Pseudorandomness of Decoding, Revisited: Adapting OHCP to Code-Based Cryptography

Maxime Bombar (CWI, The Netherlands) ${ }^{*}$, Alain Couvreur (Inria, France), Thomas Debris-Alazard (Inria, France)

ASIACRYPT 2023, Guangzhou, China

* Work conducted while M.B. was at Ecole Polytechnique, and Inria, France

December 07, 2023

Source of Hardness of Code-based cryptography

- Topic of this talk: Hardness of Decisional Decoding Problem (Pseudorandomness).
- More than the result: Proof techniques
- Recent trend: Getting inspired by euclidean lattices.
- OHCP: Modern reduction technique for lattices ([PRS17, RSW18, BJRW20, PS21]).

Results

- Adapt OHCP to the Hamming metric: Oracle with Hidden Support Problem (OHSP).
- Worst-case to Average-case, Search-to-Decision reduction (for non trivial parameters).
- An inch away reduction for structured codes.

Decoding: A Hard Problem for Cryptography

Most of the talk generalise to arbitrary \mathbb{F}_{q}

Goal: $\quad \mathrm{s}$

- Studied since (at least) the 1950s
- Best algorithms ${ }^{1}$ are exponential in $|\mathbf{t}|$

[^0]
Learning Parity with Noise: LPN

LPN with N samples \approx Average Decoding Problem for rate $\frac{k}{N}$

Worst-case to average-case reduction ([BLVW19, YZ21])

Decisional Version of the Decoding Problem

- Search-to-Decision reduction ([FS96])
- Fundamentally average-case to average-case

Adding Structure for Efficiency

\mathcal{R} ring, e.g. $\mathbb{F}_{2}[X] /\left(X^{n}-1\right)$
Generalise to $\mathbb{F}_{q}[G]$ for an (abelian) group G
(

Example:

Ultimate Goal: Structured Variants

\mathcal{R} ring, e.g. $\mathbb{F}_{2}[X] /\left(X^{n}-1\right)$
Generalise to $\mathbb{F}_{q}[G]$ for an (abelian) group G

Search Version

Input. N samples of the form $(\mathbf{a}, \mathbf{s a}+\mathbf{t})$ where $\mathbf{a} \leftarrow \mathcal{R}$, and $|\mathbf{t}|=t$.
Goal. Find s .

Decision Version

Goal. Distinguish between ($\left.\mathbf{a}, \mathbf{y}^{\text {unif }}\right)$ and $(\mathbf{a}, \mathbf{s a}+\mathbf{t})$, given N samples.

- BIKE and HQC (NIST 4th round).
- Used for some constructions in MPC ([BCGIKS20, BCCD23]).

Ultimate Goal: Structured Variants

\mathcal{R} ring, e.g. $\mathbb{F}_{2}[X] /\left(X^{n}-1\right)$
Generalise to $\mathbb{F}_{q}[G]$ for an (abelian) group G

Search Version

Input. N samples of the form $(\mathbf{a}, \mathbf{s a}+\mathbf{t})$ where $\mathbf{a} \leftarrow \mathcal{R}$, and $|\mathbf{t}|=t$.
Goal. Find s.

Decision Version

Goal. Distinguish between ($\left.\mathbf{a}, \mathbf{y}^{\text {unif }}\right)$ and $(\mathbf{a}, \mathbf{s a}+\mathbf{t})$, given N samples.

- Known search-to-decision reductions do not carry over X
- Very few specific reductions ([BCD22, BCCD23]).

Lattices: a History of Search-to-Decision Reductions ${ }^{2}$

[^1]
Lattices: a History of Search-to-Decision Reductions ${ }^{2}$

[^2]
Lattices: a History of Search-to-Decision Reductions ${ }^{2}$

[^3]
Worst-case to Average-case Reduction

Adapting OHCP for plain Decoding Problem
Decisional Decoding Problem with

$$
\frac{k}{n}=\frac{1}{n^{D}} \quad \text { and } \quad \frac{t}{n}=\frac{1}{2}\left(1-\frac{1}{n^{D(1+o(1))}}\right) \quad \text { for some } D<1 / 2
$$

is harder than worst-case Decoding Problem with

$$
\frac{k}{n}=\frac{1}{n^{D}} \quad \text { and } \quad \frac{t}{n}=\frac{\log ^{2}(n)}{n^{1-D}}
$$

(superpolynomial hardness, \approx same parameters as [BLVW19])

Bypass earlier search-to-decision reductions

This work: Oracle with Hidden Support Problem (OHSP)

A non-positive result

Structured variants

- Not as straightforward as for lattices X
- But only fails at the very end
- Identify a single point of failure which might be overcome in the future

From Decoding to LPN [BLVW19, YZ21]

From Decoding to LPN [BLVW19, YZ21]

From Decoding to LPN [BLVW19, YZ21]

$\leftarrow R R$

Building LPN-like Oracle

- $\mathbf{G r} \approx$? uniform
- ($\mathbf{G r}, \mathbf{t} \cdot \mathbf{r})$ are correlated ...

Building LPN-like Oracle

Statistically close

\rightarrow Average-case: Leftover hash lemma
\rightarrow Worst-case: Notion of smoothing distribution ([BLVW19, YZ21, DDRT23, DR23])

Bernoulli Smoothing

(Non Standard) Notation

$$
r_{i} \leftarrow \operatorname{Ber}(\omega) \text { if } r_{i} \text { Bernoulli with } \mathbb{P}\left(r_{i}=1\right)=\frac{1}{2}\left(1-2^{-\omega}\right) \text {. }
$$

Remark: $\operatorname{Ber}\left(\omega_{1}\right)+\operatorname{Ber}\left(\omega_{2}\right)=\operatorname{Ber}\left(\omega_{1}+\omega_{2}\right)$.

Smoothing bounds from [DR23]

A continuous hybrid argument

- $(\mathbf{G}, \mathbf{y} \stackrel{\text { def }}{=} \mathbf{s G}+\mathbf{t})$
- Distinguisher \mathscr{A} between $\operatorname{LPN}\left(\omega_{0}\right)$ and $\operatorname{LPN}(\infty)$.

We build $\operatorname{LPN}(\omega|\mathbf{t}|)$ oracle.

- \mathscr{A} makes N queries to the oracle and has advantage ε.
- \mathscr{A} can be given any $\operatorname{LPN}(\omega)$-like oracle.
- Will accept with some probability $p(\omega)$.
- $p\left(\omega_{0}\right)=\frac{1}{2}+\varepsilon$
- $p(\omega) \rightarrow \frac{1}{2}-\varepsilon$ as $\omega \rightarrow \infty$
- $p(\omega)$ unknown for $\omega \in\left(\omega_{0}, \infty\right)$
- But can be estimated via statistical methods.

Acceptance behaviour of $\mathscr{A}^{\mathrm{LPN}(\omega)}$ must change as $\omega \rightarrow \infty$.

Estimating $p(\omega)$

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Not so easy to distinguish those two situations...

Shift your oracles

Idea: Zoom in and sample $\mathbf{r} \leftarrow \operatorname{Ber}^{\otimes n}\left(2^{x} \omega_{0}\right)$.

$$
\mathcal{O}_{0}(x) \approx \operatorname{LPN}\left(2^{x} \omega_{0}|\mathbf{t}|\right) \quad \text { and } \quad \mathcal{O}_{\mathbf{v}_{i}}(x) \approx \operatorname{LPN}\left(2^{x} \omega_{0}\left|\mathbf{t}+\mathbf{v}_{i}\right|\right)
$$

Define $p(x) \stackrel{\text { def }}{=} \mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{0}(x)}\right.$ accepts $)$.

$$
\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{\mathbf{v}_{i}}(x)} \text { accepts }\right)=p\left(x+\log \frac{\left|\mathbf{t}+\mathbf{v}_{i}\right|}{|\mathbf{t}|}\right)
$$

where

$$
\log \frac{\left|\mathbf{t}+\mathbf{v}_{i}\right|}{|\mathbf{t}|}= \begin{cases}\log \left(1+\frac{1}{t}\right)>0 & \text { if } i \notin \operatorname{Supp}(\mathbf{t}) \\ \leqslant 0 & \text { if } i \in \operatorname{Supp}(\mathbf{t})\end{cases}
$$

Shift your oracles (Cont'd)

Change of behaviour in $\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{0}(x)}\right.$ accepts $)$ should happen at some point x_{0}.

If $i \notin \operatorname{Supp}(\mathbf{t})$, behaviour of $\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{v_{i}}}(x)\right.$ accepts $)$ changes at some x_{0}^{\prime} such that

$$
x_{0}^{\prime}=x_{0}+\log \left(1+\frac{1}{t}\right) \approx x_{0}+\frac{1}{t} .
$$

Oracle Comparison Problem from [PRS17]

p is very constrained (Lipschitz etc...) \Rightarrow This can actually be detected in polynomial time!

Shifted hybrid argument

What about Structured Variants ?

What about Structured Variants ?

What about Structured Variants ?

[^4]
Open questions

\rightarrow How to make the reduction work in the structured case ?
\rightarrow Find better smoothing bounds to improve the reduction ?

[^0]: ${ }^{1}$ For the rates we consider

[^1]: ${ }^{2}$ Not exhaustive

[^2]: ${ }^{2}$ Not exhaustive

[^3]: ${ }^{2}$ Not exhaustive

[^4]: NOT independent ...

