwal, Bartusek, Khurana, Kumar 23] raises the question:
? Is there an OT protocol in 2-messages (optimal) without structure?

Our contributions

Yes !

Theorem 1 (informal)

There exists a 2-message (optimal) quantum OT protocol secure in the Random Oracle Model (i.e. no structure) assuming the existence of a hiding collision-resistant hash function.

Our approach

No structure is necessary
(= hash function)
2 messages

Methods

Remove cut-and-choose: classical Zero-Knowledge proofs + quantum protocol
$=$ prove a statement on a quantum state nondestructively.

Our contributions

We can prove that a received quantum state belongs to a fixed set of quantum state:

Theorem 2 (informal)

For any arbitrary predicate \mathcal{P}, there exists a protocol such that:

- The prover chooses a secret subset S of qubits such that $\mathcal{P}(S)=\top$
- At the end of the protocol, the verifier ends up with a quantum state such that qubits in S are collapsed (measured in computational basis), even if the prover is malicious
- S stays unknown to the verifier
(\mathcal{P} allows us to get string-OT, k-out-of-n OT...)

Complexity theory:

\Rightarrow generalize ZK proofs to quantum languages (ZKstatesQMA)
(we do not characterize ZKstatesQMA/ZKstatesQIP completely, but we define them and show they are not trivial)
f

E

f

ZK plain-model [HSS11]

Our Work

Ki

Theorem 3 (ZK \Rightarrow quantum OT, informal)

Assuming the existence of a collision-resistant hidding function, there exists a protocol turning any n-message, post-quantum Zero-Knowledge (ZK) proof of knowledge into an ($n+1$)-message quantum OT protocol assuming a Common Random String model or $n+2$ without further setup assumptions.

The security properties (statistical security, etc.) and assumptions (setup, computational assumptions, etc.) of the ZK protocol are mostly preserved.

Article	Classical	Setup	Messages	MiniQCrypt	Composable	Statistical
This work + [Unr15]	No	RO	2	Yes	Yes	No
This work + [HSS11]	No	Plain M.	>2	No (LWE)	Yes	No
This work + S-NIZK	No	Like ZK	2	Like ZK	Yes	Sender
This work + NIZK proof	No	Like ZK	2	Like ZK	Yes	Receiver
This work + ZK	No	Like ZK	ZK + 1 or 2	Like ZK	Yes	Like ZK

Qubits

Qubits

Qubits

Qubits

Qubits

Superposition

$$
a_{x}|x\rangle+a_{x^{\prime}}\left|x^{\prime}\right\rangle
$$

Qubits

Superposition

$$
a_{x}|x\rangle+a_{x^{\prime}}\left|x^{\prime}\right\rangle
$$

Qubits
 Superposition

$$
a_{x}|x\rangle+a_{x^{\prime}}\left|x^{\prime}\right\rangle
$$

Qubits

Superposition

$$
a_{x}|x\rangle+a_{x^{\prime}}\left|x^{\prime}\right\rangle
$$

$$
|x\rangle
$$

Qubits

Superposition

$$
a_{x}|x\rangle+a_{x^{\prime}}\left|x^{\prime}\right\rangle
$$

$$
\left|x^{\prime}\right\rangle
$$

[

This is not secure!

Problem of naive construction
Problem: Alice can cheat by sending two $|+\rangle$ states instead of one $|0 / 1\rangle$ and one $| \pm\rangle$.

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Generalizable in a non-interactive way to NP problems.

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

\Rightarrow Known to be possible using LWE (Colisson, Grosshans, Kashefi (2022)) Problem: need structure + not suitable for statistical security.

What about a weaker statement?

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

\Rightarrow Known to be possible using LWE (Colisson, Grosshans, Kashefi (2022)) Problem: need structure + not suitable for statistical security.

What about a weaker statement?

Alice $(b \in\{0,1\})$

```
\(\forall d \in\{0,1\}, w_{d}^{(b)} \stackrel{\oiint}{\uplus}\{0\} \times\{0,1\}^{n}\)
\(l \stackrel{\$}{\leftarrow}\{0,1\}\)
\(w_{l}^{(1-b)} \stackrel{\&}{\leftarrow}\{0\} \times\{0,1\}^{n}\)
\(\left.w_{1-l}^{(1-b)} \stackrel{\$}{\leftarrow} 1\right\} \times\{0,1\}^{n}\)
\(\forall(c, d) \in\{0,1\}^{2}, h_{d}^{(c)}:=h\left(d \| w_{d}^{(c)}\right)\)
\(\pi:=\) (NI)ZK proof that:
    \(\left.\exists\left(w_{d}^{(c)}\right)_{c, d}, \forall c, d, h_{d}^{(c)}=h\left(d \| w_{d}^{(c)}\right)\right)\)
    and \(\exists c, d\) s.t. \(w_{d}^{(c)}[1]=1\).
\(r^{(b)} \stackrel{\oiint}{\leftrightarrows}\{0,1\}\)
\(\left|\psi^{(b)}\right\rangle:=|0\rangle\left|w_{0}^{(b)}\right\rangle+(-1)^{r^{(b)}}|1\rangle\left|w_{1}^{(b)}\right\rangle\)
\(\left|\psi^{(1-b)}\right\rangle:=|l\rangle\left|w_{l}^{(1-b)}\right\rangle\)
```

If the ZK proof is interactive, then we actually run the ZK protocol (before sending the quantum state) instead of sending the proof (of course this adds additional rounds of communication).

Check (or run if interactive proof) π. $\forall c$, apply on $\left|\psi^{(c)}\right\rangle|0\rangle$ the unitary:
$x, w \mapsto w[1] \neq 1 \wedge \exists d, h(x \| w)=h_{d}^{(c)}$, measure the last (output) register and check that the outcome is 1.

$$
\begin{aligned}
& \text { At that step, }\left|\psi^{(b)}\right\rangle=|0\rangle \pm|1\rangle \\
& \text { and }\left|\psi^{(1-b)}\right\rangle=|l\rangle \text {, but Bob } \\
& \text { does not know } b \text { (NIZKoQS). }
\end{aligned}
$$

End of NIZKoQS
$\forall c$, apply $Z^{m_{c}}$ on $\left|\psi^{(c)}\right\rangle$ and measure it

$$
\forall c, s^{(c)}, Z^{(c)}
$$

in the Hadamard basis (with outcome $Z^{(c)}$).

Compute $\alpha:=r^{(b)} \oplus \bigoplus_{i} s^{(b)}[i]\left(w_{0}^{(b)} \oplus w_{1}^{(b)}\right)[i]$
return $\alpha \oplus \boldsymbol{Z}^{(b)} \quad /$ Should be m_{b}

Security Proof

Composable security (informal)

The protocol quantum-standalone realizes the OT functionality, assuming that:

- h is collision resistant (security against malicious Alice),
- h is hiding ${ }^{1}$ (i.e. no information leaks on x given $h(x \| r)$, security against malicious Bob).
- There exists a ZK proof of knowledge

Moreover, it is secure against statistically unbounded parties if the ZK protocol is secure in that setting and if the corresponding assumptions statistically hold (e.g. injective h for unbounded Alice, lossy h for unbounded Bob).
${ }^{1}$ Note that we can get an even weaker assumption (h is one-way) by using hardcore bits and the Goldreich-Levin construction, but we leave the formalization of this proof for future work.

Quantum language and ZK on quantum state

Quantum language and ZKoQS

Quantum language = generalization of classical languages.
Properties of ZK on Quantum States (informal):

- Soundness: $\mathcal{L}_{\mathcal{Q}}=$ subset of quantum states (bipartite for the adversary).
- Classically $x \in \mathcal{L}$ if V accepts

Remaining classical description:

- Quantumly $\rho \in \mathcal{L}_{\mathcal{Q}}$ if V accepts
- Correctness:
- Classically: $x \in \mathcal{L}_{w} \subset \mathcal{L}, w \in\{0,1\}^{*}$ is the witness
- Quantumly: $\rho \in \mathcal{L}_{\omega, \omega_{s}} \subseteq \mathcal{L}_{\omega} \subseteq \mathcal{L}_{\mathcal{Q}}, \omega \in\{0,1\}^{*}$ is the witness or class, and $\omega_{s} \in\{0,1\}^{*}$ is the subclass
- Zero-Knowledge:
- Classically: Bob can't learn info on w
- Quantumly: Bob can't learn info on ω

Take-home message

2सWSSIGEOTUIWHOUSTRUGTURE

(and Zero-Knowledge proofs on quantum states)

Open questions and ongoing works

- Characterize ZKstatesQMA

What are the other ZKoQS properties that can(not) be verified? Under which assumption?

- Role of entanglement

Prove (im)possibility of similar ZKoQS with only single-qubit operations? (entanglement seems important)

- Other applications?

Quantum money, reducing communication complexity in other protocol...

- ...

Thank you!

Supplementary materials

Comparison with existing works

| Article | Classical | Setup | Messages | MiniQCrypt | Composable | Statistical |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [PVW08] | Yes | CRS | 2 | No (LWE) | Yes | Either |
| [BD18] | Yes | Plain M. | 2 | No (LWE) | Sender | Receiver |
| [CK88] + later works | No | Depends | 7 | Yes | Yes [DFL+09],[Unr10] | Either |
| [GLSV21] | No | Plain M./ | poly/
 Cte ≥ 7 | Yes | Yes | No |
| [BCKM21] | No | Plain M./ | poly/
 cte ≥ 7 | Yes | Yes | Sender |
| [ABKK23] | No | RO | 3 | Yes | Yes | No |
| This work + [Unr15] | No | RO | 2 | Yes | Yes | No |
| This work + [HSS11] | No | Plain M. | >2 | No (LWE) | Yes | No |
| This work + S-NIZK | No | Like ZK | 2 | Like ZK | Yes | Sender |
| This work + NIZK proof | No | Like ZK | 2 | Like ZK | Yes | Receiver |
| This work + ZK | No | Like ZK | ZK +1 or 2^{1} | Like ZK | Yes | Like ZK |

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Classical Zero-Knowledge

Generalizable in a non-interactive way to NP problems.

