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Why study Compressing PRF’s?

• Block ciphers are PRF’s up to the BB (classic q ≪ 2n/2, quantum q ≪ 2n/3)

• 2n-bit Universal hash + 2n to n-bit PRF → MAC, AEAD-SIV (classically).

• Are there Quantum secure PRF’s?
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LRWQ

• Hosoyamada and Iwata [HI19] in 2019 show the construction is QPRF as long as
q ≪ 2n/4 and f1, f2, f3 are assumed to be random.

• A variant of Zhandry’s compressed oracle [Zha18] is used to analyze the adversary’s
transcript.

• LRWQ uses 3 PRF calls:

• Is there a QPRF secure construction with 2 PRF calls?
• Are there other QPRF secure constructions with 3 PRF calls?

f2 f3y z

f1x

F (x , y) := f3(f1(x)⊕ f2(y))
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Our Contributions

• All constructions with 2 PRF calls are broken!

• We identify seven interesting QPRF candidates involving 3 PRF calls.

• We prove three of these constructions are secure in the quantum setting as long as
q ≪ 2n/4 and the internal components are assumed to be random.

5 / 27



Our Contributions

• All constructions with 2 PRF calls are broken!

• We identify seven interesting QPRF candidates involving 3 PRF calls.

• We prove three of these constructions are secure in the quantum setting as long as
q ≪ 2n/4 and the internal components are assumed to be random.

5 / 27



Our Contributions

• All constructions with 2 PRF calls are broken!

• We identify seven interesting QPRF candidates involving 3 PRF calls.

• We prove three of these constructions are secure in the quantum setting as long as
q ≪ 2n/4 and the internal components are assumed to be random.

5 / 27



PRF Distinguishing Game

• Real World: a 2n-bit-to-n-bit function F that internally calls several independent
n-bit-to-n-bit uniform random functions f1, f2, f3, . . ..

• Ideal World: a 2n-bit-to-n-bit uniform random function F ∗.

• Information-Theoretic Setting: all uniform random functions are assumed to be
unkeyed and have perfect randomness.

• The adversary makes q queries to to a secret oracle (either F or F ∗) and has to guess
(with good probability) which world it is.
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Classification of 2-call Candidate PRFs

• Generic construction with three linear layers L1, L2, and L3:

L1

f1x

y
L2

f2

x

y

L3x
y
u

z

u

• In this work, we do a full classification of all possible 2-call candidates, and show that
none of them is quantum-secure.
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Example of Classical Distinguisher

f1

f2

x

y
z F (x , y) := f1(x)⊕ f2(y)

• Pick x ̸= x ′, y ̸= y ′ such that F (x , y)⊕ F (x ′, y)⊕ F (x ′, y ′)⊕ F (x , y ′) = 0.

• For a random function F this property holds with negligible probability.
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Simon’s Algorithm

• f : {0, 1}n → {0, 1}n is a periodic function if for all x ∈ {0, 1}n, f (x ⊕ s) = f (x) for some
constant s.

• Simon’s Algorithm: recovers hidden s in O(n) queries to f .

• Works also if f is almost periodic (expect some small subset of inputs) with high
probability.

• Since a random function is far from periodic with high probability → Simon’s Algorithm
can be used to distinguish f from a random function.
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Example of Quantum Distinguisher

f1 f2x z

y

F (x , y) := f2(f1(x)⊕ y)

• Pick x ̸= x ′

• Define g(y) := F (x , y)⊕ F (x ′, y)

• g is periodic with period s(x , x ′) = f1(x)⊕ f1(x
′).

• Use Simon’s Algorithm to construct an efficient quantum distinguisher.
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Classification of 3-call candidate PRFs

• Generic construction with four linear layers L1, L2, L3, and L4:

L1

f1
x

y
L2

f2

x

y

L3

f3

x
y

u

L4x
y
u
v

y

u v

• We do a full classification as earlier.

• This time we are luckier, and can identify seven potentially quantum-secure candidates.

• We prove the quantum security of three of them.
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Interesting Candidates

Candidate Definition Mem XORs Inv Par

LRQ f3(f1(x)⊕ y)⊕ f2(y) 2n 2 ✓ ✓

CSUMQ f2(f1(x)⊕ y)⊕ f3(f1(x)⊕ x ⊕ y) 2n 3 × ✓

LMQ f2(f1(x ⊕ y)⊕ x)⊕ f3(f1(x ⊕ y)⊕ y) 2n 4 × ✓

LRWQ† f3(f1(x)⊕ f2(y)) 2n 1 ✓ ✓

EDMQ f3(f2(f1(x)⊕ y)⊕ x) n 2 × ×

TNT† f3(f2(f1(x)⊕ y)⊕ y) n 2 ✓ ×

EDMDQ f3(f1(x)⊕ f2(f1(x)⊕ y)) n 2 × ×

• Note that LRQ, LRWQ and TNT can be seen as tweakable permutation (with y as a
tweak) as long as f1, f2, f3 are permutations.

†: studied in earlier works
14 / 27
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Historical Context

• Classical proof techniques rely heavily on transcripts.

• Hard to generalize to quantum setting (No-cloning theorem).

• In 2018 Zhandry [Zha18] proposed the compressed oracle technique.

• In 2019 Hosoyamada and Iwata [HI19] started using the compressed oracle in a good-bad
database setting.

• Their work is done in the computational basis → long and tedious calculations.

• In 2020 Chung et al. [Chu+20] introduced a framework for using the compressed oracle in
classical-like arguments over the Fourier basis.

• Our work extends Chung et al. framework to produce compact indistinguishability proofs
that uses mostly classic counting reasoning.
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Very High-Level Overview

• Query-response pairs are ‘stored’ in databases.

• Bad Databases: defined separately for each game as a predicate over the stored
query-response pairs.

• Transition Capacity: A measure of the probability of a database going bad after a single
query.

• Main Idea: We show that the ‘good’ databases evolve identically in either game, and
bound the distinguishing advantage by the cumulative transition capacity.
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High-Level Proof of TNT

We examine the post-quantum security of the 2n-bit-to-n-bit PRF TNT defined as

gTNT
re (x1, x2) := f3(f2(f1(x1)⊕ x2)⊕ x2)

f1 f2 f3x1 v3
v1 u2 v2 u3

x2

here f1, f2, f3 are n-bit random functions, which we instantiate with compressed oracles.
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Modified game

• Initial goal: bound the distinguishing advantage between gTNT
re (the real world) and a 2n

to n bit random function gid (ideal world).

• Chung et al. Framework can only handle a single database.

• Define f : {0, 1}3n+2 → {0, 1}n function such that:

f1(x) = f (00∥x∥02n) f2(x) = f (01∥x∥02n)
f3(x) = f (10∥x∥02n) gid(x , x

′) = f (11∥x∥x ′∥0n).

• Now f1, f2, f3, gid are independent.

• Replace gid with g∗
id defined as

g∗
id(x1, x2) = f (11∥x1∥x2∥f2(f1(x1)⊕ x2)⊕ x2)

.

• g∗
id(x1, x2) is random in x1||x2.
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Singe-Database Setup

• Now df acts as a single database → can track f1, f2, f3, and g∗
id.

• In the real world dre tracks f1, f2, f3 (resp. in the ideal world did tracks f1, f2, g
∗
id).

• [x ]1 = 00∥x∥02n, [x ]2 = 01∥x∥02n, [x ]3 = 10∥x∥02n.
• X̃re = {{[x ]1, [x ]2, [x ]3} and X̃id = {[x ]1, [x ]2, 11∥x∥x ′∥y} are the sets of inputs for dre

and did respectively.

• Dre = D|X̃re
, Did = D|X̃id

.
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Bad Databases

Let Bre be the set of databases dre satisfying the following: we can find
x1, v1, x

′
1, v

′
1, x2, v2, x

′
2, v

′
2, v3 such that

• ([x1]1, v1), ([x
′
1]1, v

′
1), ([v1 ⊕ x2]2, v2), ([v

′
1 ⊕ x ′2]2, v

′
2) ∈ dre

• v2 ⊕ x2 = v ′2 ⊕ x ′2
• ([v2 ⊕ x2]3, v3) ∈ dre

Let Bid be the set of databases did satisfying the following: we can find
x1, v1, x

′
1, v

′
1, x2, v2, x

′
2, v

′
2, v3 such that

• ([x1]1, v1), ([x
′
1]1, v

′
1), ([v1 ⊕ x2]2, v2), ([v

′
1 ⊕ x ′2]2, v

′
2) ∈ did

• v2 ⊕ x2 = v ′2 ⊕ x ′2
• One of (11∥x1∥x2∥(v2 ⊕ x2), v3) and (11∥x ′1∥x ′2∥(v2 ⊕ x2), v3) ∈ did
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Bijection between Good Databases

• Gre = Dre \ Bre ,Gid = Did \ Bid .

• In Gre ,Gid each u3 = v2 ⊕ x2 is associated with a unique (x1, x2).
• We can define the bijection h : Gre → Gid as follows:

• for each x1, did([x1]1) = dre([x1]1)
• for each x2, did([x2]2) = dre([x2]2)
• for each x1, x2 and the associated u3, did(11∥x1∥x2∥u3) = dre([u3]3)
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Finalizing The Proof

• The main point is to show that:⊥ 3q
⇝ Bre

+
⊥ 3q
⇝ Bid

≤ 4

√
10q4

2n
,

this is done by analyzing the effect of each action {f1, f2, f3} on the transition capacity at
each query i .

• From our framework we can deduce:

AdvqprfTNT ≤ 4

√
10q4

2n
.
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Future Work

• Our proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

• Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode’s functionality)

• A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

• We are presently working on integrating this permutation oracle into our proof framework.

• Another direction: getting tighter security proofs → seems difficult.

24 / 27



Future Work

• Our proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

• Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode’s functionality)

• A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

• We are presently working on integrating this permutation oracle into our proof framework.

• Another direction: getting tighter security proofs → seems difficult.

24 / 27



Future Work

• Our proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

• Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode’s functionality)

• A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

• We are presently working on integrating this permutation oracle into our proof framework.

• Another direction: getting tighter security proofs → seems difficult.

24 / 27



Future Work

• Our proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

• Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode’s functionality)

• A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

• We are presently working on integrating this permutation oracle into our proof framework.

• Another direction: getting tighter security proofs → seems difficult.

24 / 27



Future Work

• Our proof framework has a potential of developing into a go-to technique for doing
quantum proofs for symmetric constructions.

• Limitation: compressed oracle can only replace PRFs, not SPRPs (where inverse calls are
required as part of the mode’s functionality)

• A concurrent publication has proposed a compressed permutation oracle to resolve this
issue.

• We are presently working on integrating this permutation oracle into our proof framework.

• Another direction: getting tighter security proofs → seems difficult.

24 / 27



Conclusions

• We showed constructions with 2 PRF calls are not secure (either classical or quantum).

• We identified seven interesting QPRF candidates that involve 3 PRF calls.

• We proved the quantum security of LRQ, LRWQ and TNT as long as q ≪ 2n/4 using our
new framework.
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Thank You!
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