On Quantum Secure Compressing Pseudorandom Functions

Ritam Bhaumi ${ }^{1}$ Benoît Cogliati ${ }^{2}$ Jordan Ethan ${ }^{3}$ Ashwin Jha 3
${ }^{1}$ EPFL, Switzerland
${ }^{2}$ Thales DIS France SAS, Meudon, France
${ }^{3}$ CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

December 5, 2023

Table of Contents

1. Analysing Compressing PRFs

2. 2-Call PRF Constructions

3. 3-Call PRF Constructions
4. Quantum Proof Framework

Why study Compressing PRF's?

- Block ciphers are PRF's up to the BB (classic $q \ll 2^{n / 2}$, quantum $q \ll 2^{n / 3}$)

Why study Compressing PRF's?

- Block ciphers are PRF's up to the BB (classic $q \ll 2^{n / 2}$, quantum $q \ll 2^{n / 3}$)
- $2 n$-bit Universal hash $+2 n$ to n-bit PRF \rightarrow MAC, AEAD-SIV (classically).

Why study Compressing PRF's?

- Block ciphers are PRF's up to the BB (classic $q \ll 2^{n / 2}$, quantum $q \ll 2^{n / 3}$)
- $2 n$-bit Universal hash $+2 n$ to n-bit PRF \rightarrow MAC, AEAD-SIV (classically).
- Are there Quantum secure PRF's?

LRWQ

- Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as $q \ll 2^{n / 4}$ and f_{1}, f_{2}, f_{3} are assumed to be random.

LRWQ

- Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as $q \ll 2^{n / 4}$ and f_{1}, f_{2}, f_{3} are assumed to be random.
- A variant of Zhandry's compressed oracle [Zha18] is used to analyze the adversary's transcript.

$$
F(x, y):=f_{3}\left(f_{1}(x) \oplus f_{2}(y)\right)
$$

LRWQ

- Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as $q \ll 2^{n / 4}$ and f_{1}, f_{2}, f_{3} are assumed to be random.
- A variant of Zhandry's compressed oracle [Zha18] is used to analyze the adversary's transcript.
- LRWQ uses 3 PRF calls:

$$
F(x, y):=f_{3}\left(f_{1}(x) \oplus f_{2}(y)\right)
$$

LRWQ

- Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as $q \ll 2^{n / 4}$ and f_{1}, f_{2}, f_{3} are assumed to be random.
- A variant of Zhandry's compressed oracle [Zha18] is used to analyze the adversary's transcript.
- LRWQ uses 3 PRF calls:
- Is there a QPRF secure construction with 2 PRF calls?

$$
F(x, y):=f_{3}\left(f_{1}(x) \oplus f_{2}(y)\right)
$$

LRWQ

- Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as $q \ll 2^{n / 4}$ and f_{1}, f_{2}, f_{3} are assumed to be random.
- A variant of Zhandry's compressed oracle [Zha18] is used to analyze the adversary's transcript.
- LRWQ uses 3 PRF calls:
- Is there a QPRF secure construction with 2 PRF calls?
- Are there other QPRF secure constructions with 3 PRF calls?

$$
F(x, y):=f_{3}\left(f_{1}(x) \oplus f_{2}(y)\right)
$$

Our Contributions

- All constructions with 2 PRF calls are broken!

Our Contributions

- All constructions with 2 PRF calls are broken!
- We identify seven interesting QPRF candidates involving 3 PRF calls.

Our Contributions

- All constructions with 2 PRF calls are broken!
- We identify seven interesting QPRF candidates involving 3 PRF calls.
- We prove three of these constructions are secure in the quantum setting as long as $q \ll 2^{n / 4}$ and the internal components are assumed to be random.

PRF Distinguishing Game

- Real World: a $2 n$-bit-to- n-bit function F that internally calls several independent n-bit-to- n-bit uniform random functions $f_{1}, f_{2}, f_{3}, \ldots$.

PRF Distinguishing Game

- Real World: a $2 n$-bit-to- n-bit function F that internally calls several independent n-bit-to- n-bit uniform random functions $f_{1}, f_{2}, f_{3}, \ldots$.
- Ideal World: a $2 n$-bit-to- n-bit uniform random function F^{*}.

PRF Distinguishing Game

- Real World: a $2 n$-bit-to- n-bit function F that internally calls several independent n-bit-to- n-bit uniform random functions $f_{1}, f_{2}, f_{3}, \ldots$
- Ideal World: a $2 n$-bit-to- n-bit uniform random function F^{*}.
- Information-Theoretic Setting: all uniform random functions are assumed to be unkeyed and have perfect randomness.

PRF Distinguishing Game

- Real World: a $2 n$-bit-to- n-bit function F that internally calls several independent n-bit-to- n-bit uniform random functions $f_{1}, f_{2}, f_{3}, \ldots$..
- Ideal World: a $2 n$-bit-to- n-bit uniform random function F^{*}.
- Information-Theoretic Setting: all uniform random functions are assumed to be unkeyed and have perfect randomness.
- The adversary makes q queries to to a secret oracle (either F or F^{*}) and has to guess (with good probability) which world it is.

Table of Contents

1. Analysing Compressing PRFs

2. 2-Call PRF Constructions
3. 3-Call PRF Constructions
4. Quantum Proof Framework

Classification of 2-call Candidate PRFs

- Generic construction with three linear layers L_{1}, L_{2}, and L_{3} :

Classification of 2-call Candidate PRFs

- Generic construction with three linear layers L_{1}, L_{2}, and L_{3} :

- In this work, we do a full classification of all possible 2-call candidates, and show that none of them is quantum-secure.

Example of Classical Distinguisher

- Pick $x \neq x^{\prime}, y \neq y^{\prime}$ such that $F(x, y) \oplus F\left(x^{\prime}, y\right) \oplus F\left(x^{\prime}, y^{\prime}\right) \oplus F\left(x, y^{\prime}\right)=0$.
- For a random function F this property holds with negligible probability.

Simon's Algorithm

- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a periodic function if for all $x \in\{0,1\}^{n}, f(x \oplus s)=f(x)$ for some constant s.

Simon's Algorithm

- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a periodic function if for all $x \in\{0,1\}^{n}, f(x \oplus s)=f(x)$ for some constant s.
- Simon's Algorithm: recovers hidden s in $O(n)$ queries to f.

Simon's Algorithm

- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a periodic function if for all $x \in\{0,1\}^{n}, f(x \oplus s)=f(x)$ for some constant s.
- Simon's Algorithm: recovers hidden s in $O(n)$ queries to f.
- Works also if f is almost periodic (expect some small subset of inputs) with high probability.

Simon's Algorithm

- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a periodic function if for all $x \in\{0,1\}^{n}, f(x \oplus s)=f(x)$ for some constant s.
- Simon's Algorithm: recovers hidden s in $O(n)$ queries to f.
- Works also if f is almost periodic (expect some small subset of inputs) with high probability.
- Since a random function is far from periodic with high probability \rightarrow Simon's Algorithm can be used to distinguish f from a random function.

Example of Quantum Distinguisher

- Pick $x \neq x^{\prime}$
- Define $g(y):=F(x, y) \oplus F\left(x^{\prime}, y\right)$
- g is periodic with period $s\left(x, x^{\prime}\right)=f_{1}(x) \oplus f_{1}\left(x^{\prime}\right)$.
- Use Simon's Algorithm to construct an efficient quantum distinguisher.

Table of Contents

1. Analysing Compressing PRFs

2. 2-Call PRF Constructions
3. 3-Call PRF Constructions
4. Quantum Proof Framework

Classification of 3-call candidate PRFs

- Generic construction with four linear layers L_{1}, L_{2}, L_{3}, and L_{4} :

Classification of 3-call candidate PRFs

- Generic construction with four linear layers L_{1}, L_{2}, L_{3}, and L_{4} :

- We do a full classification as earlier.

Classification of 3-call candidate PRFs

- Generic construction with four linear layers L_{1}, L_{2}, L_{3}, and L_{4} :

- We do a full classification as earlier.
- This time we are luckier, and can identify seven potentially quantum-secure candidates.

Classification of 3-call candidate PRFs

- Generic construction with four linear layers L_{1}, L_{2}, L_{3}, and L_{4} :

- We do a full classification as earlier.
- This time we are luckier, and can identify seven potentially quantum-secure candidates.
- We prove the quantum security of three of them.

Interesting Candidates

Candidate	Definition	Mem	XORs	Inv	Par
LRQ	$f_{3}\left(f_{1}(x) \oplus y\right) \oplus f_{2}(y)$	$2 n$	2	\checkmark	\checkmark
CSUMQ	$f_{2}\left(f_{1}(x) \oplus y\right) \oplus f_{3}\left(f_{1}(x) \oplus x \oplus y\right)$	$2 n$	3	\times	\checkmark
LMQ	$f_{2}\left(f_{1}(x \oplus y) \oplus x\right) \oplus f_{3}\left(f_{1}(x \oplus y) \oplus y\right)$	$2 n$	4	\times	\checkmark
LRWQ					
EDMQ	$f_{3}\left(f_{1}(x) \oplus f_{2}(y)\right)$	$2 n$	1	\checkmark	\checkmark
TNT †	$f_{3}\left(f_{2}\left(f_{1}(x) \oplus y\right) \oplus x\right)$	n	2	\times	\times
EDMDQ 2	$f_{3}\left(f_{2}\left(f_{1}(x) \oplus y\right) \oplus y\right)$	n	2	\checkmark	\times

- Note that LRQ, LRWQ and TNT can be seen as tweakable permutation (with y as a tweak) as long as f_{1}, f_{2}, f_{3} are permutations.
\dagger : studied in earlier works

Table of Contents

1. Analysing Compressing PRFs

2. 2-Call PRF Constructions
3. 3-Call PRF Constructions
4. Quantum Proof Framework

Historical Context

- Classical proof techniques rely heavily on transcripts.

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).
- In 2018 Zhandry [Zha18] proposed the compressed oracle technique.

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).
- In 2018 Zhandry [Zha18] proposed the compressed oracle technique.
- In 2019 Hosoyamada and Iwata [HI19] started using the compressed oracle in a good-bad database setting.

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).
- In 2018 Zhandry [Zha18] proposed the compressed oracle technique.
- In 2019 Hosoyamada and Iwata [HI19] started using the compressed oracle in a good-bad database setting.
- Their work is done in the computational basis \rightarrow long and tedious calculations.

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).
- In 2018 Zhandry [Zha18] proposed the compressed oracle technique.
- In 2019 Hosoyamada and Iwata [HI19] started using the compressed oracle in a good-bad database setting.
- Their work is done in the computational basis \rightarrow long and tedious calculations.
- In 2020 Chung et al. [Chu+20] introduced a framework for using the compressed oracle in classical-like arguments over the Fourier basis.

Historical Context

- Classical proof techniques rely heavily on transcripts.
- Hard to generalize to quantum setting (No-cloning theorem).
- In 2018 Zhandry [Zha18] proposed the compressed oracle technique.
- In 2019 Hosoyamada and Iwata [HI19] started using the compressed oracle in a good-bad database setting.
- Their work is done in the computational basis \rightarrow long and tedious calculations.
- In 2020 Chung et al. [Chu+20] introduced a framework for using the compressed oracle in classical-like arguments over the Fourier basis.
- Our work extends Chung et al. framework to produce compact indistinguishability proofs that uses mostly classic counting reasoning.

Very High-Level Overview

- Query-response pairs are 'stored' in databases.

Very High-Level Overview

- Query-response pairs are 'stored' in databases.
- Bad Databases: defined separately for each game as a predicate over the stored query-response pairs.

Very High-Level Overview

- Query-response pairs are 'stored' in databases.
- Bad Databases: defined separately for each game as a predicate over the stored query-response pairs.
- Transition Capacity: A measure of the probability of a database going bad after a single query.

Very High-Level Overview

- Query-response pairs are 'stored' in databases.
- Bad Databases: defined separately for each game as a predicate over the stored query-response pairs.
- Transition Capacity: A measure of the probability of a database going bad after a single query.
- Main Idea: We show that the 'good' databases evolve identically in either game, and bound the distinguishing advantage by the cumulative transition capacity.

High-Level Proof of TNT

We examine the post-quantum security of the $2 n$-bit-to- n-bit PRF TNT defined as

$$
g_{\mathrm{re}}^{\mathrm{TNT}}\left(x_{1}, x_{2}\right):=f_{3}\left(f_{2}\left(f_{1}\left(x_{1}\right) \oplus x_{2}\right) \oplus x_{2}\right)
$$

here f_{1}, f_{2}, f_{3} are n-bit random functions, which we instantiate with compressed oracles.

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\mathrm{re}}^{\mathrm{TNT}}$ (the real world) and a $2 n$ to n bit random function $g_{i d}$ (ideal world).

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\mathrm{re}}^{\mathrm{TNT}}$ (the real world) and a $2 n$ to n bit random function $g_{i d}$ (ideal world).
- Chung et al. Framework can only handle a single database.

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\text {re }}^{\text {TNT }}$ (the real world) and a $2 n$ to n bit random function $g_{i d}$ (ideal world).
- Chung et al. Framework can only handle a single database.
- Define $f:\{0,1\}^{3 n+2} \rightarrow\{0,1\}^{n}$ function such that:

$$
f_{1}(x)=f\left(00\|x\| 0^{2 n}\right)
$$

$$
\begin{aligned}
f_{2}(x) & =f\left(01\|x\| 0^{2 n}\right) \\
g_{\text {id }}\left(x, x^{\prime}\right) & =f\left(11\|x\| x^{\prime} \| 0^{n}\right)
\end{aligned}
$$

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\text {re }}^{\text {TNT }}$ (the real world) and a $2 n$ to n bit random function gid (ideal world).
- Chung et al. Framework can only handle a single database.
- Define $f:\{0,1\}^{3 n+2} \rightarrow\{0,1\}^{n}$ function such that:

$$
\begin{aligned}
& f_{1}(x)=f\left(00\|x\| 0^{2 n}\right) \\
& f_{3}(x)=f\left(10\|x\| 0^{2 n}\right)
\end{aligned}
$$

$$
\begin{aligned}
f_{2}(x) & =f\left(01\|x\| 0^{2 n}\right) \\
g_{\text {id }}\left(x, x^{\prime}\right) & =f\left(11\|x\| x^{\prime} \| 0^{n}\right)
\end{aligned}
$$

- Now $f_{1}, f_{2}, f_{3}, g_{\text {id }}$ are independent.

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\text {re }}^{\text {TNT }}$ (the real world) and a $2 n$ to n bit random function $g_{i d}$ (ideal world).
- Chung et al. Framework can only handle a single database.
- Define $f:\{0,1\}^{3 n+2} \rightarrow\{0,1\}^{n}$ function such that:

$$
\begin{aligned}
f_{1}(x) & =f\left(00\|x\| 0^{2 n}\right) & f_{2}(x) & =f\left(01\|x\| 0^{2 n}\right) \\
f_{3}(x) & =f\left(10\|x\| 0^{2 n}\right) & g_{\text {id }}\left(x, x^{\prime}\right) & =f\left(11\|x\| x^{\prime} \| 0^{n}\right)
\end{aligned}
$$

- Now $f_{1}, f_{2}, f_{3}, g_{\text {id }}$ are independent.
- Replace $g_{i d}$ with $g_{i d}^{*}$ defined as

$$
g_{i d}^{*}\left(x_{1}, x_{2}\right)=f\left(11\left\|x_{1}\right\| x_{2} \| f_{2}\left(f_{1}\left(x_{1}\right) \oplus x_{2}\right) \oplus x_{2}\right)
$$

Modified game

- Initial goal: bound the distinguishing advantage between $g_{\text {re }}^{\text {TNT }}$ (the real world) and a $2 n$ to n bit random function $g_{i d}$ (ideal world).
- Chung et al. Framework can only handle a single database.
- Define $f:\{0,1\}^{3 n+2} \rightarrow\{0,1\}^{n}$ function such that:

$$
\begin{aligned}
f_{1}(x) & =f\left(00\|x\| 0^{2 n}\right) & f_{2}(x) & =f\left(01\|x\| 0^{2 n}\right) \\
f_{3}(x) & =f\left(10\|x\| 0^{2 n}\right) & g_{\text {id }}\left(x, x^{\prime}\right) & =f\left(11\|x\| x^{\prime} \| 0^{n}\right)
\end{aligned}
$$

- Now $f_{1}, f_{2}, f_{3}, g_{\text {id }}$ are independent.
- Replace $g_{i d}$ with $g_{i d}^{*}$ defined as

$$
g_{\text {id }}^{*}\left(x_{1}, x_{2}\right)=f\left(11\left\|x_{1}\right\| x_{2} \| f_{2}\left(f_{1}\left(x_{1}\right) \oplus x_{2}\right) \oplus x_{2}\right)
$$

- $g_{i d}^{*}\left(x_{1}, x_{2}\right)$ is random in $x_{1} \| x_{2}$.

Singe-Database Setup

- Now d_{f} acts as a single database \rightarrow can track f_{1}, f_{2}, f_{3}, and $g_{\text {id }}^{*}$.

Singe-Database Setup

- Now d_{f} acts as a single database \rightarrow can track f_{1}, f_{2}, f_{3}, and $g_{i d}^{*}$.
- In the real world $d_{r e}$ tracks f_{1}, f_{2}, f_{3} (resp. in the ideal world $d_{i d}$ tracks $f_{1}, f_{2}, g_{i d}^{*}$).

Singe-Database Setup

- Now d_{f} acts as a single database \rightarrow can track f_{1}, f_{2}, f_{3}, and $g_{i d}^{*}$.
- In the real world $d_{r e}$ tracks f_{1}, f_{2}, f_{3} (resp. in the ideal world $d_{i d}$ tracks $f_{1}, f_{2}, g_{i d}^{*}$).
- $[x]_{1}=00\|x\| 0^{2 n},[x]_{2}=01\|x\| 0^{2 n},[x]_{3}=10\|x\| 0^{2 n}$.

Singe-Database Setup

- Now d_{f} acts as a single database \rightarrow can track f_{1}, f_{2}, f_{3}, and $g_{i d}^{*}$.
- In the real world $d_{r e}$ tracks f_{1}, f_{2}, f_{3} (resp. in the ideal world $d_{i d}$ tracks $f_{1}, f_{2}, g_{\text {id }}^{*}$).
- $[x]_{1}=00\|x\| 0^{2 n},[x]_{2}=01\|x\| 0^{2 n},[x]_{3}=10\|x\| 0^{2 n}$.
- $\tilde{\mathcal{X}}_{r e}=\left\{\left\{[x]_{1},[x]_{2},[x]_{3}\right\}\right.$ and $\tilde{\mathcal{X}}_{\text {id }}=\left\{[x]_{1},[x]_{2}, 11\|x\| x^{\prime} \| y\right\}$ are the sets of inputs for $d_{r e}$ and $d_{i d}$ respectively.

Singe-Database Setup

- Now d_{f} acts as a single database \rightarrow can track f_{1}, f_{2}, f_{3}, and $g_{i d}^{*}$.
- In the real world $d_{r e}$ tracks f_{1}, f_{2}, f_{3} (resp. in the ideal world $d_{i d}$ tracks $f_{1}, f_{2}, g_{\text {id }}^{*}$).
- $[x]_{1}=00\|x\| 0^{2 n},[x]_{2}=01\|x\| 0^{2 n},[x]_{3}=10\|x\| 0^{2 n}$.
- $\tilde{\mathcal{X}}_{r e}=\left\{\left\{[x]_{1},[x]_{2},[x]_{3}\right\}\right.$ and $\tilde{\mathcal{X}}_{\text {id }}=\left\{[x]_{1},[x]_{2}, 11\|x\| x^{\prime} \| y\right\}$ are the sets of inputs for $d_{r e}$ and $d_{i d}$ respectively.
- $\mathcal{D}_{r e}=\left.\mathcal{D}\right|_{\tilde{\mathcal{X}}_{r e}}, \mathcal{D}_{i d}=\left.\mathcal{D}\right|_{\tilde{\mathcal{X}}_{i d}}$.

Bad Databases

Let $\mathcal{B}_{r e}$ be the set of databases $d_{r e}$ satisfying the following: we can find $x_{1}, v_{1}, x_{1}^{\prime}, v_{1}^{\prime}, x_{2}, v_{2}, x_{2}^{\prime}, v_{2}^{\prime}, v_{3}$ such that

- $\left(\left[x_{1}\right]_{1}, v_{1}\right),\left(\left[x_{1}^{\prime}\right]_{1}, v_{1}^{\prime}\right),\left(\left[v_{1} \oplus x_{2}\right]_{2}, v_{2}\right),\left(\left[v_{1}^{\prime} \oplus x_{2}^{\prime}\right]_{2}, v_{2}^{\prime}\right) \in d_{r e}$
- $v_{2} \oplus x_{2}=v_{2}^{\prime} \oplus x_{2}^{\prime}$
- $\left(\left[v_{2} \oplus x_{2}\right]_{3}, v_{3}\right) \in d_{r e}$

Let $\mathcal{B}_{i d}$ be the set of databases $d_{i d}$ satisfying the following: we can find $x_{1}, v_{1}, x_{1}^{\prime}, v_{1}^{\prime}, x_{2}, v_{2}, x_{2}^{\prime}, v_{2}^{\prime}, v_{3}$ such that

- $\left(\left[x_{1}\right]_{1}, v_{1}\right),\left(\left[x_{1}^{\prime}\right]_{1}, v_{1}^{\prime}\right),\left(\left[v_{1} \oplus x_{2}\right]_{2}, v_{2}\right),\left(\left[v_{1}^{\prime} \oplus x_{2}^{\prime}\right]_{2}, v_{2}^{\prime}\right) \in d_{i d}$
- $v_{2} \oplus x_{2}=v_{2}^{\prime} \oplus x_{2}^{\prime}$
- One of $\left(11\left\|x_{1}\right\| x_{2} \|\left(v_{2} \oplus x_{2}\right), v_{3}\right)$ and $\left(11\left\|x_{1}^{\prime}\right\| x_{2}^{\prime} \|\left(v_{2} \oplus x_{2}\right), v_{3}\right) \in d_{i d}$

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.
- $\ln \mathcal{G}_{r e}, \mathcal{G}_{i d}$ each $u_{3}=v_{2} \oplus x_{2}$ is associated with a unique (x_{1}, x_{2}).

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.
- In $\mathcal{G}_{r e}, \mathcal{G}_{i d}$ each $u_{3}=v_{2} \oplus x_{2}$ is associated with a unique $\left(x_{1}, x_{2}\right)$.
- We can define the bijection $h: \mathcal{G}_{r e} \rightarrow \mathcal{G}_{i d}$ as follows:

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.
- $\ln \mathcal{G}_{r e}, \mathcal{G}_{i d}$ each $u_{3}=v_{2} \oplus x_{2}$ is associated with a unique $\left(x_{1}, x_{2}\right)$.
- We can define the bijection $h: \mathcal{G}_{r e} \rightarrow \mathcal{G}_{i d}$ as follows:
- for each $x_{1}, d_{i d}\left(\left[x_{1}\right]_{1}\right)=d_{r e}\left(\left[x_{1}\right]_{1}\right)$

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.
- $\ln \mathcal{G}_{r e}, \mathcal{G}_{i d}$ each $u_{3}=v_{2} \oplus x_{2}$ is associated with a unique $\left(x_{1}, x_{2}\right)$.
- We can define the bijection $h: \mathcal{G}_{r e} \rightarrow \mathcal{G}_{i d}$ as follows:
- for each $x_{1}, d_{i d}\left(\left[x_{1}\right]_{1}\right)=d_{r e}\left(\left[x_{1}\right]_{1}\right)$
- for each $x_{2}, d_{i d}\left(\left[x_{2}\right]_{2}\right)=d_{r e}\left(\left[x_{2}\right]_{2}\right)$

Bijection between Good Databases

- $\mathcal{G}_{r e}=\mathcal{D}_{r e} \backslash \mathcal{B}_{r e}, \mathcal{G}_{i d}=\mathcal{D}_{i d} \backslash \mathcal{B}_{i d}$.
- In $\mathcal{G}_{r e}, \mathcal{G}_{i d}$ each $u_{3}=v_{2} \oplus x_{2}$ is associated with a unique (x_{1}, x_{2}).
- We can define the bijection $h: \mathcal{G}_{r e} \rightarrow \mathcal{G}_{i d}$ as follows:
- for each $x_{1}, d_{i d}\left(\left[x_{1}\right]_{1}\right)=d_{r e}\left(\left[x_{1}\right]_{1}\right)$
- for each $x_{2}, d_{i d}\left(\left[x_{2}\right]_{2}\right)=d_{r e}\left(\left[x_{2}\right]_{2}\right)$
- for each x_{1}, x_{2} and the associated $u_{3}, d_{i d}\left(11\left\|x_{1}\right\| x_{2} \| u_{3}\right)=d_{r e}\left(\left[u_{3}\right]_{3}\right)$

Finalizing The Proof

- The main point is to show that:

$$
\left(\perp \stackrel{3 q}{\rightsquigarrow} \mathcal{B}_{r e}\right)+\left(\perp \stackrel{3 q}{\rightsquigarrow} \mathcal{B}_{i d}\right) \leq 4 \sqrt{\frac{10 q^{4}}{2^{n}}}
$$

this is done by analyzing the effect of each action $\left\{f_{1}, f_{2}, f_{3}\right\}$ on the transition capacity at each query i.

Finalizing The Proof

- The main point is to show that:

$$
\left(\perp \stackrel{3 q}{\rightsquigarrow} \mathcal{B}_{r e}\right)+\left(\perp \stackrel{3 q}{\rightsquigarrow} \mathcal{B}_{i d}\right) \leq 4 \sqrt{\frac{10 q^{4}}{2^{n}}}
$$

this is done by analyzing the effect of each action $\left\{f_{1}, f_{2}, f_{3}\right\}$ on the transition capacity at each query i.

- From our framework we can deduce:

$$
\operatorname{Adv}_{\mathrm{TNT}}^{\mathrm{qprf}} \leq 4 \sqrt{\frac{10 q^{4}}{2^{n}}}
$$

Future Work

- Our proof framework has a potential of developing into a go-to technique for doing quantum proofs for symmetric constructions.

Future Work

- Our proof framework has a potential of developing into a go-to technique for doing quantum proofs for symmetric constructions.
- Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are required as part of the mode's functionality)

Future Work

- Our proof framework has a potential of developing into a go-to technique for doing quantum proofs for symmetric constructions.
- Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are required as part of the mode's functionality)
- A concurrent publication has proposed a compressed permutation oracle to resolve this issue.

Future Work

- Our proof framework has a potential of developing into a go-to technique for doing quantum proofs for symmetric constructions.
- Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are required as part of the mode's functionality)
- A concurrent publication has proposed a compressed permutation oracle to resolve this issue.
- We are presently working on integrating this permutation oracle into our proof framework.

Future Work

- Our proof framework has a potential of developing into a go-to technique for doing quantum proofs for symmetric constructions.
- Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are required as part of the mode's functionality)
- A concurrent publication has proposed a compressed permutation oracle to resolve this issue.
- We are presently working on integrating this permutation oracle into our proof framework.
- Another direction: getting tighter security proofs \rightarrow seems difficult.

Conclusions

- We showed constructions with 2 PRF calls are not secure (either classical or quantum).

Conclusions

- We showed constructions with 2 PRF calls are not secure (either classical or quantum).
- We identified seven interesting QPRF candidates that involve 3 PRF calls.

Conclusions

- We showed constructions with 2 PRF calls are not secure (either classical or quantum).
- We identified seven interesting QPRF candidates that involve 3 PRF calls.
- We proved the quantum security of LRQ, LRWQ and TNT as long as $q \ll 2^{n / 4}$ using our new framework.

Thank You!

References

[Chu+20] Kai-Min Chung et al. On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work. Cryptology ePrint Archive, Paper 2020/1305. https://eprint.iacr.org/2020/1305. 2020. URL: https://eprint.iacr.org/2020/1305.
[HI19] Akinori Hosoyamada and Tetsu Iwata. 4-Round Luby-Rackoff Construction is a qPRP: Tight Quantum Security Bound. Cryptology ePrint Archive, Report 2019/243. https://eprint.iacr.org/2019/243. 2019.
[Zha18] Mark Zhandry. How to Record Quantum Queries, and Applications to Quantum Indifferentiability. Cryptology ePrint Archive, Report 2018/276. https://eprint.iacr.org/2018/276. 2018.

