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® Block ciphers are PRF’s up to the BB (classic g < 2"/2, quantum g < 2"/3)
® 2n-bit Universal hash + 2n to n-bit PRF — MAC, AEAD-SIV (classically).

® Are there Quantum secure PRF's?
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LRWQ

® Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as

g < 2"* and fi, f, f3 are assumed to be random.

F(x,y) = f(fi(x) ® fa(y))
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LRWQ

® Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as
g < 2"* and fi, f», f3 are assumed to be random.
® A variant of Zhandry's compressed oracle [Zhal8] is used to analyze the adversary's

transcript.

e | RWQ uses 3 PRF calls:
® |s there a QPRF secure construction with 2 PRF calls?
® Are there other QPRF secure constructions with 3 PRF calls?

F(x,y) = f(fi(x) ® fa(y))

x f
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Our Contributions

® All constructions with 2 PRF calls are broken!
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Our Contributions

® All constructions with 2 PRF calls are broken!
® We identify seven interesting QPRF candidates involving 3 PRF calls.

® \We prove three of these constructions are secure in the quantum setting as long as
g < 21/% and the internal components are assumed to be random.
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PRF Distinguishing Game

® Real World: a 2n-bit-to-n-bit function F that internally calls several independent
n-bit-to-n-bit uniform random functions fi, f>, f3, . . ..

e |deal World: a 2n-bit-to-n-bit uniform random function F*.

¢ |nformation-Theoretic Setting: all uniform random functions are assumed to be
unkeyed and have perfect randomness.

® The adversary makes g queries to to a secret oracle (either F or F*) and has to guess
(with good probability) which world it is.
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Classification of 2-call Candidate PRFs

® Generic construction with three linear layers L1, Lo, and Lj:

T TN T TN 7T TN
1 u 1 1
: i : f> S
X —> 1 1 1 1 !
1 I 1 I 1 1
'Ll: X—>|L2: x—>uL3:—>z
1 1 1
Y= y— Y=
I I 1 I u —> 1
\ ’ \ ’ \ ’

8/27



Classification of 2-call Candidate PRFs

® Generic construction with three linear layers L1, Lo, and Lj:

T TN T TN 7 N
1 u 1 1
b fi : fa o
X —> 1 1 ! 1 !
1 I 1 I 1 1
'Ll: X—>|L2: x—>uL3:—>z
I I I
Y= y— Y=
I ! I I u —> 1
[N N N7

® |n this work, we do a full classification of all possible 2-call candidates, and show that
none of them is quantum-secure.
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Example of Classical Distinguisher

x —{f]

®—z  F(x,y):=f(x)® h(y)

y —l 6

® Pick x # x, y # y' such that F(x,y)® F(x',y)® F(x',y") ® F(x,y’) = 0.
® For a random function F this property holds with negligible probability.
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Simon’s Algorithm

e :{0,1}" — {0,1}" is a periodic function if for all x € {0,1}", f(x @ s) = f(x) for some
constant s.
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Simon’s Algorithm

f:{0,1}" — {0,1}" is a periodic function if for all x € {0,1}", f(x @ s) = f(x) for some
constant s.

Simon’s Algorithm: recovers hidden s in O(n) queries to f.

Works also if f is almost periodic (expect some small subset of inputs) with high
probability.

Since a random function is far from periodic with high probability — Simon’s Algorithm
can be used to distinguish f from a random function.

10/27



Example of Quantum Distinguisher

y

XZ F(x,y) == fh(fi(x) Dy)

Pick x # x’
Define g(y) := F(x,y) @ F(x',y)
® g is periodic with period s(x, x’) = fi(x) @ fi(x).

Use Simon's Algorithm to construct an efficient quantum distinguisher.
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Classification of 3-call candidate PRFs

® Generic construction with four linear layers L1, Lo, L3, and Ly:

- —
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Classification of 3-call candidate PRFs

® Generic construction with four linear layers L1, Lo, L3, and Ly:

- —

-

- - —

’ 1 UI 1 V/ 1 p’ 1
X—): I : I : I : 1
1 1 1 1
:Ll: X—>:L2: X—>:L3: X—>:L4:—>y

1 1 1 1

y —
Y= oy Yy Y
o L u— T

- - - -

® We do a full classification as earlier.
® This time we are luckier, and can identify seven potentially quantum-secure candidates.

® We prove the quantum security of three of them.
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Interesting Candidates

H Candidate Definition Mem XORs Inv Par H
LRQ B(A(x)Dy) @ fh(y) 2n 2 v oV
CSUMQ h(h(x)®y)® B(A(Kx)®xdy) 2n 3 X v
LMQ h(h(xoy)ox) @ h(A(xdy)®y) 2n 4 x v
LRWQT f(A(x) @ f(y)) 2n 1 v
EDMQ B(f(f(x) B y) ® x) n 2 X X
TNTT f(h(A(x) B y) B y) n 2 VA
EDMDQ f(f(x) @ R(A(x) D y)) n 2 X X

® Note that LRQ, LRWQ and TNT can be seen as tweakable permutation (with y as a
tweak) as long as f1, f, f3 are permutations.

T studied in earlier works
14 /27
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Historical Context

® (lassical proof techniques rely heavily on transcripts.
® Hard to generalize to quantum setting (No-cloning theorem).
® In 2018 Zhandry [Zhal8] proposed the compressed oracle technique.

® In 2019 Hosoyamada and lwata [HI19] started using the compressed oracle in a good-bad
database setting.

® Their work is done in the computational basis — long and tedious calculations.

® In 2020 Chung et al. [Chu+-20] introduced a framework for using the compressed oracle in
classical-like arguments over the Fourier basis.

® Qur work extends Chung et al. framework to produce compact indistinguishability proofs
that uses mostly classic counting reasoning.
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Very High-Level Overview

® Query-response pairs are ‘stored’ in databases.

Bad Databases: defined separately for each game as a predicate over the stored
query-response pairs.

Transition Capacity: A measure of the probability of a database going bad after a single
query.

Main Idea: We show that the ‘good’ databases evolve identically in either game, and
bound the distinguishing advantage by the cumulative transition capacity.
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High-Level Proof of TNT

We examine the post-quantum security of the 2n-bit-to-n-bit PRF TNT defined as

gtV (x1, x2) == B(H(A(x1) B x) ® x0)

X2

2 V2 l u3

)b
x1 i —@ fh —@ f V3

here f1, f>, f3 are n-bit random functions, which we instantiate with compressed oracles.
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e Initial goal: bound the distinguishing advantage between gINT

e (the real world) and a 2n
to n bit random function giq (ideal world).
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e (the real world) and a 2n
to n bit random function giq (ideal world).

® Chung et al. Framework can only handle a single database.
e Define f : {0,1}3"*2 — {0,1}" function such that:

f(x)
f3(x)

(00]lx[|0*") fo(x) = £(01]x[|0*")
(10]lx[[0*") gia(x, x') = f(11][x][x"][0").

H Th

® Now fi, >, f3, giq are independent.
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Modified game

e Initial goal: bound the distinguishing advantage between gINT

e (the real world) and a 2n
to n bit random function giq (ideal world).

® Chung et al. Framework can only handle a single database.

e Define f : {0,1}3"*2 — {0,1}" function such that:
fi(x) = £(00]x]|0*") fo(x) = £(01]x]|0*")
f3(x) = £(10]|x[|0*") gia(x, x") = F(11[|x[[x"]|0").

Now fi, f>, f3, giq are independent.

Replace giq with g defined as

8a(x1,x2) = f(11]|x1 x| fa(fi(x1) © x2) © x2)

® g4(x1,x2) is random in xq|xo.
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® Now df acts as a single database — can track f1, f, f3, and g.
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Now df acts as a single database — can track f, f, f3, and gy.
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Singe-Database Setup

Now df acts as a single database — can track f, f, f3, and gy.

In the real world d,e tracks fi, f, f3 (resp. in the ideal world dy tracks fi, f, gifj).
[x]1 = 00[[x[|0*", [x]2 = 01]|x[|0*", [x]5 = 10]|x||0>".

Xre = {{[x]1, [x]2, [x]3} and Xy = {[x]1,[x]2, 11]||x||x'||y} are the sets of inputs for d.
and djy respectively.

Dre =D %,, Dig = D| 3,
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Bad Databases

Let B,e be the set of databases dye satisfying the following: we can find
X1, V1, X1, V], X2, V2, Xy, V4, v3 such that

* (Pali, v1), (Ixg)1s vi)s ([vi @ xe]2, v2), ([v @ x3]2, v3) € dre

* vudxo =V, DX

* ([v2 @ x2]3,v3) € dpe
Let By be the set of databases djy satisfying the following: we can find
X1, V1, X1, V], X2, V2, Xy, V4, v3 such that

hd ([Xl]la Vl)? ([X]/.]la V{)) ([Vl S X2]2a V2)7 ([V],_ @ Xé]27 Vé) S did

® VB Xy =Vv)DXh

® One of (11||x1]|x2||(v2a ® x2), v3) and (11]|x1|[x5]|(v2 ® x2), v3) € dig
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Bijection between Good Databases

® Gre = Dre \ Bre, Gid = Dig \ Big.
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Bijection between Good Databases

® Gre = Dre \ Bre, Gid = Dig \ Bia-
® In Gre, Gig €ach u3 = vo @ xy is associated with a unique (x1, x2).
® \We can define the bijection h: G, — G,y as follows:

® for each x1, dig([x1]1) = dre([x1]1)

® for each xo, d,'d([Xg]z) = d,e([Xz]g)

® for each x1, xp and the associated w3, diy(11|x1]|x2||u3) = dre([U3]3)
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Finalizing The Proof

® The main point is to show that:

(12 8e) + (1 2 B) <415

this is done by analyzing the effect of each action {fi, 2, 3} on the transition capacity at
each query /.
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Finalizing The Proof

® The main point is to show that:

(12 8e) + (1 2 B) <415

this is done by analyzing the effect of each action {fi, 2, 3} on the transition capacity at
each query /.

® From our framework we can deduce:

f 10q*
AdviRT < 4 I
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® QOur proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.
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® QOur proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

® Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode's functionality)

® A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

® \We are presently working on integrating this permutation oracle into our proof framework.

® Another direction: getting tighter security proofs — seems difficult.
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Conclusions

® We showed constructions with 2 PRF calls are not secure (either classical or quantum).
® \We identified seven interesting QPRF candidates that involve 3 PRF calls.

e We proved the quantum security of LRQ, LRWQ and TNT as long as g < 2"/* using our
new framework.
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