ASIACRYPT 2023

Unconditionally Secure Multiparty Computation for Symmetric Functions with Low Bottleneck Complexity

December 8, 2023

Reo Eriguchi
AIST, Japan

Secure Multiparty Computation (MPC)

- MPC for a function $h:\{0,1\}^{n} \rightarrow\{0,1\}$

Security

E8 learns nothing but $h\left(x_{1}, \ldots, x_{n}\right)$.

Secure Multiparty Computation (MPC)

- MPC for a function $h:\{0,1\}^{n} \rightarrow\{0,1\}$

Secure Multiparty Computation (MPC)

- MPC for a function $h:\{0,1\}^{n} \rightarrow\{0,1\}$

Bottleneck Complexity [B]PY18]

- Efficiency measure capturing the load-balancing aspect of protocols

Standard protocol

Bottleneck for efficiency if n is large

Bottleneck Complexity [BJPY18]

- Efficiency measure capturing the load-balancing aspect of protocols

Protocol with low BC

Maximum per-party communication cost is possibly $o(n)$
= Bottleneck complexity
Fit large-scale networks!

Previous Results

[BJPY18] showed that it is impossible to securely compute all functions with $o(n) B C$.

Previous Results

- [BJPY18] showed that it is impossible to securely compute all functions with $o(n) B C$.
- Computationally secure MPC for symmetric functions with $o(n) B C$ $h\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=h\left(x_{1}, \ldots, x_{n}\right)$ for any permutation σ

Previous Results

- [BJPY18] showed that it is impossible to securely compute all functions with $o(n) B C$.
- Computationally secure MPC for symmetric functions with $o(n) B C$ $h\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=h\left(x_{1}, \ldots, x_{n}\right)$ for any permutation σ
- Based on fully homomorphic encryption [BJPY18]
- Based on one-way functions [ORS22]

Previous Results

- [BJPY18] showed that it is impossible to securely compute all functions with $o(n) B C$.
- Computationally secure MPC for symmetric functions with $o(n) \mathrm{BC}$ $h\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=h\left(x_{1}, \ldots, x_{n}\right)$ for any permutation σ
- Based on fully homomorphic encryption [BJPY18]
- Based on one-way functions [ORS22]

Can we construct unconditionally secure MPC protocols for symmetric functions with $o(n) B C$?

Our Results

- Unconditionally secure protocols for symmetric functions such that:

Protocol	Bottleneck complexity	Correlated randomness	Corruption
1st protocol*	$O(\log n)$	$O(n)$	$n-1$
2nd protocol	$O(\sqrt{n})$	$O(\sqrt{n})$	$n-1$
3rd protocol	$O\left(n^{1 / d} \log n\right)$	$O\left(n^{1 / d} \log n\right)$	$<n /(d-1)$
* Independently discovered by [KOPR23]		$d \geq 2$ is any constant	

- More efficient protocols tailored to
- AND function
- Private set intersection

Warm-up

- Protocol for SUM (over a group \mathbb{G})
- Input: x_{i}
- Output: $s=\sum_{i} x_{i}$

:
8

Warm-up

- Protocol for SUM (over a group \mathbb{G})
- Input: x_{i}
- Output: $s=\sum_{i} x_{i}$

Corr. rand.
 additive shares of 0

CR: $O(\log |\mathbb{G}|)$

8

Warm-up

- Protocol for SUM (over a group \mathbb{G})
- Input: x_{i}
- Output: $s=\sum_{i} x_{i}$

Warm-up

- Protocol for SUM (over a group \mathbb{G})
- Input: x_{i}
- Output: $s=\sum_{i} x_{i}$

Corr. rand.

Online
Parties send

Opening secrets can be done with low BC

Symmetric Function

- If h is symmetric, $h\left(x_{1}, \ldots, x_{n}\right)$ depends only on the number of 1's. There exists $f:\{0,1, \ldots, n\} \rightarrow\{0,1\}$ such that

$$
h\left(x_{1}, \ldots, x_{n}\right)=f(s), \text { where } s=\sum_{i} x_{i}
$$

One-Time Truth Table [ккм+13]

- Secure computation of $f(s)$ based on the truth table

$$
\mathbf{T}_{f}=(f(0), \ldots, f(n))
$$

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Offline

$$
\begin{gathered}
r \leftarrow_{\$} \mathbb{Z}_{n+1}=\{0,1, \ldots, n\} \\
\mathbf{e}_{r}=(0, \ldots, \ldots, \ldots,)^{\top}(0, \ldots \\
\hat{0} \hat{r} \hat{n}
\end{gathered}
$$

$[r]_{i},\left[\mathbf{e}_{r}\right]_{i}=\left([0]_{i}, \ldots,[1]_{i}, \ldots,[0]_{i}\right)^{\top}:$ additive shares

Correlated randomness

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Online

Correlated randomness
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$

8 Sil
Can be done with low BC

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Online

Correlated randomness
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$
(2) Permute $\left[\mathbf{e}_{r}\right]_{i}$ with shift $s-r$:

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Online

Correlated randomness
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$
(2) Permute $\left[\mathbf{e}_{r}\right]_{i}$ with shift $s-r$:

$$
\left[\mathbf{e}_{r}\right]_{i} \rightarrow\left[\mathbf{e}_{r+(s-r)}\right]_{i}=\left[\mathbf{e}_{s}\right]_{i}
$$

(3) Multiply $\left[\mathbf{e}_{s}\right]_{i}$ by $\mathbf{T}_{f}=(f(0), \ldots, f(n))$:

$$
[r]_{i}\left[\mathbf{e}_{r}\right]_{i}
$$

Can be done with low BC

$$
[f(s)]_{i}=\mathbf{T}_{f} \cdot\left[\mathbf{e}_{s}\right]_{i}
$$

(4) Open $\sum_{i}[f(s)]_{i}=f(s)$

Our First Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)$, where $s=\sum_{i} x_{i}$

Online

Correlated randomness

Can be done with low BC
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$
(2) Permute $\left[\mathbf{e}_{r}\right]_{i}$ with shift $s-r$:

$$
\left[\mathbf{e}_{r}\right]_{i} \rightarrow\left[\mathbf{e}_{r+(s-r)}\right]_{i}=\left[\mathbf{e}_{s}\right]_{i}
$$

(3) Multiply $\left[\mathbf{e}_{s}\right]_{i}$ by $\mathbf{T}_{f}=(f(0), \ldots, f(n))$:

$$
[r]_{i}\left[\mathbf{e}_{r}\right]_{i}
$$

$$
[f(s)]_{i}=\mathbf{T}_{f} \cdot\left[\mathbf{e}_{s}\right]_{i}
$$

(4) Open $\sum_{i}[f(s)]_{i}=f(s)$

$$
O(\log n) \mathrm{BC}
$$

Our Second Protocol

- $1^{\text {st }}$ protocol has a large amount of correlated randomness.

Protocol	Bottleneck complexity	Correlated randomness
1st protocol	$O(\log n)$	$O(n)$
2nd protocol	$O(\sqrt{n})$	$O(\sqrt{n})$

Reducing Correlated Randomness

$$
f(s)=[f(0), \ldots, f(n)]\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right]<s
$$

CRT implies the correspondence $\phi: \mathbb{Z}_{n+1} \ni s \mapsto\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q}$

$$
f(s)=[0, \ldots, 1, \ldots, 0] \cdot \mathbf{M}_{f}\left[\cdot\left[\begin{array}{c}
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]<s_{2}\right.
$$

The product of \sqrt{n}-dim. matrix/vectors
$O(\max \{p, q\})=O(\sqrt{n})$ correlated randomness

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right) \quad s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right) \quad s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Offline

$$
\begin{aligned}
& r \leftarrow_{\$} \mathbb{Z}_{n+1} \\
& \phi(r)=\left(r_{1}, r_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q}
\end{aligned}
$$

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$

$$
s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)
$$

- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Offline

$$
\begin{aligned}
& r \leftarrow_{\$} \mathbb{Z}_{n+1} \\
& \phi(r)=\left(r_{1}, r_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q} \\
& \mathbf{e}_{r_{1}}=\underset{\hat{0}}{\left(0, \ldots,{ }_{\hat{1}}^{(0)}, \ldots, 0\right)^{\top}} \underset{\hat{p}}{\hat{r}_{1}} \\
& \left.\mathbf{e}_{r_{2}}=\underset{\hat{0}}{(0, \ldots,} \underset{\hat{r}_{2}}{\hat{r_{2}}} \underset{\hat{q}}{ }, \ldots, 0\right)^{\top}
\end{aligned}
$$

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$

$$
s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)
$$

- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

$$
\begin{aligned}
& \text { \&\%: Offline } \\
& r \leftarrow_{\$} \mathbb{Z}_{n+1} \\
& \phi(r)=\left(r_{1}, r_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q} \\
& \left.\mathbf{e}_{r_{1}}=\underset{\hat{0}}{(0, \ldots,} \underset{\hat{r}_{1}}{1}, \ldots, 0\right)^{\top} \\
& \left.\mathbf{e}_{r_{2}}=\underset{\hat{0}}{(0, \ldots,} \underset{\hat{r_{2}}}{1, \ldots, 0}\right)_{\hat{q}}^{\top}
\end{aligned}
$$

Correlated randomness

$\mathrm{CR}: O(\max \{p, q\})=O(\sqrt{n})$

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$

$$
s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)
$$

- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Online

Correlated randomness

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right) \quad s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Online

Correlated randomness

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right) \quad s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)$
- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Online

Correlated randomness
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$

$[r]_{i}$
$\left[\mathbf{e}_{r_{1}}\right]_{i}$
(3) Permute $\left[\mathbf{e}_{r_{b}}\right]_{i}$ with shift y_{b} :

$$
\left[\mathbf{e}_{r_{b}}\right]_{i} \rightarrow\left[\mathbf{e}_{r_{b}+y_{b}}\right]_{i}=\left[\mathbf{e}_{s_{b}}\right]_{i}
$$

Our Second Protocol

- Input: $\left(x_{1}, \ldots, x_{n}\right)$

$$
s=\sum_{i} x_{i},\left(s_{1}, s_{2}\right)=\phi(s)
$$

- Output: $h\left(x_{1}, \ldots, x_{n}\right)=f(s)=\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \cdot \mathbf{e}_{s_{2}}$

Online

Correlated randomness
(1) Open $\sum_{i}\left(x_{i}-[r]_{i}\right)=s-r$

(4) Multiply $\left[\mathbf{e}_{s_{2}}\right]_{i}$ with a constant matrix \mathbf{M}_{f} :

$$
\left[\mathbf{e}_{s_{2}}\right]_{i} \rightarrow\left[\mathbf{M}_{f} \mathbf{e}_{s_{2}}\right]_{i}
$$

Our Second Protocol

- The remaining step is to securely obtain

$$
\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \mathbf{e}_{s_{2}} \text { from }\left[\mathbf{e}_{s_{1}}\right]_{i} \text { and }\left[\mathbf{M}_{f} \mathbf{e}_{s_{2}}\right]_{i}
$$

- How do we securely compute the product of secrets?

Our Second Protocol

- The remaining step is to securely obtain

$$
\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \mathbf{e}_{s_{2}} \text { from }\left[\mathbf{e}_{s_{1}}\right]_{i} \text { and }\left[\mathbf{M}_{f} \mathbf{e}_{s_{2}}\right]_{i}
$$

- How do we securely compute the product of secrets?

Using Beaver triples

Novel observation

Standard multiplication protocol based on Beaver triples has low BC!
Both $B C$ and $C R$ are constant per multiplication

Multiplication based on Beaver Triples

- Input: $[x]_{i},[y]_{i}(x, y \in\{0,1\})$
- Output: $[x y]_{i}$

Correlated randomness

Multiplication based on Beaver Triples

- Input: $[x]_{i},[y]_{i}(x, y \in\{0,1\})$
- Output: $[x y]_{i}$

Online

(1) Open $x^{\prime}=x-a, y^{\prime}=y-b$

Low BC

Correlated randomness

Multiplication based on Beaver Triples

- Input: $[x]_{i},[y]_{i}(x, y \in\{0,1\})$
- Output: $[x y]_{i}$

Online

(1) Open $x^{\prime}=x-a, y^{\prime}=y-b$
(2) Compute

$$
[x y]_{i}=\left[x^{\prime} y^{\prime}\right]_{i}+x^{\prime}[b]_{i}+y^{\prime}[a]_{i}+[c]_{i}
$$

Correlated randomness

$$
\begin{gathered}
{[a]_{i}} \\
{[b]_{i}} \\
{[c]_{i}}
\end{gathered}
$$

Multiplication based on Beaver Triples

- Input: $[x]_{i},[y]_{i}(x, y \in\{0,1\})$
- Output: $[x y]_{i}$

Online

Low BC

Correlated randomness
(1) Open $x^{\prime}=x-a, y^{\prime}=y-b$
(2) Compute

$$
[x y]_{i}=\left[x^{\prime} y^{\prime}\right]_{i}+x^{\prime}[b]_{i}+y^{\prime}[a]_{i}+[c]_{i}
$$

Both BC and CR are constant per multiplication

Our Second Protocol

- $O(\sqrt{n})$ Beaver triples suffice for secure computation of $\mathbf{e}_{s_{1}}^{\top} \cdot \mathbf{M}_{f} \mathbf{e}_{s_{2}}$ from $\left[\mathbf{e}_{s_{1}}\right]_{i}$ and $\left[\mathbf{M}_{f} \mathbf{e}_{s_{2}}\right]_{i}$.

BC and CR of the protocol are $O(\sqrt{n})$

Summary

- Bottleneck complexity captures load-balancing aspect of MPC.
- Previous protocols computing symmetric functions with $o(n) B C$ are computationally secure.
- We construct unconditionally secure protocols such that

Protocol	Bottleneck complexity	Correlated randomness	Corruption
1st protocol	$O(\log n)$	$O(n)$	$n-1$
2nd protocol	$O(\sqrt{n})$	$O(\sqrt{n})$	$n-1$
3rd protocol	$O\left(n^{1 / d} \log n\right)$	$O\left(n^{1 / d} \log n\right)$	$<n /(d-1)$
			$d \geq 2$ is any constant

- More efficient protocols tailored to AND function and PSI.

Future Work

- What is the optimal bottleneck complexity of computing symmetric functions?
- E.g., is there a secure protocol such that both BC and CR are $O(\log n)$?
- Can we derive a lower bound on bottleneck complexity for symmetric functions?
- [BJPY18] derived a non-trivial lower bound for general functions.
- Can we achieve malicious security unconditionally?
- [BJPY18] showed a generic compiler based on heavy cryptographic primitives.

Thank you!

Please see https://eprint.iacr.org/2023/662 for the full paper.

