### A Generic Construction of Tightly Secure Password-based Authenticated Key Exchange





Jiaxin Pan UNIKASSEL VERSITAT



Runzhi Zeng





### **Authenticated Key Exchange**





### **Password-based AKE (PAKE)**





- Authenticated by pre-shared password
- Low entropy (Human memorable)



## **PAKE Security**

• Offline dictionary attack





## **PAKE Security**



## **PAKE Security**

- A secure PAKE protocol...
  - Authenticity from password
  - Resist offline attack
  - The **best** attack (that A can perform): **Online attack**



٠

## PAKE Security – BPR model [BPR00]

- Multiple user
- Multiple sessions





## PAKE Security – BPR model [BPR00]

- Multiple user
- Multiple sessions
- Adversary Capabilities
  - Control the network
  - Reveal established session keys
  - Adaptively corrupt passwords





## PAKE Security – BPR model [BPR00]

- Multiple user
- Multiple sessions
- Adversary Capabilities
  - Control the network
  - Reveal established session keys
  - Adaptively corrupt passwords
- Security Goals
  - Key Indistinguishability
  - Authentication
  - Resist offline attack
  - Best attack: Online dictionary attack



Security Proof via Reduction



Hard problems/ Secure building blocks



- Security Proof via Reduction
  - A breaks П





- Security Proof via Reduction
  - A breaks П
    - $\Rightarrow$  R solves problems





- Security Proof via Reduction
  - A breaks  $\Pi$ 
    - $\Rightarrow$  R solves problems
- Tightness of Reduction
  - $\operatorname{Adv}(\mathsf{R}) \leq \underline{L} \cdot \operatorname{Adv}(\mathsf{A})$
  - L: Security loss





- Security Proof via Reduction
  - A breaks П
    - $\Rightarrow$  R solves problems
- Tightness of Reduction
  - $\operatorname{Adv}(\mathsf{R}) \leq \underline{L} \cdot \operatorname{Adv}(\mathsf{A})$
  - L: Security loss
  - $L \text{ smaller} \Rightarrow \text{tighter}$





- Security Proof via Reduction
  - A breaks П
    - $\Rightarrow$  R solves problems
- Tightness of Reduction
  - $\operatorname{Adv}(\mathsf{R}) \leq \underline{L} \cdot \operatorname{Adv}(\mathsf{A})$
  - L: Security loss
  - $L \text{ smaller} \Rightarrow \text{tighter}$

- Relevance: Parameter selection
  - L is large  $\Rightarrow$  inefficient or insecure





### **Post-Quantum PAKE**

- Obstacles: Algebraic structure, efficiency...
- HPS-based constructions [KV09, ZY17]
- Bit-by-bit approach + Isogeny [AEK+22]
- Encrypted-Key-Exchange(EKE)-based constructions [BM92, BCP+23, LLHG23]



## **Post-Quantum PAKE**

- Obstacles: Algebraic structure, efficiency...
- HPS-based constructions [KV09, ZY17]
- Bit-by-bit approach + Isogeny [AEK+22]
- Encrypted-Key-Exchange(EKE)-based constructions [BM92, BCP+23, LLHG23]
  - Based on KE protocol...
  - Ideal cipher model (ICM) and Random oracle model (ROM)...



## **Post-Quantum PAKE**

- Obstacles: Algebraic structure, efficiency...
- HPS-based constructions [KV09, ZY17]
- Bit-by-bit approach + Isogeny [AEK+22]
- Encrypted-Key-Exchange(EKE)-based constructions [BM92, BCP+23, LLHG23]
  - Based on KE protocol... (PQ KE is well studied)
  - ICM and ROM...
  - The only known tight construction is based on DH

Can we have a <u>tightly-secure post-quantum</u> EKE-based PAKE protocol?







1. EKE-based PAKE with tight reduction from KEM

- Muti-user-challenge KEM with
  - pk uniformity,
  - pseudorandom ciphertexts,
  - and PCA security
- In the ROM and ICM



- 1. EKE-based PAKE with tight reduction from KEM
  - Muti-user-challenge KEM with
    - pk uniformity,
    - pseudorandom ciphertexts,
    - and PCA security
  - In the ROM and ICM
- 2. Lattice-based Instantiations
  - LWE, MLWE
  - Better concrete security bounds





Table: Security Loss from KEMs

| Scheme   | Underlying KEM                                             | Security Loss |
|----------|------------------------------------------------------------|---------------|
| LLHG23   | twin-DH KEM $\Theta(1)$                                    |               |
| BCP+23   | Single-user, single-<br>challenge KEM $O(q \cdot (q + S))$ |               |
| Our work | Multi-user, multi-<br>challenge KEM                        | Θ(1)          |



- *S*: Number of session;
- *q*: Number of queries to RO or IC;
- $S \ll q$



#### Table: Security Loss from Assumptions

| Scheme   | Assumption   | Security Loss                                               | EKE-based     |
|----------|--------------|-------------------------------------------------------------|---------------|
| LLHG23   | twin DH      | Θ(1)                                                        | PAKE          |
| BCP+23   | LWE          | $O(\boldsymbol{q} \cdot (\boldsymbol{q} + \boldsymbol{S}))$ | Î             |
|          | MLWE (Kyber) | $O(\boldsymbol{q} \cdot (\boldsymbol{q} + \boldsymbol{S}))$ |               |
| Our work | LWE          | O(q+S)                                                      | Lattice-based |
|          | MLWE(Kyber)  | $0(\boldsymbol{S} \cdot (q+S))$                             | assumptions   |

- *S*: Number of session;
- *q*: Number of queries to RO or IC;
- $S \ll q$



### **Technical Outline**



- : (almost-)tightly
- ----> : non-tightly





KEM-based EKE [BCP+23]
Based on KEM-based key exchange





- KEM-based EKE [BCP+23]
  - Based on KEM-based key exchange
  - Encrypted by password (pw as symmetric key)





- KEM-based EKE [BCP+23]
  - Based on KEM-based key exchange
  - Encrypted by password (pw as symmetric key)
- To prove PAKE security...
  - What security properties should KEM and SEnc have?





1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
  - Embed challenges
  - Against offline dictionary attacks





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
- 2. KEM is required to have:





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
- 2. KEM is required to have:
  - PK uniformity

(...since pk is output of ideal cipher; Against offline attacks...)





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
- 2. KEM is required to have:
  - PK uniformity
  - Pseudorandom ciphertext





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
- 2. KEM is required to have:
  - PK uniformity
  - Pseudorandom ciphertext
  - **PCA security** (for tight reduction)





- 1. SEnc<sub>1</sub> and SEnc<sub>2</sub> are modelled as ideal ciphers
- 2. KEM is required to have:
  - PK uniformity
  - Pseudorandom ciphertext
  - PCA security

(Multi-user & multi-challenge settings)







## Instantiation from LWE/MLWE





#### **KEM** with

- PK uniformity
- Pseudorandom ciphertext
- PCA security



## Instantiation from LWE/MLWE





## Instantiation from LWE/MLWE





## **Summary and Open Problems**



#### eprint: 2023/1334



## **Summary and Open Problems**



