ASIACRYPT 2023

Unconditionally Secure Multiparty Computation for Symmetric Functions with Low Bottleneck Complexity

December 8, 2023

Reo Eriguchi AIST, Japan

Secure Multiparty Computation (MPC)

• MPC for a function $h : \{0,1\}^n \rightarrow \{0,1\}$

Secure Multiparty Computation (MPC)

• MPC for a function $h : \{0,1\}^n \rightarrow \{0,1\}$

Secure Multiparty Computation (MPC)

• MPC for a function $h : \{0,1\}^n \rightarrow \{0,1\}$

Bottleneck Complexity [BJPY18]

• Efficiency measure capturing the *load-balancing* aspect of protocols

[BJPY18] Boyle, Jain, Prabhakaran, Yu, : The Bottleneck Complexity of Secure Multiparty Computation. ICALP 2018 5

Bottleneck Complexity [BJPY18]

• Efficiency measure capturing the *load-balancing* aspect of protocols

Protocol with low BC

<u>Maximum per-party communication cost</u> is possibly o(n)

= Bottleneck complexity

• [BJPY18] showed that it is impossible to securely compute *all functions* with o(n) BC.

- [BJPY18] showed that it is impossible to securely compute *all functions* with o(n) BC.
- Computationally secure MPC for <u>symmetric functions</u> with o(n) BC

 $h(x_{\sigma(1)}, ..., x_{\sigma(n)}) = h(x_1, ..., x_n)$ for any permutation σ

- [BJPY18] showed that it is impossible to securely compute *all functions* with o(n) BC.
- Computationally secure MPC for <u>symmetric functions</u> with o(n) BC $h(x_{\sigma(1)}, ..., x_{\sigma(n)}) = h(x_1, ..., x_n)$ for any permutation σ
 - Based on fully homomorphic encryption [BJPY18]
 - Based on one-way functions [ORS22]

- [BJPY18] showed that
 it is impossible to securely compute *all functions* with *o(n)* BC.
- Computationally secure MPC for <u>symmetric functions</u> with o(n) BC $h(x_{\sigma(1)}, ..., x_{\sigma(n)}) = h(x_1, ..., x_n)$ for any permutation σ
 - Based on fully homomorphic encryption [BJPY18]
 - Based on one-way functions [ORS22]

Can we construct unconditionally secure MPC protocols for symmetric functions with o(n) BC?

Our Results

• Unconditionally secure protocols for symmetric functions such that:

Protocol	Bottleneck complexity	Correlated randomness	Corruption
1st protocol*	$O(\log n)$	O(n)	n - 1
2nd protocol	$O(\sqrt{n})$	$O(\sqrt{n})$	n - 1
3rd protocol	$O(n^{1/d}\log n)$	$O(n^{1/d}\log n)$	< n/(d-1)

* Independently discovered by [KOPR23]

 $d \geq 2$ is any constant

- More efficient protocols tailored to
 - AND function
 - Private set intersection

[KOPR23] Keller, Orlandi, Paskin-Cherniavsky, Ravi: MPC with low bottleneck-complexity: Information-theoretic security and more. ITC 2023

- Protocol for SUM (over a group \mathbb{G})
 - Input: x_i
 - Output: $s = \sum_i x_i$

- Protocol for SUM (over a group \mathbb{G})
 - Input: x_i
 - Output: $s = \sum_i x_i$ Corr. rand. r_i Offline $(r_i)_{i \in [n]}$: additive shares of 0 $CR: O(\log |G|)$

Opening secrets can be done with low BC

Symmetric Function

If h is symmetric, h(x₁, ..., x_n) depends only on the number of 1's.

 There exists f : {0,1, ..., n} → {0,1} such that

$$h(x_1, \dots, x_n) = f(s)$$
, where $s = \sum_i x_i$

One-Time Truth Table [IKM+13]

• Secure computation of f(s) based on the truth table

$$\mathbf{T}_f = (f(0), \dots, f(n))$$

[IKM+13] Ishai, Kushilevitz, Meldgaard, Orlandi, Paskin-Cherniavsky: On the power of correlated randomness in secure computation. TCC 2013

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, ..., x_n) = f(s)$, where $s = \sum_i x_i$

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, ..., x_n) = f(s)$, where $s = \sum_i x_i$

 $[r]_i, [\mathbf{e}_r]_i = ([0]_i, ..., [1]_i, ..., [0]_i)^{\mathsf{T}}$: additive shares

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, ..., x_n) = f(s)$, where $s = \sum_i x_i$

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, \dots, x_n) = f(s)$, where $s = \sum_i x_i$

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, \dots, x_n) = f(s)$, where $s = \sum_i x_i$

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, \dots, x_n) = f(s)$, where $s = \sum_i x_i$

• 1st protocol has a large amount of correlated randomness.

- Input: $(x_1, ..., x_n)$ • Output: $h(x_1, ..., x_n) = f(s) = \mathbf{e}_{s_1}^\top \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$
- *

- Input: $(x_1, ..., x_n)$
- $s = \sum_{i} x_i, \ (s_1, s_2) = \phi(s)$ • Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$

Offline $\begin{array}{c} \bullet \\ \hline r \leftarrow_{\$} \mathbb{Z}_{n+1} \\ \phi(r) = (r_1, r_2) \in \mathbb{Z}_p \times \mathbb{Z}_q \end{array}$

- Input: $(x_1, ..., x_n)$
- $s = \sum_{i} x_i, \ (s_1, s_2) = \phi(s)$ • Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$

$$\begin{array}{l}
\underbrace{\text{Offline}}{r \leftarrow_{\$} \mathbb{Z}_{n+1}} \\
\phi(r) = (r_1, r_2) \in \mathbb{Z}_p \times \mathbb{Z}_q \\
\mathbf{e}_{r_1} = (0, \dots, 1, \dots, 0)^{\top} \\
\hat{0} & \hat{r}_1 & \hat{p} \\
\mathbf{e}_{r_2} = (0, \dots, 1, \dots, 0)^{\top} \\
\hat{0} & \hat{r}_2 & \hat{q} \\
\end{array}$$

- Input: $(x_1, ..., x_n)$
- Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$

$$s = \sum_{i} x_i, \ (s_1, s_2) = \phi(s)$$

• Input: $(x_1, ..., x_n)$ • Output: $h(x_1, ..., x_n) = f(s) = \mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$ Online (1) Open $\Sigma (x - [x]) = c - x$

- Input: $(x_1, ..., x_n)$
- $s = \sum_i x_i, \ (s_1, s_2) = \phi(s)$ Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{s_2}$

- Input: (x_1, \ldots, x_n)
- $s = \sum_i x_i, \ (s_1, s_2) = \phi(s)$ • Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{S_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{S_2}$

- Input: $(x_1, ..., x_n)$
- $s = \sum_i x_i, \ (s_1, s_2) = \phi(s)$ • Output: $h(x_1, \dots, x_n) = f(s) = \mathbf{e}_{S_1}^{\mathsf{T}} \cdot \mathbf{M}_f \cdot \mathbf{e}_{S_2}$

• The remaining step is to securely obtain

$$\mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \mathbf{e}_{s_2}$$
 from $\left[\mathbf{e}_{s_1}\right]_i$ and $\left[\mathbf{M}_f \mathbf{e}_{s_2}\right]_i$

• How do we securely compute the product of secrets?

• The remaining step is to securely obtain

$$\mathbf{e}_{s_1}^{\mathsf{T}} \cdot \mathbf{M}_f \mathbf{e}_{s_2}$$
 from $\left[\mathbf{e}_{s_1}\right]_i$ and $\left[\mathbf{M}_f \mathbf{e}_{s_2}\right]_i$

• How do we securely compute the product of secrets?

Novel observation

Standard multiplication protocol based on Beaver triples has *low BC*!

Both BC and CR are constant per multiplication

- Input: $[x]_i, [y]_i \ (x, y \in \{0, 1\})$
- Output: $[xy]_i$

$$\begin{array}{c} & \underbrace{\text{Offline}}{a, b \leftarrow_{\$} \{0, 1\}} \\ c \leftarrow ab \end{array} \end{array} \xrightarrow{\left[a\right]_{i}} \\ \left[b\right]_{i} \\ \left[c\right]_{i} \end{array}$$

Correlated randomness

- Input: $[x]_i, [y]_i \ (x, y \in \{0, 1\})$
- Output: $[xy]_i$

computation

- Input: $[x]_i, [y]_i \ (x, y \in \{0, 1\})$
- Output: $[xy]_i$

- Input: $[x]_i, [y]_i \ (x, y \in \{0, 1\})$
- Output: $[xy]_i$

Both BC and CR are constant per multiplication

• $O(\sqrt{n})$ Beaver triples suffice for secure computation of $\mathbf{e}_{s_1}^{\top} \cdot \mathbf{M}_f \mathbf{e}_{s_2}$ from $[\mathbf{e}_{s_1}]_i$ and $[\mathbf{M}_f \mathbf{e}_{s_2}]_i$.

Summary

- Bottleneck complexity captures load-balancing aspect of MPC.
- Previous protocols computing symmetric functions with o(n) BC are <u>computationally secure</u>.
- We construct *unconditionally secure* protocols such that

Protocol	Bottleneck complexity	Correlated randomness	Corruption
1st protocol	$O(\log n)$	O(n)	n-1
2nd protocol	$O(\sqrt{n})$	$O(\sqrt{n})$	n-1
3rd protocol	$O(n^{1/d}\log n)$	$O(n^{1/d}\log n)$	< n/(d-1)

 $d\geq 2$ is any constant

• More efficient protocols tailored to AND function and PSI.

Future Work

- What is the optimal bottleneck complexity of computing symmetric functions?
 - E.g., is there a secure protocol such that both BC and CR are $O(\log n)$?
- Can we derive a lower bound on bottleneck complexity for *symmetric* functions?
 - [BJPY18] derived a non-trivial lower bound for *general* functions.
- Can we achieve malicious security unconditionally?
 - [BJPY18] showed a generic compiler based on heavy cryptographic primitives.

Thank you!

Please see <u>https://eprint.iacr.org/2023/662</u> for the full paper.