Oblivious Transfer from Zero-Knowledge Proofs

or How to Achieve Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge
Proofs on Quantum States

Léo Colisson, Garazi Muguruza, Florian Speelman

ASIACRYPT 2023

OT: state of the art

Oblivious Transfer (OT): studied a lot ([Rab81], [EGL85], [PVW08], [BD18], [GLSV22], [BCKM21]...)

[Agarwal, Bartusek, Khurana, Kumar 23] raises the question:

? Is there an OT protocol in 2-messages (optimal) without structure?

Our contributions

Yes!

Theorem 1 (informal)

There exists a 2-message (optimal) quantum OT protocol secure in the Random Oracle Model (i.e. no structure) assuming the existence of a hiding collision-resistant hash function.

Our approach

No structure is necessary

2 messages

Methods

Remove cut-and-choose: classical Zero-Knowledge proofs + quantum protocol

= prove a statement on a quantum state nondestructively.

Our contributions

We can prove that a received quantum state belongs to a fixed set of quantum state:

Theorem 2 (informal)

For any arbitrary predicate P, there exists a protocol such that:

- ullet The prover chooses a secret subset S of qubits such that $\mathcal{P}(S) = op$
- At the end of the protocol, the verifier ends up with a quantum state such that qubits in S are collapsed (measured in computational basis), even if the prover is malicious
- S stays unknown to the verifier

(\mathcal{P} allows us to get string-OT, k-out-of-n OT...)

Complexity theory:

⇒ generalize ZK proofs to quantum languages (ZKstatesQMA)

(we do not characterize ZK states QMA/ZK states QIP completely, but we define them and show they are not trivial) and the properties of the properties of

New contributions

Theorem 3 (ZK \Rightarrow quantum OT, informal)

Assuming the existence of a collision-resistant hidding function, there exists a protocol turning any n-message, post-quantum Zero-Knowledge (ZK) proof of knowledge into an (n+1)-message quantum OT protocol assuming a Common Random String model or n+2 without further setup assumptions.

The security properties (statistical security, etc.) and assumptions (setup, computational assumptions, etc.) of the ZK protocol are mostly preserved.

Article	Classical	Setup	Messages	MiniQCrypt	Composable	Statistical
This work + [Unr15]	No	RO	2	Yes	Yes	No
This work + [HSS11]	No	Plain M.	> 2	No (LWE)	Yes	No
This work + S-NIZK	No	Like ZK	2	Like ZK	Yes	Sender
This work + NIZK proof	No	Like ZK	2	Like ZK	Yes	Receiver
This work + ZK	No	Like ZK	ZK + 1 or 2	Like ZK	Yes	Like ZK

Superposition

$$a_x |x\rangle + a_{x'} |x'\rangle$$

Superposition

 $|a_x|x\rangle + a_{x'}|x'\rangle$

Superposition

$$a_x |x\rangle + a_{x'} |x'\rangle$$

Qubits

Superposition

 $|a_x|x\rangle + a_{x'}|x'\rangle$

Qubits

 $|x\rangle$

 $|x'\rangle$

Superposition

d

 $a_x |x\rangle + a_{x'} |x'\rangle$

Construction

This is not secure!

Problem of naive construction

Problem: Alice can cheat by sending two $|+\rangle$ states instead of one $|0/1\rangle$ and one $|\pm\rangle$.

Generalizable in a non-interactive way to NP problems.

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

?

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

⇒ Known to be possible using LWE (Colisson, Grosshans, Kashefi (2022)) **Problem:** need structure + not suitable for statistical security.

What about a weaker statement?

?

How can Alice prove that one qubit is in the computational basis and the other is in the Hadamard basis?

⇒ Known to be possible using LWE (Colisson, Grosshans, Kashefi (2022)) **Problem:** need structure + not suitable for statistical security.

What about a weaker statement?


```
Alice(b \in \{0, 1\})
                                                                                                            Bob((m_0, m_1) \in \{0, 1\}^2)
\forall d \in \{0,1\}, w_d^{(b)} \stackrel{\$}{\leftarrow} \{0\} \times \{0,1\}^n
1 & {0.1}
                                                           If the ZK proof is interactive.
w_{i}^{(1-b)} \notin \{0\} \times \{0,1\}^{n}
                                                           then we actually run the ZK
w_{1}^{(1-b)} \stackrel{\$}{\leftarrow} \{1\} \times \{0,1\}^n
                                                           protocol (before sending the
                                                           quantum state) instead of
\forall (c,d) \in \{0,1\}^2, h_d^{(c)} := h(d||w_d^{(c)}|)
                                                           sending the proof (of course
\pi := (NI)ZK proof that:
                                                           this adds additional rounds
   \exists (w_d^{(c)})_{c,d}, \forall c, d, h_d^{(c)} = h(d||w_d^{(c)}|)
                                                           of communication).
       and \exists c. d \text{ s.t. } \mathbf{w}_{\cdot}^{(c)}[1] = 1.
r^{(b)} 
eqrev{\$} {0, 1}
|\psi^{(b)}\rangle := |0\rangle |w_0^{(b)}\rangle + (-1)^{r^{(b)}} |1\rangle |w_1^{(b)}\rangle
                                                                 \forall (c,d): h_d^{(c)}, \pi, |\psi^{(0)}\rangle, |\psi^{(1)}\rangle
|\psi^{(1-b)}\rangle := |I\rangle |\psi^{(1-b)}\rangle
                                                                                                            Check (or run if interactive proof) \pi.
                                                                                                            \forall c, apply on |\psi^{(c)}\rangle |0\rangle the unitary:
                                                                                                                x, w \mapsto w[1] \neq 1 \land \exists d, h(x||w) = h_d^{(c)}
                                                                                                                measure the last (output) register
                                                                                                                and check that the outcome is 1.
                                                 At that step, |\psi^{(b)}\rangle = |0\rangle \pm |1\rangle
                                                 and |\psi^{(1-b)}\rangle = |I\rangle, but Bob
                                                                                                            \forall c, measure the second register of |\psi^{(c)}\rangle
                                                  does not know b (NIZKoOS).
                                                                                                               in the Hadamard basis (with outcome s^{(c)}).
                                                                            End of NIZKoOS
                                                                                                            \forall c, apply Z^{m_c} on |\psi^{(c)}\rangle and measure it
                                                                                                                in the Hadamard basis (with outcome z^{(c)}).
                                                                              \forall c, s^{(c)}. z^{(c)}
Compute \alpha \coloneqq r^{(b)} \oplus \bigoplus s^{(b)}[i](w_0^{(b)} \oplus w_1^{(b)})[i]
return \alpha \oplus Z^{(b)} / Should be m_b
                                                                        OT from ZK | 8
```

Security Proof

Security

Composable security (informal)

The protocol quantum-standalone realizes the OT functionality, assuming that:

- h is collision resistant (security against malicious Alice),
- h is $hiding^1$ (i.e. no information leaks on x given h(x||r), security against malicious Bob).
- There exists a ZK proof of knowledge

Moreover, it is secure against **statistically unbounded parties** if the ZK protocol is secure in that setting and if the corresponding assumptions statistically hold (e.g. injective h for unbounded Alice, lossy h for unbounded Bob).

¹ Note that we can get an even weaker assumption (*h* is one-way) by using hardcore bits and the Goldreich-Levin construction, but we leave the formalization of this proof for future work.

Quantum language and ZK on quantum state

Quantum language and ZKoQS

Quantum language = generalization of classical languages.

Properties of ZK on Quantum States (informal):

- Soundness: $\mathcal{L}_{\mathcal{Q}} =$ subset of quantum states (bipartite for the adversary).
 - Classically $x \in \mathcal{L}$ if V accepts
 - Quantumly $\rho \in \mathcal{L}_{\mathcal{Q}}$ if V accepts
- Correctness:
 - Classically: $x \in \mathcal{L}_w \subset \mathcal{L}$, $w \in \{0,1\}^*$ is the witness
 - Quantumly: $\rho \in \mathcal{L}_{\omega,\omega_s} \subseteq \mathcal{L}_{\omega} \subseteq \mathcal{L}_{\mathcal{Q}}$, $\omega \in \{0,1\}^*$ is the witness or *class*, and $\omega_s \in \{0,1\}^*$ is the *subclass*
- Zero-Knowledge:
 - Classically: Bob can't learn info on w
 - Quantumly: Bob can't learn info on ω
- ⇒ We introduce complexity classes ZKstatesQMA/ZKstatesQIP

 \mathcal{L}_{Ω} (at least one qubit in $|0\rangle$ or $|1\rangle$)

Conclusion

Take-home message

(and Zero-Knowledge proofs on quantum states)

Open questions and ongoing works

Open questions and ongoing works

Characterize ZKstatesQMA

What are the other ZKoQS properties that can(not) be verified? Under which assumption?

• Role of entanglement

Prove (im)possibility of similar ZKoQS with only **single-qubit** operations? (entanglement seems important)

Other applications?

Quantum money, reducing communication complexity in other protocol...

• ...

Supplementary materials

Comparison with existing works

Article	Classical	Setup	Messages	MiniQCrypt	Composable	Statistical
[PVW08]	Yes	CRS	2	No (LWE)	Yes	Either
[BD18]	Yes	Plain M.	2	No (LWE)	Sender	Receiver
[CK88] + later works	No	Depends	7	Yes	Yes [DFL+09],[Unr10]	Either
[GLSV21]	No	Plain M./ CRS	$\begin{array}{c} \text{poly/} \\ \text{cte} \geq 7 \end{array}$	Yes	Yes	No
[BCKM21]	No	Plain M./ CRS	$\begin{array}{c} \text{poly/} \\ \text{cte} \geq 7 \end{array}$	Yes	Yes	Sender
[ABKK23]	No	RO	3	Yes	Yes	No
This work + [Unr15]	No	RO	2	Yes	Yes	No
This work + [HSS11]	No	Plain M.	> 2	No (LWE)	Yes	No
This work + S-NIZK	No	Like ZK	2	Like ZK	Yes	Sender
This work + NIZK proof	No	Like ZK	2	Like ZK	Yes	Receiver
This work + ZK	No	Like ZK	$ZK + 1 \text{ or } 2^1$	Like ZK	Yes	Like ZK

Generalizable in a non-interactive way to NP problems.