
Threshold Linear Secret Sharing
to the Rescue of MPC-in-the-Head

Thibauld Feneuil1,2, Matthieu Rivain1

Asiacrypt 2023

December 4, 2023 — Guangzhou (China)

1. CryptoExperts, Paris, France 2. Sorbonne University, CNRS, INRIA, Institut de
Mathématiques de Jussieu-Paris Rive Gauche,

Ouragan, Paris, France

Table of Contents

• MPC-in-the-Head: general principle

• Using threshold secret sharings

• Applications

• Conclusion

MPCitH: general principle

Zero-Knowledge Proof of Knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on the pre-image .

≤ ε 2−128

x

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know such that .x y = F(x)

I am convinced.

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into a zero-knowledge proof

• Generic: can be apply to any cryptographic problem / circuit

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.

MPCitH transform

• Zero-knowledge MPC protocol is -private⟺ (N − 1)

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel, soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel, soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

What about the computational cost ?

Computational Cost

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

• Typical parameters:

Number of party emulations:

N = 256, τ = 17

τ ⋅ N = 4352

Computational Cost

• Typical parameters:

Number of party emulations:

• Hypercube Technique:

Number of party emulations:

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing,
Joseph, Yue: “The Return of the SDitH” (Eurocrypt 2023)

N = 256, τ = 17

τ ⋅ N = 4352

τ ⋅ (1 + log2 N) = 153

Computational Cost

• Typical parameters:

Number of party emulations:

• Hypercube Technique:

Number of party emulations:

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing,
Joseph, Yue: “The Return of the SDitH” (Eurocrypt 2023)

• Our Approach:

Number of party emulations:

N = 256, τ = 17

τ ⋅ N = 4352

τ ⋅ (1 + log2 N) = 153

τ ⋅ (1 + ℓ) = 34

Computational Cost

an additional parameter

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

To share a value ,
sample uniformly at random,

build the polynomial ,

Set the share , where is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

Properties:
Linearity:
Any set of shares is random and independent of
Any set of shares all the shares (and the secret)

(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

Properties:
Linearity:
Any set of shares is random and independent of
Any set of shares all the shares (and the secret)

Zero-Knowledge:
The prover opens only parties (instead of).

(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

ℓ N − 1

In practice, ℓ ∈ {1,2,3}

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Threshold LSSS cannot
generate shares from seeds

⇒

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

only party
computations required

ℓ

MPCitH Transform with Threshold LSSS

The Threshold Approach - Soundness

• Soundness error (for any):

⚠ The term should be polynomial

in the security level.

• Soundness error (for):

instead of .

ℓ

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

(N
ℓ)

ℓ = 1

1
N

+ p ⋅
(N − 1)

2

1
N

+ p ⋅ (1 −
1
N)

The Threshold Approach

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

1 + log2 N

log2 N

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Much cheaper
emulation

1 + log2 N

log2 N

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Fast verification
algorithm

1 + log2 N

log2 N

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Larger proof transcripts

1 + log2 N

log2 N

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach Require N ≤ |𝔽 |

1 + log2 N

log2 N

Applications

New trade-offs for MPCitH-based zero-knowledge proof systems

Larger proof sizes, faster algorithms, fast verification

Applications

New trade-offs for post-quantum MPCitH-based signature schemes

Larger signature sizes, faster algorithms, fast verification

Applications

Size Signing time Verification time

SDitH-gf256-L1
8 260 B

5.18 ms 4.81 ms

SDitH-gf251-L1 8.51 ms 8.16 ms

SDitH-gf256-L1
10 424 B

1.97 ms 0.62 ms

SDitH-gf251-L1 1.71 ms 0.23 ms

Benchmark of the SDitH submission package of the NIST callThreshold LSSS

Additive sharing
(with hypercube optimisation)

A new batching strategy for MPCitH-based proof system

By packing several witness in the Shamir’s secret sharing

Compatible with several former MPCitH-based proof arguments (as
Limbo)

Batched proofs for circuits over GF(256) using Limbo

#gates = 28 #gates = 216

Non batched 6 KB 390 KB

Batch 100 proofs 0.6 KB / proof 28 KB / proof

Batch 10000 proofs 0.6 KB / proof 27 KB / proof

Applications

Conclusion

Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation.

The threshold approach enables us to have fast verification algorithms.

That also offers an efficient batching strategy for some MPCitH-based
proof systems.

Conclusion

Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation.

The threshold approach enables us to have fast verification algorithms.

That also offers an efficient batching strategy for some MPCitH-based
proof systems.

The threshold approach has been recently improved in a new work:

Conclusion

[FR23] Feneuil, Rivain. Threshold Computation in the Head:
Improved Framework for Post-Quantum Signatures and Zero-
Knowledge Arguments. ePrint 2023/1573.

Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation.

The threshold approach enables us to have fast verification algorithms.

That also offers an efficient batching strategy for some MPCitH-based
proof systems.

The threshold approach has been recently improved in a new work:

Conclusion

[FR23] Feneuil, Rivain. Threshold Computation in the Head:
Improved Framework for Post-Quantum Signatures and Zero-
Knowledge Arguments. ePrint 2023/1573.

Thank you for your attention !
thibauld.feneuil@cryptoexperts.com
matthieu.rivain@cryptoexperts.com

mailto:thibauld.feneuil@cryptoexperts.com
mailto:matthieu.rivain@cryptoexperts.com

