
Unconditionally Secure Multiparty Computation
for Symmetric Functions with Low Bottleneck

Complexity

Reo Eriguchi
AIST, Japan

December 8, 2023

1

ASIACRYPT 2023

Secure Multiparty Computation (MPC)
• MPC for a function ℎ ∶ {0,1}𝑛→ {0,1}

𝑥𝑖 ∈ {0,1}

Protocol
ℎ(𝑥1, … , 𝑥𝑛)

Input

Output

Security

learns nothing but ℎ(𝑥1, … , 𝑥𝑛).

2

Secure Multiparty Computation (MPC)
• MPC for a function ℎ ∶ {0,1}𝑛→ {0,1}

𝑥𝑖 ∈ {0,1}

Protocol
ℎ(𝑥1, … , 𝑥𝑛)

Input

Output

Security

learns nothing but ℎ(𝑥1, … , 𝑥𝑛).

Details on our setting
• Semi-honest adversaries
• Preprocessing model

3

Secure Multiparty Computation (MPC)
• MPC for a function ℎ ∶ {0,1}𝑛→ {0,1}

𝑥𝑖 ∈ {0,1}

Protocol
ℎ(𝑥1, … , 𝑥𝑛)

Input

Output

Security

learns nothing but ℎ(𝑥1, … , 𝑥𝑛).

Details on our setting
• Semi-honest adversaries
• Preprocessing model

4

Correlated
randomnessOffline

Bottleneck Complexity
• Efficiency measure capturing the load-balancing aspect of protocols

[BJPY18]

Standard protocol

𝑚2

𝑚3 𝑚4

𝑚5

bears Ω(𝑛) communication

Bottleneck for efficiency if 𝑛 is large
5[BJPY18] Boyle, Jain, Prabhakaran, Yu, : The Bottleneck Complexity of Secure Multiparty Computation. ICALP 2018

Bottleneck Complexity
• Efficiency measure capturing the load-balancing aspect of protocols

[BJPY18]

Protocol with low BC

Maximum per-party communication cost is possibly 𝑜(𝑛)

= Bottleneck complexity Fit large-scale networks!6

Previous Results
• [BJPY18] showed that

it is impossible to securely compute all functions with 𝑜(𝑛) BC.

7

Previous Results
• [BJPY18] showed that

it is impossible to securely compute all functions with 𝑜(𝑛) BC.

• Computationally secure MPC for symmetric functions with 𝑜(𝑛) BC

ℎ 𝑥𝜎(1), … , 𝑥𝜎(𝑛) = ℎ 𝑥1, … , 𝑥𝑛 for any permutation 𝜎

8

Previous Results
• [BJPY18] showed that

it is impossible to securely compute all functions with 𝑜(𝑛) BC.

• Computationally secure MPC for symmetric functions with 𝑜(𝑛) BC

– Based on fully homomorphic encryption [BJPY18]

– Based on one-way functions [ORS22]

ℎ 𝑥𝜎(1), … , 𝑥𝜎(𝑛) = ℎ 𝑥1, … , 𝑥𝑛 for any permutation 𝜎

9[ORS22] Orlandi, Ravi, Scholl: On the bottleneck complexity of MPC with correlated randomness. PKC 2022

Previous Results
• [BJPY18] showed that

it is impossible to securely compute all functions with 𝑜(𝑛) BC.

• Computationally secure MPC for symmetric functions with 𝑜(𝑛) BC

– Based on fully homomorphic encryption [BJPY18]

– Based on one-way functions [ORS22]

Can we construct unconditionally secure MPC protocols
for symmetric functions with 𝑜(𝑛) BC?

ℎ 𝑥𝜎(1), … , 𝑥𝜎(𝑛) = ℎ 𝑥1, … , 𝑥𝑛 for any permutation 𝜎

10[ORS22] Orlandi, Ravi, Scholl: On the bottleneck complexity of MPC with correlated randomness. PKC 2022

Our Results
• Unconditionally secure protocols for symmetric functions such that:

• More efficient protocols tailored to
– AND function

– Private set intersection

Protocol Bottleneck complexity Correlated randomness Corruption

1st protocol* 𝑂(log𝑛) 𝑂 𝑛 𝑛 − 1

2nd protocol 𝑂 𝑛 𝑂 𝑛 𝑛 − 1

3rd protocol 𝑂 𝑛1/𝑑 log 𝑛 𝑂 𝑛1/𝑑 log 𝑛 < 𝑛/(𝑑 − 1)

* Independently discovered by [KOPR23]

11

𝑑 ≥ 2 is any constant

[KOPR23] Keller, Orlandi, Paskin-Cherniavsky, Ravi: MPC with low bottleneck-complexity: Information-theoretic security and more. ITC 2023

Warm-up
• Protocol for SUM (over a group 𝔾)

– Input: 𝑥𝑖
– Output: 𝑠 = σ𝑖 𝑥𝑖

12

Warm-up
• Protocol for SUM (over a group 𝔾)

– Input: 𝑥𝑖
– Output: 𝑠 = σ𝑖 𝑥𝑖

Offline

𝑟𝑖 𝑖∈[𝑛] ∶

additive shares of 0

𝑟𝑖

Corr. rand.

13

CR: 𝑂 log |𝔾|

Warm-up
• Protocol for SUM (over a group 𝔾)

– Input: 𝑥𝑖
– Output: 𝑠 = σ𝑖 𝑥𝑖

Online

𝑟𝑖

Corr. rand.

𝑚𝑛 = 𝑠 + σ𝑖 𝑟𝑖
= 𝑠

Output

𝑥𝑖

Input

14

Parties send
𝑚𝑖 ← 𝑚𝑖−1 + 𝑥𝑖 + 𝑟𝑖

BC: 𝑂 log |𝔾|

Warm-up
• Protocol for SUM (over a group 𝔾)

– Input: 𝑥𝑖
– Output: 𝑠 = σ𝑖 𝑥𝑖

Online

𝑟𝑖

Corr. rand.

𝑚𝑛 = 𝑠 + σ𝑖 𝑟𝑖
= 𝑠

Output

𝑥𝑖

Input

15

Parties send
𝑚𝑖 ← 𝑚𝑖−1 + 𝑥𝑖 + 𝑟𝑖

Opening secrets can be done with low BC

BC: 𝑂 log |𝔾|

Symmetric Function
• If ℎ is symmetric, ℎ(𝑥1, … , 𝑥𝑛) depends only on the number of 1’s.

ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

There exists 𝑓 ∶ 0,1,… , 𝑛 → {0,1} such that

16

One-Time Truth Table
• Secure computation of 𝑓(𝑠) based on the truth table

17
[IKM+13] Ishai, Kushilevitz, Meldgaard, Orlandi, Paskin-Cherniavsky: On the power of correlated randomness in secure computation. TCC 2013

[IKM+13]

𝐓𝑓 = 𝑓 0 ,… , 𝑓 𝑛

[0]
⋮
[1]
⋮
[0]
⋮
[0]

𝑠^

𝑟^
[0]
⋮
[0]
⋮
[1]
⋮
[0]

𝑠 − 𝑟 𝐓𝑓 ⋅

0
⋮
0
⋮
1
⋮
0

= 𝑓 𝑠𝑟 ,

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Offline

𝑟 ←$ ℤ𝑛+1 = 0,1,… , 𝑛 𝑟 𝑖

Correlated randomness

𝑟 𝑖 , 𝐞𝑟 𝑖 = 0 𝑖 , … , 1 𝑖 , … , 0 𝑖
⊤: additive shares

18

CR: 𝑂 𝑛

𝐞𝑟 = 0,… , 1,… , 0 ⊤

𝑟
^

0
^

𝑛
^

𝐞𝑟 𝑖

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Offline

𝑟 ←$ ℤ𝑛+1 = 0,1,… , 𝑛

𝐞𝑟 = 0,… , 1,… , 0 ⊤

𝑟
^

𝑟 𝑖

Correlated randomness

𝐞𝑟 𝑖

0
^

𝑛
^

𝑟 𝑖 , 𝐞𝑟 𝑖 = 0 𝑖 , … , 1 𝑖 , … , 0 𝑖
⊤: additive shares

19

CR: 𝑂 𝑛

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟
𝑟 𝑖

Correlated randomness

𝐞𝑟 𝑖

20

Can be done
with low BC

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(2) Permute 𝐞𝑟 𝑖 with shift 𝑠 − 𝑟:

𝐞𝑟 𝑖 → 𝐞𝑟+(𝑠−𝑟) 𝑖
= 𝐞𝑠 𝑖

𝑟 𝑖

Correlated randomness

𝐞𝑟 𝑖

21

Local
computation

Can be done
with low BC

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(2) Permute 𝐞𝑟 𝑖 with shift 𝑠 − 𝑟:

𝐞𝑟 𝑖 → 𝐞𝑟+(𝑠−𝑟) 𝑖
= 𝐞𝑠 𝑖

(3) Multiply 𝐞𝑠 𝑖 by 𝐓𝑓 = 𝑓 0 ,… , 𝑓 𝑛 :

𝑓 𝑠 𝑖 = 𝐓𝑓 ⋅ 𝐞𝑠 𝑖

(4) Open σ𝑖 𝑓 𝑠 𝑖 = 𝑓(𝑠)

𝑟 𝑖

Correlated randomness

𝐞𝑟 𝑖

22

Local
computation

Can be done
with low BC

Our First Protocol
• Input: 𝑥1, … , 𝑥𝑛
• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 , where 𝑠 = σ𝑖 𝑥𝑖

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(2) Permute 𝐞𝑟 𝑖 with shift 𝑠 − 𝑟:

𝐞𝑟 𝑖 → 𝐞𝑟+(𝑠−𝑟) 𝑖
= 𝐞𝑠 𝑖

(3) Multiply 𝐞𝑠 𝑖 by 𝐓𝑓 = 𝑓 0 ,… , 𝑓 𝑛 :

𝑓 𝑠 𝑖 = 𝐓𝑓 ⋅ 𝐞𝑠 𝑖

(4) Open σ𝑖 𝑓 𝑠 𝑖 = 𝑓(𝑠)

𝑟 𝑖

Correlated randomness

𝐞𝑟 𝑖

Local
computation

𝑂 log 𝑛 BC
23

Can be done
with low BC

Our Second Protocol
• 1st protocol has a large amount of correlated randomness.

Protocol Bottleneck complexity Correlated randomness

1st protocol 𝑂(log 𝑛) 𝑂 𝑛

2nd protocol 𝑂 𝑛 𝑂 𝑛

[0]

⋮

[1]

⋮

[0]

𝑂(𝑛)

1st Protocol

Bottleneck for efficiency

The overall cost
is sublinear

24

Reducing Correlated Randomness

𝑓 𝑠 = 𝑓 0 ,… , 𝑓 𝑛 ⋅

0
⋮
1
⋮
0

𝑠^

𝑓 𝑠 = 0,… , 1, … , 0 ⋅ 𝑓 0 ,… ⋅

0
⋮
1
⋮
0

𝐌𝑓

𝑞

𝑠2^

𝑠1
^

𝑝

25

The product of 𝑛-dim. matrix/vectors

𝑂(max 𝑝, 𝑞) = 𝑂 𝑛 correlated randomness

CRT implies the correspondence
𝜙 ∶ ℤ𝑛+1 ∋ 𝑠 ⟼ 𝑠1, 𝑠2 ∈ ℤ𝑝 × ℤ𝑞

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

26

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Offline
𝑟 ←$ ℤ𝑛+1

𝜙 𝑟 = 𝑟1, 𝑟2 ∈ ℤ𝑝 × ℤ𝑞

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

27

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Offline
𝑟 ←$ ℤ𝑛+1

𝐞𝑟1 = 0,… , 1, … , 0 ⊤

𝑟1
^

0
^ �̂�

𝜙 𝑟 = 𝑟1, 𝑟2 ∈ ℤ𝑝 × ℤ𝑞

𝐞𝑟2 = 0,… , 1, … , 0 ⊤

𝑟2
^

0
^ �̂�

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

28

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Offline
𝑟 ←$ ℤ𝑛+1

Correlated randomness

𝐞𝑟1 = 0,… , 1, … , 0 ⊤

𝑟1
^

0
^ �̂�

𝜙 𝑟 = 𝑟1, 𝑟2 ∈ ℤ𝑝 × ℤ𝑞

𝐞𝑟2 = 0,… , 1, … , 0 ⊤

𝑟2
^

0
^ �̂� CR : 𝑂(max 𝑝, 𝑞) = 𝑂 𝑛

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

𝑟 𝑖

𝐞𝑟1 𝑖

𝐞𝑟2 𝑖

29

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

𝑟 𝑖

𝐞𝑟1 𝑖

𝐞𝑟2 𝑖

Correlated randomness

30

Low BC

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(2) Decompose 𝜙 𝑠 − 𝑟 = (𝑦1, 𝑦2)

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

𝑟 𝑖

𝐞𝑟1 𝑖

𝐞𝑟2 𝑖

Correlated randomness

31

Low BC

Local
computation

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(3) Permute 𝐞𝑟𝑏 𝑖
with shift 𝑦𝑏:

𝐞𝑟𝑏 𝑖
→ 𝐞𝑟𝑏+𝑦𝑏 𝑖

= 𝐞𝑠𝑏 𝑖

(2) Decompose 𝜙 𝑠 − 𝑟 = (𝑦1, 𝑦2)

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

𝑟 𝑖

𝐞𝑟1 𝑖

𝐞𝑟2 𝑖

Correlated randomness

32

Low BC

Local
computation

Our Second Protocol
• Input: 𝑥1, … , 𝑥𝑛

• Output: ℎ 𝑥1, … , 𝑥𝑛 = 𝑓 𝑠 = 𝐞𝑠1
⊤ ⋅ 𝐌𝑓 ⋅ 𝐞𝑠2

Online

(1) Open σ𝑖(𝑥𝑖 − 𝑟 𝑖) = 𝑠 − 𝑟

(3) Permute 𝐞𝑟𝑏 𝑖
with shift 𝑦𝑏:

𝐞𝑟𝑏 𝑖
→ 𝐞𝑟𝑏+𝑦𝑏 𝑖

= 𝐞𝑠𝑏 𝑖

(2) Decompose 𝜙 𝑠 − 𝑟 = (𝑦1, 𝑦2)

𝑠 = σ𝑖 𝑥𝑖, 𝑠1, 𝑠2 = 𝜙(𝑠)

(4) Multiply 𝐞𝑠2 𝑖
with a constant matrix 𝐌𝑓:

𝐞𝑠2 𝑖
→ 𝐌𝑓𝐞𝑠2 𝑖

𝑟 𝑖

𝐞𝑟1 𝑖

𝐞𝑟2 𝑖

Correlated randomness

33

Low BC

Local
computation

Our Second Protocol
• The remaining step is to securely obtain

• How do we securely compute the product of secrets?

𝐞𝑠1
⊤ ⋅ 𝐌𝑓𝐞𝑠2 from 𝐞𝑠1 𝑖

and 𝐌𝑓𝐞𝑠2 𝑖

34

Our Second Protocol
• The remaining step is to securely obtain

• How do we securely compute the product of secrets?

Using Beaver triples

Standard multiplication protocol based on Beaver triples has low BC!

𝐞𝑠1
⊤ ⋅ 𝐌𝑓𝐞𝑠2 from 𝐞𝑠1 𝑖

and 𝐌𝑓𝐞𝑠2 𝑖

Novel observation

35

Both BC and CR are constant per multiplication

Multiplication based on Beaver Triples
• Input: 𝑥 𝑖 , 𝑦 𝑖 (𝑥, 𝑦 ∈ 0,1)

• Output: 𝑥𝑦 𝑖

Offline
𝑎, 𝑏 ←$ {0,1}
𝑐 ← 𝑎𝑏

𝑎 𝑖

Correlated randomness

𝑏 𝑖

𝑐 𝑖

36

Multiplication based on Beaver Triples
• Input: 𝑥 𝑖 , 𝑦 𝑖 (𝑥, 𝑦 ∈ 0,1)

• Output: 𝑥𝑦 𝑖

𝑎 𝑖

Correlated randomness

𝑏 𝑖

𝑐 𝑖

Online

(1) Open 𝑥′ = 𝑥 − 𝑎, 𝑦′ = 𝑦 − 𝑏

Low BC

37

Multiplication based on Beaver Triples
• Input: 𝑥 𝑖 , 𝑦 𝑖 (𝑥, 𝑦 ∈ 0,1)

• Output: 𝑥𝑦 𝑖

𝑎 𝑖

Correlated randomness

𝑏 𝑖

𝑐 𝑖

Online

(1) Open 𝑥′ = 𝑥 − 𝑎, 𝑦′ = 𝑦 − 𝑏

(2) Compute
𝑥𝑦 𝑖 = 𝑥′𝑦′ 𝑖 + 𝑥′ 𝑏 𝑖 + 𝑦′ 𝑎 𝑖 + 𝑐 𝑖

Local
computation

Low BC

38

Multiplication based on Beaver Triples
• Input: 𝑥 𝑖 , 𝑦 𝑖 (𝑥, 𝑦 ∈ 0,1)

• Output: 𝑥𝑦 𝑖

𝑎 𝑖

Correlated randomness

𝑏 𝑖

𝑐 𝑖

Online

(1) Open 𝑥′ = 𝑥 − 𝑎, 𝑦′ = 𝑦 − 𝑏

(2) Compute
𝑥𝑦 𝑖 = 𝑥′𝑦′ 𝑖 + 𝑥′ 𝑏 𝑖 + 𝑦′ 𝑎 𝑖 + 𝑐 𝑖

Local
computation

Low BC

Both BC and CR are constant per multiplication
39

Our Second Protocol
• 𝑂(𝑛) Beaver triples suffice for secure computation of 𝐞𝑠1

⊤ ⋅ 𝐌𝑓𝐞𝑠2 from

𝐞𝑠1 𝑖
and 𝐌𝑓𝐞𝑠2 𝑖

.

40

BC and CR of the protocol are 𝑂 𝑛

Summary
• Bottleneck complexity captures load-balancing aspect of MPC.

• Previous protocols computing symmetric functions with 𝑜(𝑛) BC
are computationally secure.

• We construct unconditionally secure protocols such that

• More efficient protocols tailored to AND function and PSI.

Protocol Bottleneck complexity Correlated randomness Corruption

1st protocol 𝑂(log𝑛) 𝑂 𝑛 𝑛 − 1

2nd protocol 𝑂 𝑛 𝑂 𝑛 𝑛 − 1

3rd protocol 𝑂 𝑛1/𝑑 log 𝑛 𝑂 𝑛1/𝑑 log 𝑛 < 𝑛/(𝑑 − 1)

41

𝑑 ≥ 2 is any constant

Future Work
• What is the optimal bottleneck complexity of computing symmetric functions?

– E.g., is there a secure protocol such that both BC and CR are 𝑂(log 𝑛)?

• Can we derive a lower bound on bottleneck complexity for symmetric functions?

– [BJPY18] derived a non-trivial lower bound for general functions.

• Can we achieve malicious security unconditionally?

– [BJPY18] showed a generic compiler based on heavy cryptographic primitives.

42

Thank you!

43

Please see https://eprint.iacr.org/2023/662 for the full paper.

https://eprint.iacr.org/2023/662

	スライド 1: Unconditionally Secure Multiparty Computation for Symmetric Functions with Low Bottleneck Complexity
	スライド 2: Secure Multiparty Computation (MPC)
	スライド 3: Secure Multiparty Computation (MPC)
	スライド 4: Secure Multiparty Computation (MPC)
	スライド 5: Bottleneck Complexity
	スライド 6: Bottleneck Complexity
	スライド 7: Previous Results
	スライド 8: Previous Results
	スライド 9: Previous Results
	スライド 10: Previous Results
	スライド 11: Our Results
	スライド 12: Warm-up
	スライド 13: Warm-up
	スライド 14: Warm-up
	スライド 15: Warm-up
	スライド 16: Symmetric Function
	スライド 17: One-Time Truth Table
	スライド 18: Our First Protocol
	スライド 19: Our First Protocol
	スライド 20: Our First Protocol
	スライド 21: Our First Protocol
	スライド 22: Our First Protocol
	スライド 23: Our First Protocol
	スライド 24: Our Second Protocol
	スライド 25: Reducing Correlated Randomness
	スライド 26: Our Second Protocol
	スライド 27: Our Second Protocol
	スライド 28: Our Second Protocol
	スライド 29: Our Second Protocol
	スライド 30: Our Second Protocol
	スライド 31: Our Second Protocol
	スライド 32: Our Second Protocol
	スライド 33: Our Second Protocol
	スライド 34: Our Second Protocol
	スライド 35: Our Second Protocol
	スライド 36: Multiplication based on Beaver Triples
	スライド 37: Multiplication based on Beaver Triples
	スライド 38: Multiplication based on Beaver Triples
	スライド 39: Multiplication based on Beaver Triples
	スライド 40: Our Second Protocol
	スライド 41: Summary
	スライド 42: Future Work
	スライド 43

