Threshold Linear Secret Sharing
to the Rescue of MPC-in-the-Head

Thibauld Feneuil'?, Matthieu Rivain’

Asiacrypt 2023
December 4, 2023 — Guangzhou (China)

o h
OdY Q SORBONNE
CRYPTOCEXPERTS UNIVERSITE
WE INNOVATE TO SECURE YOUR BUSINESS
1. CryptoExperts, Paris, France 2. Sorbonne University, CNRS, INRIA, Institut de

Mathématiques de Jussieu-Paris Rive Gauche,
Ouragan, Paris, France

* MPC-in-the-Head: general principle
e Using threshold secret sharings
e Applications

e Conclusion

MPCitH: general principle

Zero-Knowledge Proof of Knowledge

| know x such that y = F(x).

v Commitment
>
<

Challenge 1

Response 1 >
Challenge n
Response n S
Prover A Veritier

| am convinced.

® Completeness: Prlverif v | honest prover] = 1

® Soundness: Prlverif v | malicious prover] < e (e.g. 2128

® Zero-knowledge: verifier learns nothing on the pre-image x.

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into a zero-knowledge proof

22
[N

14 >
\/ %
't

® Generic: can be apply to any cryptographic problem / circuit

x = lIxlly + [[xl, + ... + [x]ly

Jointly compute

Accept if F(x) =1y
gx) = {R | |
eject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol

e Jointly compute

Accept if F(x) =1y
g(x) = {R . .
eject if F(x) #y

[[x]]1 [[x]]z
e (N—1) private: the views of any N — 1

[all, / parties provide no information on x
[[05]]2

® Semi-honest model: assuming that the
Public parties follow the steps of the protocol

—

_—" domain ¥—__ ® Broadcast model
led
‘ ~ ’ » Parties locally compute on their shares

[[-x]]S [[a]]4I [[x]]3 [x]] = [l
. » Parties broadcast [[a]] and recompute
o
[[X]]4 » Parties start again (now knowing a)

X = [[X]]l + [[X]]2+ oo [[X]]N

Prover Verifier

1) Generate and commit shares Com”([[x]],)

Lxll = (I, - [xTly) Com([Ix]ly)

Prover Verifier

(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN([x1ly)

send broadcast

Lally, ..., [ally

Verifier

(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN([x1ly)

send broadcast

Lally, ..., [ally

l'*

@ Choose a random party
i* <3 {1,... N}

Verifier

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x1 X // [x1l,
.

ok
® !

@ Open parties {1,..., N}\{i*}

Prover

Com”([[x]],)

CoilolopN([x1ly)

send broadcast

Lally, ..., [ally

l‘>l<

(IxT p)icei

@ Choose a random party
i* <3 {1,... N}

Verifier

(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN([xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N >
ﬂ;% [* ® Check Vi # i*
(T) - Commitments Com”i([[x]],)
X Pi)isti :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)

Check g(y,) = Accept

Prover Verifier

MPCitH transform

1) Generate and commit shares Com”'([[x]];)
[xI = (Ix1y, ..., [xTy)
Com’~([[x]ly)
We have F(x) # y where >

x =[xl + ... + [xlly

Malicious Prover Verifier

1) Generate and commit shares
[[x]] — ([[x]]17 R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@2 Run MPC in their head

[x X // [x1,

Il — Q. -
X
2

[[x]]4

Malicious Prover

Com”1([[x],)

CO;I.I.pN([x]ly)

send broadcast

[ally, ..., [ally

Verifier

1) Generate and commit shares Com” ([[x],)
[xD = ([x1y, .-, [xTy)
CompN([[x]]N)

We have F(x) # y where >
x =[xl + ... + [xlly

Run MPC in their head
2 Rur ©intheirhes send broadcast

[x1l, [x1,
X // Loy, ... Ladly > @ Choose a random party

i* <% {1,...,N)
= =~ i*
- o—" Q. .
:)
2

ﬂxﬂ4

Malicious Prover Verifier

1) Generate and commit shares Com” ([[x],)
[xD = ([x1y, .-, [xTy)
CompN([[x]]N)

We have F(x) # y where g
x =[xl + ... + [xlly

Run MPC in their head
2 Run © Intheirhes send broadcast

[ally, ..., [ally

» | @ Choose a random party
i* <% {1,...,N)

¥

(IxTlis 2 st

@ Open parties {1,..., N}\ {i*}

Malicious Prover Verifier

D Generate and commit shares
[l = (LxDys - TxDp)
We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN([x]ly)

send broadcast

[ally, ..., [ally

» | @ Choose a random party

l'>l<

i* <% {1,...,N}

([x1l;, pi)i;ﬁi*

® Check Vi # i*
- Commitments Com”i([[x],)

> - MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Veritier
Q Cheating detected!

1) Generate and commit shares
[[x]] — ([[x]]la R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

[xl X // [x1,

[x]]N ‘-.—/'/ Q [[x]]3

l’>l<

<

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN([x]ly)

send broadcast

[ally, ..., [ally

l'>l<

([x1l;, pi)i;ﬁi*

@ Choose a random party
i* <% {1,...,N}

® Check Vi # i*
- Commitments Com”i([[x],)

- MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Verifier

Q Seems OK.

MPCitH transform

® Zero-knowledge <<= MPC protocol is (N — 1)-private

MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

® Parallel repetition

1 T
Protocol repeated 7 times in parallel, soundness error (N)

MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

® Parallel repetition

1 T
Protocol repeated 7 times in parallel, soundness error (N)

“ What about the computational cost ?

(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN([xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N >
ﬂ;% [* ® Check Vi # i*
(T) - Commitments Com”i([[x]],)
X Pi)isti :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)

Check g(y,) = Accept

Prover Verifier

Computational Cost

e Typical parameters:

N=256,7=17

Number of party emulations: 7+ N = 4352

Computational Cost

e Typical parameters:

N=256,7=17

Number of party emulations: 7 - N = 4352

e Hypercube Technique:
Number of party emulations: 7 - (1 +1log, N) = 153

[AGHHJY 23] Aguilar-Melchor, Gama, Howe, Hilsing,
Joseph, Yue: “The Return of the SDitH" (Eurocrypt 2023)

Computational Cost

e Typical parameters:

N=256,7=17

Number of party emulations: 7+ N = 4352

e Hypercube Technique:
Number of party emulations: 7 - (1 +1log, N) = 153

[AGHHJY 23] Aguilar-Melchor, Gama, Howe, Hilsing,
Joseph, Yue: “The Return of the SDitH" (Eurocrypt 2023)

e Our Approach:

Number of party emulations: 7- (1 +¢) = 34
\ an additional parameter

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

To share a value x,
m sample 7,75, ..., I, uniformly at random,

£

" build the polynomial P(X) = x + Z r - XK,
k=0

m Set the share [x]]; < P(e;), where e; is publicly known.

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

Properties:
B |Linearity: [[x]| + [[v]l = [x + v
m Any set of £ shares is random and independent of x
B Any set of £ + 1 shares — all the shares (and the secret)

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

Properties:
B |Linearity: [[x]| + [[v]l = [x + v
m Any set of £ shares is random and independent of x
B Any set of £ + 1 shares — all the shares (and the secret)

Zero-Knowledge:
The prover opens only £ parties (instead of N — 1).

In practice, £ € {1,2,3}

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x N // [x1,

[Ty .('/ I)Q x5
ﬂx]]4

@ Open parties in [

Prover

Com”([[x]],)

CO;I.{pN([x1ly)

send broadcast

Lally, ..., [ally

(Ixl;s 29 ier

@) Choose a random set of parties
IC{l,...N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y,) = Accept

Verifier

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[[x]]l X / [[x]]2

|Ix]]4

@ Open parties in [

Prover

__ Threshold LSSS = cannot

Com”([[x]],)

Cogl.pN ([LxIly)
_—

send broadcast

Lally, ..., [ally

(x1;, Picr

generate shares from seeds

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]],)
- MPC computation [[a]]; = ¢([x],)
Check g(y,) = Accept

Verifier

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x X // [x1,

Lxlly o I)—Q. I

ﬂx]]4

@ Open parties in [

Prover

Merkle
root

send broadcast

Lally, ..., [ally

(IxTI; iel

/

authentication path

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)
Check g(y,) = Accept

Verifier

[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,...N}, st |I|=7.
[x]N"//'I)—Q‘mg « 1 C{ bost |
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y,) = Accept

authentication path

Prover Verifier

[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

= only 7 + 1 party
computations required

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,...N}, st |I|=7.
[x]N"//'I)—Q‘mg « 1 C{ bost |
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y,) = Accept

authentication path

Prover Verifier

VPG Transtorm with Threshold 1555

[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing
= only £ + 1 party

@ Run MPC in their head

14 '
@

O

computations required

send broadcast

Lally, ..., [ally

®) Check Vi e I

- Commitments Com”i([[x]],)

Lauth;).
([[x]]lzel - MPC computation [[a]l; = ¢([[x]];)

/ Check g(y,) = Accept
authentication path

@ Open parties in [

Prover

£ parties opened Veritier

instead of N — 1

VPG Transtorm with Threshold 1555

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Merkle
root

@ Run MPC in their head

send broadcast

Lally, ..., [ally

@

®

([[x]]iiel

@ Open parties in [

Prover

£ parties opened
instead of N — 1

authentication path

/

[a] is redundant
= £ + 1 shares fully

determine the sharing

= only 7 + 1 party
computations required

®) Check Vi e I

- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)

Check g(y,) = Accept

only £ party
computations required

e Soundness error (for any £):

1 .f(N—f)

WP T
4

N .
A\ The term <L”> should be polynomial

in the security level.

e Soundness error (for £ = 1):

L, =D
NPT

1 1
instead of —+p - <1 ——).
N N

Additive sharing

Threshold LSSS

+ hypercube technique with =1
S d i_|_ <1_i> l_|_ (N_l)
oundness error ~ TP N NP T
rover 1 +log, N >
party computations 2
Verifier
party computations log, N 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N

Additive sharing
+ hypercube technique

Threshold LSSS
with 2 =1

Soundness error

1, W=D

N 2

Prover
party computations I+ logz N
Verifier
party computations IOgZ N
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 2]+ log N

Much cheaper
emulation

Additive sharing Threshold LSSS
+ hypercube technique with =1
o L (1-0) 1L -
oundness error p N YRLANET
Prover 1 +loos N)
party computations &2
Verifier
party computations log, N I
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Fast verification

algorithm

Additive sharing Threshold LSSS
+ hypercube technique with =1
1 N <1 1 > 1
Soundness error ~ TP N ~ P
Prover 1 +loos N
party computations &2
Verifier
party computations log, N
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Larger proof transcripts

Additive sharing
+ hypercube technique

Require N < | F|

Threshold LSSS
with =1

1 1
Soundness error —+p- <1 — N)
Prover | +loo. N)
party computations &2
Verifier
party computations log, N 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N

Applications

Applications

m New trade-offs for MPCitH-based zero-knowledge proof systems

m Larger proof sizes, faster algorithms, fast verification

New trade-offs for post-quantum MPCitH-based signature schemes

m Larger signature sizes, faster algorithms, fast verification

Size Signing time Verification time
SDitH-gf256-L1 5.18 ms 481 ms
8260B
SDitH-gf251-1L1 8.5 ms 8.16 ms
SDitH-gf256-L1 .97 ms 0.62 ms
10 424 B
SDitH-gf251-L1 .71 ms 0.23 ms

/

Threshold LSSS

Benchmark of the SDitH submission package of the NIST call

A new batching strategy for MPCitH-based proof system

m By packing several witness in the Shamir's secret sharing

m Compatible with several former MPCitH-based proof arguments (as

Limbo)

#gates = 2°

#gates = 2'°

Non batched

6 KB

390 KB

Batch 100 proofs

0.6 KB / proof

28 KB / proof

Batch 10000 proofs

0.6 KB / proof

27 KB / proof

Batched proofs for circuits over GF(256) using Limbo

Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation.

The threshold approach enables us to have fast verification algorithms.

That also offers an efficient batching strategy for some MPCitH-based

proof systems.

Replacing additive sharings with threshold sharings provides new trade-
offs that lowers the cost of emulating the multiparty computation.

The threshold approach enables us to have fast verification algorithms.

That also offers an efficient batching strategy for some MPCitH-based
proof systems.

The threshold approach has been recently improved in a new work:

[FR23] Feneuil, Rivain. Threshold Computation in the Head:
Improved Framework for Post-Quantum Signatures and Zero-
Knowledge Arguments. ePrint 2023/1573.

Conclusion

W Replacing additive sharings with threshold sharings provides new trade-

offs that lowers the cost of emulating the multiparty computation.

W The threshold approach enables us to have fast verification algorithms.

W That also offers an efficient batching strategy for some MPCitH-based

proof systems.

W The threshold approach has been recently improved in a new work:

[FR23] Feneuil, Rivain. Threshold Computation in the Head:
Improved Framework for Post-Quantum Signatures and Zero-

Knowledge Arguments. ePrint 2023/1573.

Thank you for your attention !

thibauld. feneuillcryptoexperts.com
matthieu.rivainlcryptoexperts.com

mailto:thibauld.feneuil@cryptoexperts.com
mailto:matthieu.rivain@cryptoexperts.com

