Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping

Hiroki Okada ${ }^{2}$ Rachel Player ${ }^{1}$ Simon Pohmann ${ }^{1}$

Royal Holloway, University of London, UK
KDDI Research, Japan

November 30, 2023

Homomorphic Encryption and Bootstrapping

Homomorphic Encryption and Bootstrapping

Client
Server

Homomorphic Encryption and Bootstrapping

Client
 Server

BGV/BFV

- RLWE-based
- Uses cyclotomic rings $R=\mathbb{Z}[X] /\left(\Phi_{m}(X)\right)$

	BFV
Plaintexts	$m \in R_{t}$
	possibly $R_{t} \cong S_{1} \oplus \ldots \oplus S_{n}$
Ciphertexts	$\left(c_{0}, c_{1}\right) \in R_{q}^{2}$
Secret key	$s \in R_{q}$
Hom. Operations	,$+ \cdot$, action of $\operatorname{Gal}(R / \mathbb{Z})$
Decryption	$\left.\frac{t}{q}\left(c_{0}+c_{1} s\right)\right] \quad\left(c_{0}+c_{1} s\right) \bmod t$

- Homormorphic computation of "digit extraction" necessary

Digit Extraction

- Assume $t=p$
- Extract least significant p-adic digit

$$
\mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}, \quad \sum_{i=0}^{e-1} a_{i} p^{i} \mapsto a_{0}
$$

Option 1

"Lifting polynomials" [HS21]

Option 2

"Digit retain polynomials" [CH18]
\Rightarrow Have to evaluate a polynomial $f \in \mathbb{Z}[X]$ in $x \in \mathbb{Z}_{p^{e}}$

Bootstrapping

Improving polynomial evaluation

The setting

- Given $f \in \mathbb{Z}[X]$ and $x \in \mathbb{Z}_{p^{e}}$, (homomorphically) compute $f(x)$
- We are in a "plaintext slot" S_{i} (if $e=1$ then $S_{i} \cong \mathbb{F}_{p^{d}}$)

$$
R_{p^{e}} \cong S_{1} \oplus \ldots \oplus S_{n}
$$

The norm

$$
N(\alpha):=\prod_{i=0}^{d-1} \pi^{i}(\alpha)
$$

Frobenius automorphism

Improving polynomial evaluation

The setting

- Given $f \in \mathbb{Z}[X]$ and $x \in \mathbb{Z}_{p^{e}}$, (homomorphically) compute $f(x)$
- We are in a "plaintext slot" S_{i} (if $e=1$ then $S_{i} \cong \mathbb{F}_{p^{d}}$)

$$
R_{p^{e}} \cong S_{1} \oplus \ldots \oplus S_{n}
$$

The norm

$$
N(\alpha):=\prod_{i=0}^{d-1} \underbrace{\pi^{i}(\alpha)} \text { Frobenius automorphism }
$$

Observation 1: If $x \in \mathbb{F}_{p}$ and $\alpha \in \mathbb{F}_{p^{d}}$, then

$$
N(\alpha-x)=\operatorname{MinPoly}(\alpha)(x)
$$

Improving polynomial evaluation

The setting

- Given $f \in \mathbb{Z}[X]$ and $x \in \mathbb{Z}_{p^{e}}$, (homomorphically) compute $f(x)$
- We are in a "plaintext slot" $S_{i}\left(\right.$ if $e=1$ then $\left.S_{i} \cong \mathbb{F}_{p^{d}}\right)$

$$
R_{p^{e}} \cong S_{1} \oplus \ldots \oplus S_{n}
$$

The norm

$$
N(\alpha):=\prod_{i=0}^{d-1} \pi^{i}(\alpha)
$$

Frobenius automorphism
Observation 2: We can compute $N(\alpha)$ as

$$
\left.\begin{array}{rl}
\alpha_{0} & :=\alpha \\
\alpha_{1} & :=\alpha_{0} \cdot \pi\left(\alpha_{0}\right)=\alpha \cdot \pi(\alpha) \\
\alpha_{2} & :=\alpha_{1} \cdot \pi^{2}\left(\alpha_{1}\right)=\alpha \cdot \pi(\alpha) \cdot \pi^{2}(\alpha) \cdot \pi^{3}(\alpha) \\
& \vdots
\end{array}\right\} \log d \text { mults! }
$$

Improved evaluation

Observation 1

$N(\alpha-x)=\operatorname{MinPoly}(\alpha)(x)$

Observation 2

Can compute $N(\alpha)$ with $\log (d)$ multiplications

If we find $\alpha \in \mathbb{F}_{p^{d}}$ such that
$\operatorname{MinPoly}(\alpha)=$ Lifting Poly

- Requires deg(poly) $\leq d$
- For lifting polynomials: $\operatorname{deg}($ poly $)=p$
- Digit extraction in $\log (p)$ mults!
- Paterson Stockmeyer needs $2 \sqrt{p}$ mults
- Can be used for many polynomials!

It is faster!

Setting

"power-of-two cyclotomics" $\Phi_{m}=X^{N}+1$

- previously considered by [CH18]
- less slots/higher rank than other cases
- better performance

$$
\Phi_{m}=X^{2^{15}}+1, \quad p=257, \quad d=256, \quad n=128, \quad e=2
$$

	Key switches	Time (our impl)	Time [CH18]
Lin. Transform 1	22	7.9 s	-
Lin. Transform 2	30	8.6 s	-
Digit Extract	17	5.6 s	-
Total	69	22.1 s	36.8 s

(timings for slim bootstrapping)

Future directions

Other parameter settings!

- Digit retain polynomials
- Recent optimizations [CH18; Gee+23]

Other applications!

- Evaluating multiple polynomials

Thank you for your attention!

[CH18] Hao Chen and Kyoohyung Han. "Homomorphic Lower Digits Removal and Improved FHE Bootstrapping". 2018.
[Gee+23] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. "On Polynomial Functions Modulo p^{e} and Faster Bootstrapping for Homomorphic Encryption". 2023.
[HS21] Shai Halevi and Victor Shoup. "Bootstrapping for HElib". (2021).

