More Insight on Deep Learning-aided Cryptanalysis

Zhenzhen Bao Jinyu Lu Yiran Yao Liu Zhang

4 – 8 December 2023, Asiacrypt

Differential-based Neural Distinguishers [Goh19]

Task: distinguishing two types of ciphertext pairs

Positive
$$(C, C')$$
, $Y = 1$, where $(C, C') \xleftarrow{\text{Enc}} ((P, P') | P \leftarrow_{\$}, P' = P \oplus \Delta_I)$
Negative (C, C') , $Y = 0$, where $(C, C') \xleftarrow{\text{Enc}} ((P, P') | P \leftarrow_{\$}, P' \leftarrow_{\$})$

Differential-based Neural Distinguishers [Goh19]

Task: distinguishing two types of ciphertext pairs

Positive
$$(C, C')$$
, $Y = 1$, where $(C, C') \xleftarrow{\operatorname{Enc}} ((P, P') | P \leftarrow_{\$}, P' = P \oplus \Delta_I)$
Negative (C, C') , $Y = 0$, where $(C, C') \xleftarrow{\operatorname{Enc}} ((P, P') | P \leftarrow_{\$}, P' \leftarrow_{\$})$

No.	w	L						Τı	ai	n	X							Y
0	$x \\ y \\ x' \\ y'$	1 0 0 0	0 1 0 1	1 0 1 0	1 1 1 1	0 0 0 1	1 0 0 0	0 1 1 0	0 1 1 0	1 1 0 1	1 1 0 1	1 1 0 0	0 0 1 1	0 1 1 0	1 0 1 1	0 1 0 0	1 1 1 0	1
1	$x \\ y \\ x' \\ y'$	0 0 1 0	1 0 0 0	0 0 0 0	0 0 1 0	1 0 1 0	1 0 1 1	1 1 1 0	0 0 0 0	0 0 0 1	0 0 1 1	0 1 1 0	0 1 1 0	1 0 0 1	0 0 1 1	0 0 0 1	0 0 0 0	0
2	$x \\ y \\ x' \\ y'$	1 0 0 0	0 1 0 0	0 1 1 0	0 1 0 1	1 1 1 1	0 1 1 0	0 0 0 1	0 1 1 0	0 1 0 0	1 1 1 0	1 1 0 0	00000	1 1 1 1	0 1 0 1	0 1 1 0	0 0 1 0	1
3	$x \\ y \\ x' \\ y'$	1 1 1 1	1 1 0 1	1 0 1 0	1 0 0 1	0 1 1 1	1 0 1 0	0 0 1 0	1 1 0 1	1 1 0 1	1 1 1 0	1 1 0 0	0 0 1 0	1 1 0 1	1 1 1 0	1 1 0 1	1 1 0 0	0
4	$x \\ y \\ x' \\ y'$	0 0 1 1	0 1 1 1	1 1 0 0	1 0 1 0	1 0 1 1	0 0 0 0	0 0 1 1	0 1 0 1	1 1 0 1	1 0 0 1	0 1 1 0	0 1 1 1	1 0 0 0	0 0 1 1	1 0 0 1	0 1 1 1	1
5	$x \\ y \\ x' \\ y'$	0 0 1 1	0 1 0 1	0 1 1 0	0 0 1 1	0 1 1 1	0 0 0 0	0 0 0 1	1 1 1 0	0 0 1 0	1 1 0 0	0 0 0 0	1 1 0 1	1 1 0 0	0 1 0 0	0 1 0 1	0 0 1 0	1
6	$x \\ y \\ x' \\ y'$	1 1 0 0	0 0 1 0	0 1 0 0	0 1 0 0	0 1 0 1	1 1 1 1	0 0 0 1	0 1 0 0	1 1 1 1	0 0 1 1	1 1 1 0	1 1 0 1	0 1 1 0	0 1 1 0	0 0 1 0	0 1 1 0	0
7	$x \\ y \\ x' \\ y' \\ y'$	1 0 1 1	1 1 1 0	1 1 1 0	1 0 0 0	0 1 1 0	1 0 0 1	1 1 1 1	1 0 1 0	1 0 0 0	1 1 0 1	1 1 1 0	0 1 1 1	0 1 1 0	1 0 0 0	1 1 1 0	0 0 0 0	0

Algorithm 1: Encryption of SPECK32/64

Input:
$$P := (x_0, y_0), \{k_0, \dots, k_{21}\}$$

Output: $C = (x_{22}, y_{22})$
for $r = 0$ to 21 do
 $\begin{vmatrix} x_{r+1} \leftarrow x_r^{\gg 7} \boxplus y_r \oplus k_r \\ y_{r+1} \leftarrow y_r^{\ll 2} \oplus x_{r+1} \end{vmatrix}$
end

Feistel-like cipher: Speck32/64

/36

Evaluation [Goh19]

No.	w	Т					Ve	erif	fica	ıti	on	X							\boldsymbol{Y}	
0	$x \\ y \\ x' \\ y'$	0 0 1 0	1 0 1 0	0 1 0 1	0 1 0 0	1 1 1 1	1 1 0 0	1 0 0 1	0 1 1 0	1 1 0 0	1 0 0 0	0 0 1 0	0 1 1 0	0 1 1 1	0 1 1 1	1 1 0 0	1 0 0 0	0.35	0	ΤN
1	$x \\ y \\ x' \\ y'$	0 1 1 0	0 1 0 1	0 1 1 1	1 0 1 1	1 0 0 1	1 0 0 0	1 1 1 0	1 1 1 0	1 0 1 1	0 1 1 1	0 1 0 0	1 1 1 0	1 1 1 0	0 1 0 1	1 1 1 1	0 0 1 1	0.67	0	FP
2	$x \\ y \\ x' \\ y'$	0 1 1 0	1 1 0 0	1 0 1 0	1 0 0 0	0 1 0 0	1 0 1 0	1 0 0 0	1 0 0 0	1 1 0 0	1 1 1 1	1 0 1 1	0 1 1 1	0 1 1 1	0 0 1 0	1 0 1 0	0 1 0 1	0.74	1	тр
3	$x \\ y \\ x' \\ y'$	0 1 0 1	0 1 1 1	1 0 0 0	0 0 0 1	0 0 1 0	1 1 0 0	1 0 0 0	0 1 0 1	0 0 0 0	0 1 0 0	1 0 1 0	1 0 0 0	1 0 0 1	1 1 1 0	0 1 1 1	1 1 1 1	0.63	0	FP
4	$x \\ y \\ x' \\ y'$	0 1 0 1	1 1 0 0	1 1 0 1	1 0 0	1 1 0 0	1 0 1 0	0 0 1 1	0 0 0 0	0 1 0 0	0 1 0 0	0 1 1 0	1 0 1 0	0 0 0 1	1 0 1 0	0 1 1 1	0 0 1 0	0.46	1	FN
5	$x \\ y \\ x' \\ y'$	0 0 1 1	1 0 1 0	1 1 1 0	1 1 0 0	0 1 1 0	1 1 0 1	1 1 1 1	1 0 0 0	0 1 1 0	0 0 0 0	1 0 1 1	1 0 1 0	0 1 1 1	1 1 1 0	1 1 1 0	1 0 1 1	0.42	0	ΤN
6	$x \\ y \\ x' \\ y'$	0 0 1 0	1 0 0	0 1 0 0	0 0 0 0	1 1 0 0	1 1 1 1	1 1 1 0	1 0 0 1	1 1 0 0	0 1 1 0	0 0 1 0	0 0 1 1	1 1 1 0	0 1 0 0	0 0 1 1	0 0 1 1	0.66	1	ТР
7	$x \\ y \\ x'$	1 1 0	1 1 0	1 0 1	0 1 1	0 1 0	0 0 1	1 0 0	1 1 0	1 0 0	1 0 0	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	0.77	1	тр

import numpy as np

```
def evaluate_tiny(net,X,Y):
    Z = net.predict(X,batch_size=10000).flatten();
    Zbin = (Z > 0.5);
    diff = Y - Z;
    mse = np.mean(diff*diff);
    n = len(Z);
    n0 = np.sum(Y==0);
    n1 = np.sum(Y==1);
    acc = np.sum(Zbin == Y) / n;
    tpr = np.sum(Zbin [Y==1]) / n1;
    tnr = np.sum(Zbin [Y==0] == 0) / n0;
    return (acc, tpr, tnr, mse)
```

acc: 0.625, tpr: 0.75, tnr: 0.5, mse: 0.20905

Results [Goh19]

Accuracy of Gohr's neural distinguishers on SPECK32/64 [Goh19]

#R	Name	Accuracy	True Positive Rate	True Negative Rate
5	$\mathcal{DD}^{ ext{SPECK}_{5R}}$	0.911	0.877	0.947
5	$\mathcal{ND}^{ ext{Speck}_{5R}}$	0.929	0.904	0.954
6	$\mathcal{DD}^{ ext{Speck}_{6R}}$	0.758	0.680	0.837
6	$\mathcal{ND}^{ ext{Speck}_{6R}}$	0.788	0.724	0.853
7	$\mathcal{DD}^{\mathrm{Speck}_{7R}}$	0.591	0.543	0.640
7	$\mathcal{ND}^{ ext{Speck}_{7R}}$	0.616	0.533	0.699
8	$\mathcal{DD}^{ ext{Speck}_{8R}}$	0.512	0.496	0.527
8	$\mathcal{ND}^{ ext{Speck}_{8R}}$	0.514	0.519	0.508

$$Z_{\mathcal{DD}} = \begin{cases} 1 & \text{if } \text{DDT}[\Delta_{in}, \Delta_C] > \frac{1}{2^{32} - 1} \\ 0 & \text{otherwise} \end{cases}$$

Where the extra advantages of \mathcal{ND} comes from

- Previous research suggests that these distinguishers rely on differential distributions in the penultimate and antepenultimate rounds [Ben+21].
- The neural distinguishers can make finer distinctions than mere difference equivalence classes [Goh19].
- What specific knowledge these neural distinguishers learn beyond DDT?

What are the Additional Features that \mathcal{DD} Missed?

What are the Additional Features that \mathcal{DD} Missed?

Linear Constraints for an XOR-differential Through \boxplus

Observation \star

Let $\delta = (\alpha, \beta \mapsto \gamma)$ be a possible XOR-differential through addition modulo $2^n (\boxplus)$. For (x, y) and $(x \oplus \alpha, y \oplus \beta)$ be a conforming pair of δ , x and y should satisfy the follows. For $0 \le i < n - 1$, if $eq(\alpha, \beta, \gamma)_i = 0$

$$\begin{array}{ll} x_i \oplus y_i = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \alpha_i, & \text{if } \alpha_i \oplus \operatorname{xor}(\alpha, \beta, \gamma)_i = 0, \\ x_i \oplus c_i = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \alpha_i, & \text{if } \alpha_i \oplus \operatorname{xor}(\alpha, \beta, \gamma)_i = 0, \\ y_i \oplus c_i = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \beta_i, & \text{if } \alpha_i \oplus \operatorname{xor}(\alpha, \beta, \gamma)_i = 1, \end{array} \right\} \quad \text{if } \alpha_i \oplus \beta_i = 1, \Biggr\}$$

where c_i is the *i*-th carry bit, eq(a, b, d) = 1 if and only if a = b = d, $xor(a, b, d) = a \oplus b \oplus d$.

Fixed-y probability of an XOR-differential Through \boxplus

Observation \star

Let $\delta = (\alpha, \beta \mapsto \gamma)$ be a possible XOR-differential through addition modulo $2^n (\boxplus)$. For (x, y) and $(x \oplus \alpha, y \oplus \beta)$ be a conforming pair of δ , x and y should satisfy the follows. For $0 \le i < n-1$, if $eq(\alpha, \beta, \gamma)_i = 0$

$$\begin{array}{ll} x_{i} \oplus y_{i} = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \alpha_{i}, & \text{if } \alpha_{i} \oplus \operatorname{xor}(\alpha, \beta, \gamma)_{i} = 0, \\ x_{i} \oplus c_{i} = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \alpha_{i}, & \text{if } \alpha_{i} \oplus \operatorname{xor}(\alpha, \beta, \gamma)_{i} = 0, \\ y_{i} \oplus c_{i} = \operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \beta_{i}, & \text{if } \alpha_{i} \oplus \operatorname{xor}(\alpha, \beta, \gamma)_{i} = 1, \end{array} \right) & \text{if } \alpha_{i} \oplus \beta_{i} = 1, \end{array}$$

where c_i is the *i*-th carry bit, eq(a, b, d) = 1 if and only if a = b = d, $xor(a, b, d) = a \oplus b \oplus d$.

- At bit positions *i* and *i* + 1, a difference tuple $(\alpha_{i+1,i}, \beta_{i+1,i}, \gamma_{i+1,i})$ that satisfies $eq(\alpha_i, \beta_i, \gamma_i) = 0$ imposes 1-bit linear constraint on $(x_i, y_i), (x_i, c_i), \text{ or } (y_i, c_i)$.
- Suppose the probability of $(\alpha, \beta \mapsto \gamma)$ is p, then the fixed- (x_i, y_i, c_i) probability

$$\tilde{p} = \begin{cases} 2 \cdot p & \text{the constraint is fulfilled,} \\ 0 & \text{the constraint is not fulfilled} \end{cases}$$

Case No.	Difference	Constraint on values	Known
$\operatorname{Cxy}_{(i+1,i)}$	$\begin{cases} eq(\alpha,\beta,\gamma)_i = 0, \\ \alpha_i \oplus \beta_i = 0. \end{cases}$	$\mathbf{xor}(\alpha,\beta,\gamma)_{i+1} \oplus \alpha_i = x_i \oplus y_i$	None
$\operatorname{Cxc}_{(i+1,i)}$	$\begin{cases} eq(\alpha, \beta, \gamma)_i = 0, \\ \alpha_i \oplus \beta_i = 1, \\ \alpha_i \oplus xor(\alpha, \beta, \gamma)_i = 0. \end{cases}$	$\mathbf{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \alpha_i = x_i \oplus c_i$	None
$\operatorname{Cyc}_{(i+1,i)}$	$\begin{cases} eq(\alpha, \beta, \gamma)_i = 0, \\ \alpha_i \oplus \beta_i = 1, \\ \alpha_i \oplus \operatorname{xor}(\alpha, \beta, \gamma)_i = 1. \end{cases}$	$\operatorname{xor}(\alpha, \beta, \gamma)_{i+1} \oplus \beta_i = y_i \oplus c_i$	$y_i \oplus c_i$

"Known" indicate whether the fulfillment of the condition might be known in SPECK32/64's last \blacksquare .

- In SPECK32/64, one can only know the value of y among the tuple (x, y, c) for the last $\boxplus \Rightarrow$
- One needs to consider bit positions corresponds to the third case named $Cyc_{(i+1,i)}$.

Fixed-y probability

• In case $\operatorname{Cyc}_{(i+1,i)}$, the constraint is on $y_i \oplus c_i$. The value of c_i might be unknown, but

$$c_i = x_{i-1}y_{i-1} \oplus (x_{i-1} \oplus y_{i-1})c_{i-1}.$$

• The knowledge on c_i might still be known when the difference at the (i-1)-th bit satisfies $eq(\alpha_{i-1}, \beta_{i-1}, \gamma_{i-1}) = 0$.

Example $CxyO_{(i,i-1)}$

• When
$$\begin{cases} (\alpha_i, \beta_i, \gamma_i) = (0, 1, 0), \\ (\alpha_{i-1}, \beta_{i-1}, \gamma_{i-1}) = (1, 1, 0) \end{cases}$$
, one knows that
$$\begin{cases} \mathsf{eq}(\alpha, \beta, \gamma)_{i-1} = 0, \\ \alpha_{i-1} \oplus \beta_{i-1} = 0, \\ \mathsf{xor}(\alpha, \beta, \gamma)_i \oplus \alpha_{i-1} = 0. \end{cases}$$

• According to the Observation \star , it is case $Cxy0_{(i,i-1)}$, one has that $x_{i-1} \oplus y_{i-1} = 0$.

• Thus,
$$c_i = x_{i-1}y_{i-1} \oplus (x_{i-1} \oplus y_{i-1})c_{i-1} = y_{i-1}$$
.

- Therefore, $y_i \oplus c_i = y_i \oplus y_{i-1}$.
- As a consequence, the fulfillment of the constraint in case $Cyc_{(i+1,i)}$ can be effectively predicted by observing whether $y_i \oplus y_{i-1} = xor(\alpha, \beta, \gamma)_{i+1} \oplus \beta_i$.

Case No.	Difference	Value	Known
$Cy0c0_{(i,i-1)}$		$y_{i-1} = 0, c_{i-1} = 0$	$c_i = 0$
$\operatorname{Cy1c1}_{(i,i-1)}$		$y_{i-1} = 1, c_{i-1} = 1$	c_i = 1
$Cxy0_{(i,i-1)}$	$ \operatorname{Cxy}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \alpha_{i-1} = 0$	$x_{i-1} \oplus y_{i-1} = 0$	$c_i = y_{i-1}$
$Cxy1_{(i,i-1)}$	$ \operatorname{Cxy}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \alpha_{i-1} = 1$	$x_{i-1} \oplus y_{i-1} = 1$	$c_i = c_{i-1}$
$\operatorname{Cxc0}_{(i,i-1)}$	$ \operatorname{Cxc}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \alpha_{i-1} = 0$	$x_{i-1} \oplus c_{i-1} = 0$	$c_i = c_{i-1}$
$\operatorname{Cxc1}_{(i,i-1)}$	$ \operatorname{Cxc}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \alpha_{i-1} = 1$	$x_{i-1} \oplus c_{i-1} = 1$	$c_i = y_{i-1}$
$\operatorname{Cyc0}_{(i,i-1)}$	$ \operatorname{Cyc}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \beta_{i-1} = 0$	$y_{i-1} \oplus c_{i-1} = 0$	$c_i = y_{i-1}$
$\operatorname{Cyc1}_{(i,i-1)}$	$ \operatorname{Cyc}_{(i,i-1)} \text{ and } \operatorname{xor}(\alpha,\beta,\gamma)_i \oplus \beta_{i-1} = 1$	$y_{i-1} \oplus c_{i-1} = 1$	$c_i = x_{i-1}$

Cases for deducing the knowledge of the i-th carry bit c_i

- Combining case $\operatorname{Cyc}_{(i+1,i)}$ with cases where c_i can be known, one gets several cases where the knowledge on y can be used to check whether the differential constraints are fulfilled.
- Apart from the general cases (C3 and C4), there are some special cases (C1 and C2) at the two least significant bits since the carry bit c_0 is 0.

Case	Difference	Known
No.		
C1	$\operatorname{Cyc}_{(0,-1)}$	$\mid \mathtt{xor}(lpha,eta,\gamma)_1 \oplus eta_0 = y_0$
C2	$Cyc_{(2,1)}$ and $Cy0_{(1,0)}$	$\mid \mathtt{xor}(lpha,eta,\gamma)_2\opluseta_1$ = y_1
C3	$\operatorname{Cyc}_{(i+1,i)}$ and $(\operatorname{Cxy0}_{(i,i-1)} \text{ or } \operatorname{Cxc1}_{(i,i-1)} \text{ or } \operatorname{Cyc0}_{(i,i-1)})$	$\mathbf{xor}(lpha,eta,\gamma)_{i+1}\opluseta_i=y_i\oplus y_{i-1}$
C4	$Cyc_{(i+1,i)}$ and $(Cxy1_{(i,i-1)} \text{ or } Cxc0_{(i,i-1)})$ and $(Cxy0_{(i-1,i-2)} \text{ or } Cxc1_{(i-1,i-2)} \text{ or } Cyc0_{(i-1,i-2)})$	$\left \operatorname{xor}(\alpha,\beta,\gamma)_{i+1} \oplus \beta_i = y_i \oplus y_{i-2} \right _{12}$

Cases where the knowledge on y can be used to check the fulfillment of the differential constraints

Case			Observatio	n *		Mult Cor [Let	ti-bit nsts. u13]	dif	Quasi- ferential [BR22]	Extended DLCT [CY21]
No.	Different	ial	Value		Observe	org	new	diff	mask (w)	selected bits
C1	$\left \begin{array}{c}\alpha_{1,0}\\\beta_{1,0}\\\gamma_{1,0}\end{array}\right $	*1 *0 *1	$x_{1,0} \ y_{1,0} \ z_{1,0}$	** * * **	$\begin{vmatrix} y_0 = \alpha_1 \oplus \\ \beta_1 \oplus \gamma_1 \oplus 0 \end{vmatrix}$	-x -x	-x -0 -x	01 00 01	$ \begin{array}{c} 00\\ 01\\ 00\\ \end{array} + 2^{0} \end{array} $	$egin{array}{l} [x_1,y_1,z_1],[x_1',y_1',z_1',y_0'] \end{array}$
C2	$ \begin{vmatrix} \alpha_{2,1,0} \\ \beta_{2,1,0} \\ \gamma_{2,1,0} \end{vmatrix} $	*1* *0* *1*	$x_{2,1,0}\ y_{2,1,0}\ z_{2,1,0}$	*** * * () ***	$\begin{vmatrix} y_1 = \alpha_2 \oplus \\ \beta_2 \oplus \gamma_2 \oplus 0 \end{vmatrix}$	-x? 0 -x?	-x? -00 -x?	010 000 010	$\begin{array}{c} 000\\ 011\\ 000 \end{array} + 2^{-1} \end{array}$	$[x_2, y_2, z_2, y_0], \ [x_2', y_2', z_2', y_1']$
C3	$\begin{vmatrix} \alpha_{i+1,i,i-1} \\ \beta_{i+1,i,i-1} \\ \gamma_{i+1,i,i-1} \end{vmatrix}$	*01 *11 *00	$x_{i+1,i,i-1} \ y_{i+1,i,i-1} \ z_{i+1,i,i-1}$	*** * <mark>**</mark> ***	$\begin{vmatrix} y_i \oplus y_{i-1} = \\ \alpha_{i+1} \oplus \beta_{i+1} \oplus \\ \gamma_{i+1} \oplus 1 \end{vmatrix}$	x -xx 	x ->x 	001 011 000	$\begin{array}{c} 000\\ 011\\ 000 \end{array} - 2^0 \end{array}$	$egin{array}{l} [x_{i+1},y_{i+1},z_{i+1},$
C3	$\begin{vmatrix} \alpha_{i+1,i,i-1} \\ \beta_{i+1,i,i-1} \\ \gamma_{i+1,i,i-1} \end{vmatrix}$	*11 *00 *11	$x_{i+1,i,i-1} \ y_{i+1,i,i-1} \ z_{i+1,i,i-1}$	*** * * * ***	$\begin{vmatrix} y_i \oplus y_{i-1} = \\ \alpha_{i+1} \oplus \beta_{i+1} \oplus \\ \gamma_{i+1} \oplus 0 \end{vmatrix}$	-xx -xx	-xx -=- -xx	011 000 011	$\begin{array}{c} 000\\ 011\\ 000 \end{array} + 2^{0} \end{array}$	$egin{array}{l} [x_{i+1},y_{i+1},z_{i+1},$
C4	$\begin{vmatrix} \alpha_{i+1,i,i-1,i-2} \\ \beta_{i+1,i,i-1,i-2} \\ \gamma_{i+1,i,i-1,i-2} \end{vmatrix}$	2 *111 *010 *101	$x_{i+1,i,i-1,i-2} \ y_{i+1,i,i-1,i-2} \ z_{i+1,i,i-1,i-2}$	**** * <mark>*</mark> ** ****	$\begin{array}{c} y_i \oplus y_{i-2} = \\ \alpha_{i+1} \oplus \beta_{i+1} \oplus \\ \gamma_{i+1} \oplus 0 \end{array}$	-xxx x- -x-x	-xxx - ² x- -x-x	0111 0010 0101	$\begin{array}{c} 0000\\ 0101\\ 0000 \end{array} + 2^0 \end{array}$	$egin{aligned} & [x_{i+1},y_{i+1},z_{i+1},$
0: =:	$y_i = y'_i = 0$ $y'_i = y_i = y_{i-1}$	1: y !: y	$y_i = y'_i = 1$ $y'_i = y_i \neq y_{i-1}$	-: ; <: ;	$y_i = y'_i$ $y'_i \neq y_i = y_{i-1}$	$\begin{array}{c} \mathbf{x:} y_i \\ \mathbf{>:} y'_i \end{array}$	$ \begin{array}{c} \neq y'_i \\ \neq y_i \neq y \end{array} $	2 0	: 2.5-bit	const. "28000014"

A simple procedure to improve the DDT-based distinguisher: $\mathcal{YD}^{Speck_{rR}}$

For an *r*-round SPECK32/64, given its DDT_(0040, 0000), one does the following to improve a DDT-based distinguisher and gets a distinguisher named $\mathcal{YD}^{SPECK_{rR}}$.

- Compute the bias (towards 0) of each bit of $(\delta_R^{r-2})^{\ll 2}$;
- Predicts the value of each bit of (δ^{r-2}_R)^{≪2} according to the bias (supposes it to be 0 if its bias ≥ 0 and 1 if its bias < 0), and denotes the absolute bias of the *i*-bit of ((δ^{r-2}_R)^{≪2})^{≫7} by ε_α(*i*).
- For each output pair $((C_L, C_R), (C'_L, C'_R))$ of *r*-round SPECK32/64, one does the follows to predict its classification.

A simple procedure to improve the DDT-based distinguisher: $\mathcal{YD}^{\text{Speck}_{rR}}$ Predicts the value of each bit of $(\delta_{R}^{r-2})^{\ll 2}$ according to the bias.

A simple procedure to improve the DDT-based distinguisher: $\mathcal{YD}^{Speck_{rR}}$

- Get the differential probability p of (0040, 0000) $\mapsto (C_L \oplus C'_L, C_R \oplus C'_R)$ by looking up the table $DDT_{(0040, 0000)}[(C_L \oplus C'_L, C_R \oplus C'_R)]$
- **2** Compute the following information around the last \boxplus from $((C_L, C_R), (C'_L, C'_R))$:
 - $\begin{array}{l} \bullet \quad \gamma \leftarrow C_L \oplus C'_L, \\ \bullet \quad \beta \leftarrow (C_L \oplus C_R \oplus C'_L \oplus C'_R)^{\gg 2}, \\ \bullet \quad \alpha \leftarrow ((\delta_R^{-2})^{\ll 2} \oplus \beta)^{\gg 7}, \\ \bullet \quad y \leftarrow (C_L \oplus C_R)^{\gg 2}. \end{array}$
- **(a)** For bit position 0, if $\epsilon_{\alpha}(1) > \tau$ and $\epsilon_{\alpha}(0) > \tau$, do:
 - If $\operatorname{Cyc}_{(0,-1)}$, do: $p \leftarrow (1 + (-1)^{\operatorname{xor}(\alpha,\beta,\gamma)_1 \oplus \beta_0 \oplus y_0}) \cdot p$.
- **(**) For bit position 1, if $\epsilon_{\alpha}(2) > \tau$ and $\epsilon_{\alpha}(1) > \tau$, do:
 - $If Cyc_{(2,1)} and y_0 = 0, do: p \leftarrow (1 + (-1)^{\operatorname{xor}(\alpha,\beta,\gamma)_2 \oplus \beta_1 \oplus y_1}) \cdot p.$
- **(a)** For each bit position i (1 < i < n 1), if $\epsilon_{\alpha}(i + 1) > \tau$ and $\epsilon_{\alpha}(i) > \tau$ and $\epsilon_{\alpha}(i 1) > \tau$, do:
 - If $\operatorname{Cyc}_{(i+1,i)}$ and $(\operatorname{Cxy0}_{(i,i-1)} \text{ or } \operatorname{Cxc1}_{(i,i-1)} \text{ or } \operatorname{Cyc0}_{(i,i-1)})$, do: $p \leftarrow (1 + (-1)^{\operatorname{xor}(\alpha,\beta,\gamma)_{i+1} \oplus \beta_i \oplus y_i \oplus y_{i-1}}) \cdot p.$
 - $\begin{array}{l} \textcircled{O} \quad \text{If } \operatorname{Cyc}_{(i+1,i)} \text{ and } (\operatorname{Cxy1}_{(i,i-1)} \text{ or } \operatorname{Cxc0}_{(i,i-1)}) \text{ and } (\operatorname{Cxy0}_{(i-1,i-2)} \text{ or } \operatorname{Cxc1}_{(i-1,i-2)} \text{ or } \operatorname{Cyc0}_{(i-1,i-2)}) \\ \text{ and } \epsilon_{\alpha}(i-2) > \tau, \text{ do:} \\ p \leftarrow (1+(-1)^{\operatorname{xor}(\alpha,\beta,\gamma)_{i+1}\oplus\beta_i\oplus y_i\oplus y_{i-2}}) \cdot p. \end{array}$

6 If $p > 2^{-n}$, predict $Z \leftarrow 1$; else predict $Z \leftarrow 0$.

Results of a simple improving of the DDT-based distinguisher

Accuracy of the improved DDT-based distinguishers $(\mathcal{VD}s)$ on SPECK32/64 and comparisons with pure DDT-based $(\mathcal{DD}s)$ distinguishers

		DD	1 -based ($\nu\nu$ s) d	istinguisticis		
#R	Name	ACC	TPR	TNR	Mem (GBytes)	Time $(\text{Secs}/2^{20})$
4	$\mathcal{DD}^{ ext{Speck}_{4R}}$	0.9869	0.9869	0.9870	32.5	$2^{-4.98}$
4	$\mathcal{YD}^{\mathrm{Speck}_{4R}}$	0.9907	0.9887	0.9928	32.5	$2^{-2.37}$
5	$\mathcal{DD}^{ ext{Speck}_{5R}}$	0.9107	0.8775	0.9440	32.5	$2^{-4.94}$
5	$\mathcal{YD}^{ ext{Speck}_{5R}}$	0.9215	0.8947	0.9484	32.5	$2^{-1.87}$
6	$\mathcal{DD}^{ ext{Speck}_{6R}}$	0.7584	0.6795	0.8371	32.5	$2^{-4.53}$
6	$\mathcal{YD}^{ ext{Speck}_{6R}}$	0.7663	0.7118	0.8207	32.5	$2^{-2.05}$
7	$\mathcal{DD}^{ ext{Speck}_{7R}}$	0.5913	0.5430	0.6397	32.5	$2^{-4.49}$
7	$\mathcal{YD}^{ ext{Speck}_{7R}}$	0.5962	0.5582	0.6343	32.5	$2^{-2.18}$
8	$\mathcal{DD}^{ ext{SPECK}_8R}$	0.5116	0.4963	0.5268	32.5	$2^{-4.64}$
8	$\mathcal{YD}^{ ext{Speck}_{8R}}$	0.5117	0.4967	0.5268	32.5	$2^{-2.99}$
Ean)	Da the thread old	$a = \frac{1}{2} f_{ab} = \frac{1}{2} \frac{1}{2}$	SPECKAR	SPECK5B JUDS	PECK6B SPECK7	3 ana 0 50

- For $\mathcal{YD}s$, the thresholds τ 's for $\sigma_{\alpha}(i)$'s in building $\mathcal{YD}^{\text{SPECK}_{4R}}$, $\mathcal{YD}^{\text{SPECK}_{5R}}$, $\mathcal{YD}^{\text{SPECK}_{6R}}$, $\mathcal{YD}^{\text{SPECK}_{7R}}$ are 0.50, 0.30, 0.20, and 0.02, respectively. The number of samples for the accuracy testing is 2^{24} .

Fixed-y Averaging Differential Probability Distinguishers: $\mathcal{AD}_{\mathbf{YD}}^{\text{Speck}_{rR}}$

- $b \leftarrow 6$ // for practical reason, we consider 6-bit conditional DDT of \blacksquare , which requires several metabytes.
- $\textcircled{0} \quad \textbf{A}_0, \textbf{A}_{\text{next}}, \textbf{A}_{\text{next}}^c \leftarrow \text{GenMultiBitsConditionalDDTs}(b)$
- $\ \, \textcircled{\ } p \leftarrow 0.0, \ q \leftarrow 1.0$
- **②** Compute the following information around the last \blacksquare from $((C_L, C_R), (C'_L, C'_R))$:
 - $\gamma \leftarrow C_L \oplus C'_L,$ • $\beta \leftarrow (C_L \oplus C_R \oplus C'_L \oplus C'_R)^{\gg 2},$ • $y \leftarrow (C_L \oplus C_R)^{\gg 2}.$
- $\textbf{0} \hspace{0.2cm} \beta_b \leftarrow \text{LSB } b \text{ bits of } \beta, \hspace{0.1cm} \gamma_b \leftarrow \text{LSB } b \text{ bits of } \gamma, \hspace{0.1cm} y_b \leftarrow \text{LSB } b \text{ bits of } y$
- For $(\alpha_b, pr) \in \mathbf{A}_0[\beta_b, \gamma_b, y_b]$
 - $\ \ \, \alpha \leftarrow \alpha_b$
 - **②** For i in $\{0, 1, \dots, b-2\}$: ComputeCarryNextBit $(c, \alpha, \beta, \gamma, y, i)$
 - ◎ ComputeAlphaPrNextBit($c, \alpha, \beta, \gamma, y, b-1, q \times pr, p$)
- So If $p > 2^{-n}$, predict Z ← 1; else predict Z ← 0.

ComputeAlphaPrNextBit(c, α , β , γ , y, i, q, p) // update c_{i+1} , α_{i+1} , and p in-place

- $If i = WordSize 1: p \leftarrow p + q \times \mathcal{DD}^{SPECK_{r-1R}}(\alpha^{\ll 7} \| \beta); return$
- **2** If $eq(\alpha_i, \beta_i, \gamma_i)$:
 - $\alpha_{i+1} \leftarrow \beta_{i+1} \oplus \gamma_{i+1} \oplus \beta_i$; ComputeCarryNextBit $(c, \alpha, \beta, \gamma, y, i)$;
 - **②** ComputeAlphaPrNextBit($c, \alpha, \beta, \gamma, y, i + 1, q \cdot 1, p$); return
- **3** Else if $Cyc_{(i+1,i)}$ and $c_i \neq \bot$:
 - $\alpha_{i+1} \leftarrow \beta_{i+1} \oplus \gamma_{i+1} \oplus \beta_i \oplus y_i \oplus c_i$; ComputeCarryNextBit $(c, \alpha, \beta, \gamma, y, i)$ • ComputeAlphaPrNextBit $(\alpha, \beta, \gamma, y, i+1, q \cdot 1, p)$; return

④ Else:

$$If c_{i+2-b} \neq \bot: For (\alpha_{i+1}, pr) \leftarrow \mathbf{A}_{next}^c [\beta_b, \gamma_b, y_b, \alpha_b, c_{i+2-b}]$$

- ComputeCarryNextBit($c, \alpha, \beta, \gamma, y, i$)
- ComputeAlphaPrNextBit($\alpha, \beta, \gamma, y, i+1, q \cdot pr, p$)
- **3** If $c_{i+2-b} = \bot$: For $(\alpha_{i+1}, pr) \leftarrow \mathbf{A}_{next}[\beta_b, \gamma_b, y_b, \alpha_b]$
 - ComputeCarryNextBit($c, \alpha, \beta, \gamma, y, i$)
 - ComputeAlphaPrNextBit($\alpha, \beta, \gamma, y, i + 1, q \cdot pr, p$)

ComputeCarryNextBit($c, \alpha, \beta, \gamma, y, i$) // update c_{i+1} in-place

- $If y_i = 0 and c_i = 0: c_{i+1} \leftarrow 0$
- 2 Else if $y_i = 1$ and $c_i = 1$: $c_{i+1} \leftarrow 1$
- **③** Else if $Cxy0_{(i+1,i)}$ or $Cxc1_{(i+1,i)}$ or $Cyc0_{(i+1,i)}$: $c_{i+1} \leftarrow y_i$
- (1) Else if $Cxy1_{(i+1,i)}$ or $Cxc0_{(i+1,i)}$: $c_{i+1} \leftarrow c_i$
- **()** Else: $c_{i+1} \leftarrow \bot$. // ⊥ means unknown

${\it GenMultiBitsConditionalDDTs}(b)$

- $\mathbf{A}_0 \leftarrow \text{Generate } b\text{-bit conditional DDT of } \boxplus$, each entry is indexed by $(b\text{-bit } \beta, b\text{-bit } \gamma, b\text{-bit } y)$, the values are $(b\text{-bit } \alpha, \text{ non-zero } pr)$. // Table \mathbf{A}_0 will be used for the first b bits since one knows that both LSB carry bits are 0.
- ② \mathbf{A}_{next} ← Generate *b*-bit conditional DDT of \mathbb{B} , each entry is indexed by (*b*-bit β , *b*-bit γ , *b*-bit y, (b-1)-bit α), the values are (1-bit α_{next} , non-zero *pr*). // Table \mathbf{A}_{next} will be used for the intermediate bits when 1-bit LSB carry *c* is unknown.
- **③** $\mathbf{A}_{\text{next}}^c$ ← Generate *b*-bit conditional DDT of \blacksquare , each entry is indexed by (*b*-bit β, *b*-bit γ, *b*-bit y, (b-1)-bit α, 1-bit carry c), the values are (1-bit α_{next} , non-zero pr). // Table $\mathbf{A}_{\text{next}}^c$ will be used for the intermediate bits when 1-bit LSB carry c is known.
- $\textcircled{0} \text{ Output } \mathbf{A}_0, \mathbf{A}_{\text{next}}, \mathbf{A}_{\text{next}}^c$

Fixe	d-y Averagi	ng Dineren	tial Probabi	inty Disting	\mathcal{A}	\mathcal{D}_{YD}
#R	Name	ACC	TPR	TNR	Mem (GBytes)	Time $(\text{Secs}/2^{20})$
5	$\mathcal{DD}^{ ext{Speck}_{5R}}$	0.9107	0.8775	0.9440	32.5	$2^{-4.94}$
5	$\mathcal{ND}^{_{\mathrm{SPECK}_{5R}}}$	0.9273	0.9011	0.9536	0.0277	$2^{+3.56}$
5	$\mathcal{AD}^{ ext{Speck}_{5R}}_{ extbf{YD}}$	0.9362	0.9173	0.9552	32.5	$2^{+5.46}$
6	$\mathcal{DD}^{\mathrm{Speck}_{6R}}$	0.7584	0.6795	0.8371	32.5	$2^{-4.53}$
6	$\mathcal{ND}^{ ext{Speck}_{6R}}$	0.7876	0.7197	0.8554	0.0277	$2^{+3.54}$
6	$\mathcal{AD}^{ ext{Speck}_{6R}}_{ extbf{YD}}$	0.7949	0.7309	0.8587	32.5	$2^{+5.12}$
7	$\mathcal{DD}^{ ext{Speck}_{7R}}$	0.5913	0.5430	0.6397	32.5	$2^{-4.49}$
7	$\mathcal{ND}^{_{\mathrm{SPECK}_{7R}}}$	0.6155	0.5325	0.6985	0.0277	$2^{+3.57}$
7	$\mathcal{AD}^{ ext{Speck}_{7R}}_{ extbf{YD}}$	0.6237	0.5428	0.7048	32.5	$2^{+5.33}$
8	$\mathcal{DD}^{ ext{Speck}_{8R}}$	0.5116	0.4963	0.5268	32.5	$2^{-4.64}$
8	$\mathcal{ND}^{_{\mathrm{SPECK}_{8R}}}$	0.5135	0.5184	0.5085	0.0277	$2^{+3.55}$
8	$\mathcal{AD}^{ ext{Speck}_{8R}}_{ extbf{YD}}$	0.5187	0.4914	0.5460	32.5	$2^{+5.51}$

Conclusion

- By utilizing conditional differential distributions when the input and/or output values of the last nonlinear operation are observable, a distinguisher can surpass pure DDT-based counterparts.
- Accordingly, \mathcal{ND} 's advantage over pure differential-based distinguishers likely comes from exploiting the conditional differential distribution under the partially known value from ciphertexts input to the last non-linear operation.
- These findings apply not only to the SPECK but also to other block ciphers, such as SIMON and GIFT.

Explainability of Neural Distinguishers on Round-Reduced SIMON32/64

Speck32/64 last 2-round r-round \mathcal{ND} can learn additional knowledge beyond r-round full r-round \mathcal{ND} can learn r-1-round full DDT, but there are no DDT.

SIMON32/64 last 2-round additional knowledge to learn.

#R	Name	Network	Accuracy	True Positive Rate	True Negative Rate
6	$\mathcal{DD}_{\mathbf{DD}}^{\mathrm{Simon}_{6R}}$	DDT	0.9918	0.9995	0.9841
7	$\mathcal{ND}^{_{\mathrm{SIMON}_{7R}}}_{\mathbf{VV}}$	ResNet	$0.9823 \pm 1.2 \times 10^{-4}$	$0.9996 \pm 2.7 \times 10^{-5}$	$0.9650 \pm 2.3 \times 10^{-4}$
7	$\mathcal{DD}_{\mathbf{DD}}^{\mathrm{Simon}_{7R}}$	DDT	0.8465	0.8641	0.8288
8	$\mathcal{ND}^{_{\mathrm{SIMON}_{8R}}}_{\mathbf{VV}}$	SENet	$0.8150 \pm 4.2 \times 10^{-4}$	$0.8418 \pm 5.5 \times 10^{-4}$	$0.7882 \pm 5.1 \times 10^{-4}$
8	$\mathcal{DD}_{\mathbf{DD}}^{\mathrm{Simon}_{8R}}$	DDT	0.6628	0.5781	0.7476
8	$\mathcal{ND}^{_{\mathrm{SIMON}_{8R}}}_{\mathbf{VD}}$	SENet	$0.6587 \pm 4.8 \times 10^{-4}$	$0.5586 \pm 7.4 \times 10^{-4}$	$0.7588 \pm 5.6 \times 10^{-4}$
9	$\mathcal{ND}^{ ext{Simon}_{9R}}_{ extbf{VV}}$	SENet	$0.6515 \pm 5.3 \times 10^{-4}$	$0.5334 \pm 7.0 \times 10^{-4}$	$0.7695 \pm 5.7 \times 10^{-4}$
9	$\mathcal{DD}_{\mathbf{DD}}^{\mathrm{Simon}_{9R}}$	DDT	0.5683	0.4691	0.6674
9	$\mathcal{ND}^{ ext{Simon}_{9R}}_{ extbf{VD}}$	SENet	$0.5657 \pm 4.9 \times 10^{-4}$	$0.4748 \pm 7.1 \times 10^{-4}$	$0.6565 \pm 6.6 \times 10^{-4}$
10	$\mathcal{ND}^{_{\mathrm{Simon}_{10R}}+}_{\mathbf{VV}}$	SENet	$0.5610 \pm 4.5 \times 10^{-4}$	$0.4761 \pm 6.0 \times 10^{-4}$	$0.6460 \pm 7.2 \times 10^{-4}$
10	$\mathcal{DD}_{\mathbf{DD}}^{\mathrm{Simon}_{10R}}$	DDT	0.5203	0.5002	0.5404
11	$\mathcal{ND}^{ ext{Simon}_{11R}}_{ extbf{VV}}$	SENet	$0.5174 \pm 5.3 \times 10^{-4}$	$0.5041 \pm 7.1 \times 10^{-4}$	$0.5307 \pm 7.9 \times 10^{-4}$

Neural Distinguishers on Round-Reduced SIMON32/64

Applying to GIFT-64-128

Applying to GIFT-64-128: $\mathcal{ND} + \mathcal{YD}$ The vDDT of GIFT's inverse SBox: vDDT_{y3y2\deltay3} $\delta_{y_2}\delta_{y_1}\delta_{y_0} \rightarrow x_3x_2\delta_{x_3}\delta_{x_2}\delta_{x_1}\delta_{x_0}$

27/36

Applying to GIFT-64-128

 \mathcal{ND} s on (r-1).5-round GIFT, \mathcal{YD} s basing on (r-1).5-round \mathcal{ND} and 8 vDDTs:

Applying to GIFT-64-128

#R	Name	Accuracy	True Positive Rate	True Negative Rate
5	$\mathcal{D}\mathcal{D}$	0.8428	0.7693	0.9160
5	\mathcal{ND}	0.9001	0.8623	0.9378
5	$\mathcal{ND}_{4.5}$ + 8 vDDTs	0.9009	0.8615	0.9398
6	$\mathcal{D}\mathcal{D}$	0.6305	0.4988	0.7623
6	\mathcal{ND}	0.6802	0.5571	0.8029
6	$\mathcal{ND}_{5.5}$ + 8 vDDTs	0.6885	0.5692	0.8066
7	$\mathcal{D}\mathcal{D}$	0.5019	0.4525	0.5513
7	\mathcal{ND}	0.5348	0.5266	0.5431
7	$\mathcal{ND}_{6.5}$ + 8 vDDTs	0.5361	0.5116	0.5633
8	\mathcal{ND}	0.5003	1.0	0.0
8	$\mathcal{ND}_{7.5}$ + 8 vDDTs	0.5073	0.3823	0.6282

-		· · · · · ·	-	e (/
Diff.	#R	Name	Accuracy	True Positive Rate	True Negative Rate
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{8R}}$	0.8989	0.8714	0.9264
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} extsf{-}\mathcal{ND}^{ extsf{Speck}_{8R}}$	0.9259	0.9063	0.9455
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} ext{-}\mathcal{AD}_{ ext{YD}}^{ ext{Speck}_{8R}}$	0.9315	0.9159	0.9470
ID_2	9	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{9R}}$	0.7128	0.6644	0.7612
ID_2	9	$\mathcal{RK} extsf{-}\mathcal{ND}^{ extsf{Speck}_{9R}}$	0.7535	0.7035	0.8036
ID_2	9	$\mathcal{RK} ext{-}\mathcal{AD}_{\mathbf{YD}}^{\mathrm{Speck}_{9R}}$	0.7574	0.7114	0.8035
ID_3	9	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{9R}}$	0.7128	0.6644	0.7612
ID_3	9	$\mathcal{RK} ext{-}\mathcal{ND}^{ ext{Speck}_{9R}}$	0.7726	0.7247	0.8206
ID_3	9	$\mathcal{RK} ext{-}\mathcal{AD}_{\mathbf{YD}}^{\mathrm{Speck}_{9R}}$	0.7574	0.7113	0.8035
ID_3	10	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{10R}}$	0.5484	0.5343	0.5624
ID_3	10	$\mathcal{RK} ext{-}\mathcal{ND}^{ ext{Speck}_{10R}}$	0.5562	0.5361	0.5765
ID_3	10	$\mathcal{RK} ext{-}\mathcal{AD}_{ ext{YD}}^{ ext{Speck}_{10R}}$	0.5713	0.5357	0.6069

Explainability of Related-key Neural Distinguishers (\mathcal{RK} - \mathcal{ND} 's)

-		о 	·	e (/
Diff.	#R	Name	Accuracy	True Positive Rate	True Negative Rate
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{8R}}$	0.8989	0.8714	0.9264
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} ext{-}\mathcal{ND}^{ ext{Speck}_{8R}}$	0.9259	0.9063	0.9455
$\mathrm{ID}_2/\mathrm{ID}_3$	8	$\mathcal{RK} ext{-}\mathcal{AD}_{ ext{YD}}^{ ext{Speck}_{8R}}$	0.9315	0.9159	0.9470
ID_2	9	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{9R}}$	0.7128	0.6644	0.7612
ID_2	9	$\mathcal{RK} ext{-}\mathcal{ND}^{ ext{Speck}_{9R}}$	0.7535	0.7035	0.8036
ID_2	9	$\mathcal{RK} ext{-}\mathcal{AD}_{\mathbf{YD}}^{ ext{Speck}_{9R}}$	0.7574	0.7114	0.8035
ID_3	9	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{9R}}$	0.7128	0.6644	0.7612
ID_3	9	$\mathcal{RK} extsf{-}\mathcal{ND}^{ extsf{Speck}_{9R}}$	0.7726	0.7247	0.8206
ID_3	9	$\mathcal{RK} ext{-}\mathcal{AD}_{ ext{YD}}^{ ext{Speck}_{9R}}$	0.7574	0.7113	0.8035
ID_3	10	$\mathcal{RK} ext{-}\mathcal{DD}^{ ext{Speck}_{10R}}$	0.5484	0.5343	0.5624
ID_3	10	$\mathcal{RK} ext{-}\mathcal{ND}^{ ext{Speck}_{10R}}$	0.5562	0.5361	0.5765
ID_3	10	$\mathcal{RK} ext{-}\mathcal{AD}_{ ext{YD}}^{ ext{Speck}_{10R}}$	0.5713	0.5357	0.6069

Explainability of Related-key Neural Distinguishers (\mathcal{RK} - \mathcal{ND} 's)

Explainability of Related-key Neural Distinguishers (\mathcal{RK} - \mathcal{ND} 's)

Explainability of Related-key Neural Distinguishers (\mathcal{RK} - \mathcal{ND} 's)

Summary and More results

- Neural network can efficiently exploit complex correlations between ciphertext values, ciphertext differences, and intermediate state differences.
- Those observations on conditional differential probabilities are not intrinsically linked to neural network-based cryptanalysis but are expected to be useful in a wider range of cryptanalysis.
- Addressing the challenge of training high-round, especially 8-round, \mathcal{ND} of SPECK32/64, we introduce the Freezing Layer Method. This method matches Gohr's accuracy but cuts training time and data.
- We introduce related-key (\mathcal{RK}) differences to slow down the diffusion of differences, aiding in training \mathcal{ND} for higher rounds. As a result, we achieve a 14-round key recovery attack on SPECK32/64 using related-key neural distinguishers (\mathcal{RK} - \mathcal{ND} s).

Future Work

- How can we exploit further the Observation \star and the conditional differential probability in traditional cryptanalysis?
- What we did is to explain the ML models, *i.e.*, providing human-understandable descriptions or reasons for the model's performance (Explainable AI); However, how to interpret the internal mechanics of the neural networks (Interpretable AI) to learn how they express the complex relations between input and outputs?
- \mathcal{ND} s are not aware of specific details of the ciphers, including their components and structure. Therefore, \mathcal{ND} s can be used for ciphers that have unknown components. However, if the machine learning model become knowledgeable about the cipher's specification, could they achieve higher accuracy?
- How to let machine learning model be knowledgeable about the cipher's specification so that it can learn beyond pure data-driven?

Thanks for your attention!

References I

- [Goh19] Aron Gohr. "Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning". In: CRYPTO 2019, Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. LNCS. Springer, Heidelberg, Aug. 2019, pp. 150–179. DOI: 10.1007/978-3-030-26951-7_6.
- [Ben+21] Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan. "A Deeper Look at Machine Learning-Based Cryptanalysis". In: EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12696. LNCS. Springer, Heidelberg, Oct. 2021, pp. 805-835. DOI: 10.1007/978-3-030-77870-5_28.
- [Bel+22] Emanuele Bellini, David Gérault, Anna Hambitzer, and Matteo Rossi. "A Cipher-Agnostic Neural Training Pipeline with Automated Finding of Good Input Differences". In: IACR Cryptol. ePrint Arch. (2022), p. 1467. URL: https://eprint.iacr.org/2022/1467.
- [GLN22] Aron Gohr, Gregor Leander, and Patrick Neumann. An Assessment of Differential-Neural Distinguishers. Cryptology ePrint Archive, Report 2022/1521. https://eprint.iacr.org/2022/1521. 2022.
- [LM02] Helger Lipmaa and Shiho Moriai. "Efficient Algorithms for Computing Differential Properties of Addition". In: FSE 2001. Ed. by Mitsuru Matsui. Vol. 2355. LNCS. Springer, Heidelberg, Apr. 2002, pp. 336–350. DOI: 10.1007/3-540-45473-X_28.
- [Leu12] Gaëtan Leurent. "Analysis of Differential Attacks in ARX Constructions". In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 226–243. DOI: 10.1007/978-3-642-34961-4_15.
- [Leu13] Gaëtan Leurent. "Construction of Differential Characteristics in ARX Designs Application to Skein". In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 241–258. DOI: 10.1007/978-3-642-40041-4_14.
- [BR22] Tim Beyne and Vincent Rijmen. "Differential Cryptanalysis in the Fixed-Key Model". In: CRYPTO 2022, Part III. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13509. LNCS. Springer, Heidelberg, Aug. 2022, pp. 687-716. DOI: 10.1007/978-3-031-15982-4_23.
- [CY21] Yi Chen and Hongbo Yu. Bridging Machine Learning and Cryptanalysis via EDLCT. Cryptology ePrint Archive, Report 2021/705. https://eprint.iacr.org/2021/705. 2021.