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MPCitH: general principle



Zero-Knowledge Proof of Knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on the pre-image .
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I am convinced.



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into a zero-knowledge proof 

• Generic: can be apply to any cryptographic problem / circuit



MPC model

[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y
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x
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[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

x = [[x]]1 + [[x]]2 + … + [[x]]N
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MPCitH transform

Prover Verifier
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⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
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=
1
N

τ ( 1
N )

τ

What about the computational cost ?
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• Typical parameters: 

 

Number of party emulations:   

• Hypercube Technique: 

Number of party emulations:   

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, 
Joseph, Yue: “The Return of the SDitH” (Eurocrypt 2023) 

• Our Approach: 

Number of party emulations:  

N = 256, τ = 17

τ ⋅ N = 4352

τ ⋅ (1 + log2 N ) = 153

τ ⋅ (1 + ℓ) = 34

Computational Cost

an additional parameter



The Threshold Approach

In the threshold approach, we use a low-threshold linear 
sharing scheme. For example, the Shamir’s -secret 
sharing scheme. 

To share a value , 
sample  uniformly at random, 

build the polynomial , 

Set the share , where  is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei
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Properties: 
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[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →



The Threshold Approach

In the threshold approach, we use a low-threshold linear 
sharing scheme. For example, the Shamir’s -secret 
sharing scheme. 

Properties: 
Linearity:  
Any set of  shares is random and independent of  
Any set of  shares  all the shares (and the secret) 

Zero-Knowledge: 
The prover opens only  parties (instead of ). 

(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

ℓ N − 1

In practice, ℓ ∈ {1,2,3}
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The Threshold Approach - Soundness

• Soundness error (for any ): 

 

⚠ The term  should be polynomial 

in the security level. 

• Soundness error (for ): 

 

instead of  . 

ℓ

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

(N
ℓ)

ℓ = 1

1
N

+ p ⋅
(N − 1)

2

1
N

+ p ⋅ (1 −
1
N )



The Threshold Approach
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+ p ⋅
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1 + log2 N
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New trade-offs for MPCitH-based zero-knowledge proof systems 

Larger proof sizes, faster algorithms, fast verification
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New trade-offs for post-quantum MPCitH-based signature schemes 

Larger signature sizes, faster algorithms, fast verification

Applications

Size Signing time Verification time

SDitH-gf256-L1
8 260 B

5.18 ms 4.81 ms

SDitH-gf251-L1 8.51 ms 8.16 ms

SDitH-gf256-L1
10 424 B

1.97 ms 0.62 ms

SDitH-gf251-L1 1.71 ms 0.23 ms

Benchmark of the SDitH submission package of the NIST callThreshold LSSS

Additive sharing 
(with hypercube optimisation)



A new batching strategy for MPCitH-based proof system 

By packing several witness in the Shamir’s secret sharing 

Compatible with several former MPCitH-based proof arguments (as 
Limbo)

Batched proofs for circuits over GF(256) using Limbo

#gates = 28 #gates = 216

Non batched 6 KB 390 KB

Batch 100 proofs 0.6 KB / proof 28 KB / proof

Batch 10000 proofs 0.6 KB / proof 27 KB / proof

Applications



Conclusion



Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation. 

The threshold approach enables us to have fast verification algorithms. 

That also offers an efficient batching strategy for some MPCitH-based 
proof systems.
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Thank you for your attention !
thibauld.feneuil@cryptoexperts.com 
matthieu.rivain@cryptoexperts.com
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