Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head

Thibauld Feneuil^{1,2}, Matthieu Rivain¹

Asiacrypt 2023

December 4, 2023 — Guangzhou (China)

1. CryptoExperts, Paris, France

2. Sorbonne University, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

Table of Contents

- MPC-in-the-Head: general principle
- Using threshold secret sharings
- Applications
- Conclusion

MPCitH: general principle

Zero-Knowledge Proof of Knowledge

- **Completeness:** Pr[verif ✓ | honest prover] = 1
- **Soundness:** $\Pr[\operatorname{verif} \checkmark | \operatorname{malicious prover}] \le \varepsilon$ (e.g. 2^{-128})
- **Zero-knowledge:** verifier learns nothing on the pre-image *x*.

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a multiparty computation (MPC) into a zero-knowledge proof

• Generic: can be apply to any cryptographic problem / circuit

MPC model

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

 $x = [[x]]_1 + [[x]]_2 + \dots + [[x]]_N$

MPC model

 $x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_N$

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
 - Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
 - Parties broadcast [[α]] and recompute
 α
 - Parties start again (now knowing α)

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

$\operatorname{Com}^{\rho_1}([\![x]\!]_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	
	$Com^{\rho_1}(\llbracket x \rrbracket_1)$ $Com^{\rho_N}(\llbracket x \rrbracket_N)$

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head

$\operatorname{Com}^{\rho_1}([[x]]_1)$		
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$		
send broadcast $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$		

<u>Prover</u>

<u>Prover</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head

④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

<u>Verifier</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head

④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

<u>Verifier</u>

<u>Prover</u>

(1) Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$ We have $F(x) \neq y$ where $x := \llbracket x \rrbracket_1 + \dots + \llbracket x \rrbracket_N$

<u>Verifier</u>

Malicious Prover

<u>Verifier</u>

• **Zero-knowledge** \iff MPC protocol is (N-1)-private

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) \\ = \mathbb{P}(\text{corrupted party remains hidden}) \\ = \frac{1}{N}$

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) \\ = \mathbb{P}(\text{corrupted party remains hidden}) \\ = \frac{1}{N}$

• Parallel repetition

Protocol repeated τ times in parallel, soundness error $\left(\frac{1}{N}\right)^{t}$

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

• Parallel repetition

Protocol repeated τ times in parallel, soundness error $\left(\frac{1}{N}\right)^{t}$

- ① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$
- 2 Run MPC in their head

④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

<u>Verifier</u>

• <u>Typical parameters</u>:

 $N = 256, \tau = 17$

Number of party emulations: $\tau \cdot N = 4352$

• <u>Typical parameters</u>:

 $N = 256, \tau = 17$

Number of party emulations: $\tau \cdot N = 4352$

• <u>Hypercube Technique</u>:

Number of party emulations: $\tau \cdot (1 + \log_2 N) = 153$

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

• <u>Typical parameters</u>:

 $N = 256, \tau = 17$

Number of party emulations: $\tau \cdot N = 4352$

• <u>Hypercube Technique</u>:

Number of party emulations: $\tau \cdot (1 + \log_2 N) = 153$

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

• Our Approach:

Number of party emulations: $\tau \cdot (1 + \ell) = 34$ An additional parameter

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

To share a value x,

- sample $r_1, r_2, ..., r_{\ell}$ uniformly at random,
- build the polynomial $P(X) = x + \sum_{k=0}^{\iota} r_k \cdot X^k$,
- Set the share $[[x]]_i \leftarrow P(e_i)$, where e_i is publicly known.

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

Properties:

- Linearity: [x] + [y] = [x + y]
- Any set of ℓ shares is random and independent of x
- Any set of $\ell + 1$ shares \rightarrow all the shares (and the secret)

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

Properties:

- Linearity: [x] + [y] = [x + y]
- Any set of ℓ shares is random and independent of x
- Any set of $\ell + 1$ shares \rightarrow all the shares (and the secret)

Zero-Knowledge:

The prover opens only ℓ parties (instead of N-1).

In practice, $\ell \in \{1,2,3\}$

<u>Verifier</u>

<u>Prover</u>

<u>Verifier</u>

<u>Prover</u>

<u>Prover</u>

<u>Verifier</u>

<u>Prover</u>

<u>Verifier</u>

<u>Verifier</u>

<u>Prover</u>

The Threshold Approach - Soundness

• Soundness error (for any ℓ):

$$\frac{1}{\binom{N}{\ell}} + p \cdot \frac{\ell(N-\ell)}{\ell+1}$$

I The term $\binom{N}{\ell}$ should be polynomial in the security level.

• Soundness error (for $\ell = 1$):

$$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$$

instead of
$$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$$
.

	Additive sharing + hypercube technique	Threshold LSSS with $\ell = 1$
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	$1 + \log_2 N$	2
Verifier # party computations	$\log_2 N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2\lambda \cdot \log N$

	Additive sharing + hypercube technique	Threshold LSSS with $\ell = 1$
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	$1 + \log_2 N$	2
Verifier # party computations	$\log_2 N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2\lambda \cdot \log N$

	Additive sharing + hypercube technique	Threshold LSSS with $\ell = 1$
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	$1 + \log_2 N$	2
Verifier # party computations	$\log_2 N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$

Fast verification algorithm

	Additive sharing + hypercube technique	Threshold LSSS with $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$	
Prover # party computations	$1 + \log_2 N$	2	
Verifier # party computations	$\log_2 N$	1	
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$	

Larger proof transcripts

Require $N \leq |\mathbb{F}|$

	Additive sharing + hypercube technique	Threshold LSSS with $\ell = 1$
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	$1 + \log_2 N$	2
Verifier # party computations	$\log_2 N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$

- New trade-offs for MPCitH-based zero-knowledge proof systems
 - Larger proof sizes, faster algorithms, fast verification

New trade-offs for post-quantum MPCitH-based signature schemes

Larger signature sizes, faster algorithms, fast verification

Add	itive sharing			
(with hype	cube optimisation)	Size	Signing time	Verification time
	SDitH-gf256-L1	9 260 P	5.18 ms	4.81 ms
	SDitH-gf251-L1	0 200 D	8.51 ms	8.16 ms
	SDitH-gf256-L1		1.97 ms	0.62 ms
	SDitH-gf251-L1	IV 424 D	1.71 ms	0.23 ms

Benchmark of the SDitH submission package of the NIST call

<u>A new batching strategy</u> for MPCitH-based proof system

- By packing several witness in the Shamir's secret sharing
- Compatible with several former MPCitH-based proof arguments (as Limbo)

	#gates = 2 ⁸	#gates = 2 ¹⁶
Non batched	6 KB	390 KB
Batch 100 proofs	0.6 KB / proof	28 KB / proof
Batch 10000 proofs	0.6 KB / proof	27 KB / proof

Batched proofs for circuits over GF(256) using Limbo

- Replacing additive sharings with threshold sharings provides <u>new trade-offs</u> that <u>lowers the cost of emulating</u> the multiparty computation.
- The threshold approach enables us to have <u>fast verification algorithms</u>.
- That also offers an <u>efficient batching strategy</u> for some MPCitH-based proof systems.

- Replacing additive sharings with threshold sharings provides <u>new trade-offs</u> that <u>lowers the cost of emulating</u> the multiparty computation.
- The threshold approach enables us to have <u>fast verification algorithms</u>.
- That also offers an <u>efficient batching strategy</u> for some MPCitH-based proof systems.
- The threshold approach has been recently improved in a new work:
 - [FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

- Replacing additive sharings with threshold sharings provides <u>new trade-offs</u> that <u>lowers the cost of emulating</u> the multiparty computation.
- The threshold approach enables us to have <u>fast verification algorithms</u>.
- That also offers an <u>efficient batching strategy</u> for some MPCitH-based proof systems.
- The threshold approach has been recently improved in a new work:

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

Thank you for your attention !

thibauld.feneuil@cryptoexperts.com
matthieu.rivain@cryptoexperts.com