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1524094380979073513389817849

= 7 · 990044713531 · 219917106505997

1524094380979073513389817850

= 2 · 3 · 52 · 21490061513 · 472805961973663

1524094380979073513389817851

= 112 · 5009 · 131009 · 42319423 · 453559837

1524094380979073513389817852

= 22 · 433 · 879962113729257224820911

1524094380979073513389817853

= 3 · 10211 · 49753350340452241484341

1524094380979073513389817854

= 2 · 1697 · 1017539 · 441315275501735669

1524094380979073513389817855

= 5 · 17 · 192 · 312 · 372 · 53 · 792 · 1392 · 157 · 191 · 197

1524094380979073513389817856

= 219 · 32 · 7 · 132 · 23 · 41 · 43 · 103 · 109 · 113 · 149 · 179 · 199

1524094380979073513389817857

= 1524094380979073513389817857

1524094380979073513389817858

= 2 · 1427 · 6053 · 138270731 · 638053301789

1524094380979073513389817859

= 3 · 71 · 74129557 · 96525231907873499

1524094380979073513389817860

= 22 · 5 · 181 · 421020547231788263367353

1524094380979073513389817861

= 101 · 1987 · 42437 · 1097461 · 163064284979

1524094380979073513389817862

= 2 · 3 · 11 · 67 · 7823 · 110923 · 397189890942349

...

...
...
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Twin smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1), are B-smooth twins if
their product r(r + 1) is B-smooth, i.e. q prime and q | r(r + 1) =⇒ q ≤ B.

For instance, the following are 7-smooth twins:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

For a fixed B, Størmer (1897) proved the set of B-smooth twins is finite!

B 2 3 5 7 11 13 · · · 40 · · · 100 · · · 113 · · · · · · 200
# B-smooth twins 1 4 10 23 40 68 · · · 653 · · · 13,374 · · · 33,233 · · · · · · ≥ 348,840

Many applications: isogeny-based cryptography (e.g. SQISign)
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Twin smooth integers

Question: Can we find the
largest B-smooth twins?

We revisit the CHM algorithm to find record size twin smooth integers and use these twins to
find new parameters for the isogeny-based cryptosystem SQISign
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Outline

CHM algorithm

Isogeny-based protocols

New SQISign parameters

4



CHM algorithm



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that finds almost all
B-smooth twins

➣ S(0) = {1, 2, · · · , B − 1} – representing B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

➣ For each r , s ∈ S(0) with r < s compute

t
t ′ = r

r + 1 · s + 1
s with gcd(t, t ′) = 1

➣ S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

➣ Repeat this with S(1) instead of S(0)

➣ Algorithm terminates when S(d+1) = S(d) for some d

When t ′ = t + 1, this equivalent to t = r(s+1)
s−r being an integer

5



CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the computation yields a new twin
smooth pair (t, t + 1)

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16

Hence, we add 5, 8 and 15 to get the next set

S(1) = {1, 2, 3, 4, 5, 8, 15}

The second and third iterations find two and one new twins (resp.)

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}, S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}
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CHM in action

S(1) = {1, 2, 3, 4, 5, 8, 15}, S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}, S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers

S(4) = S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

This is exactly all 5-smooth twins!

Warning: In general this method does not guarantee to produce all B-smooth twins
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B = 100 : Original authors found all except 41 B-smooth twins

B = 200 : They found 346,192 such twins – which took them 2 weeks to run
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Our experiments

We optimised the CHM algorithm and ran B = 200 much faster1!

Subsequently we ran it fully for B = 547 and found 82,026,426 twins – the largest twin found
was the following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283 · 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

This data suggests that
B ≥ 5000 to expect to find

256-bit twins

1The computation now takes a mere 7 minutes to run on a laptop
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Further optimisations for larger B

We can run CHM for larger B by restricting the r , s ∈ S(i) to check
global-k: r < s < k · r for fixed 1 < k ≤ 2
constant-range: R successors s of r in S(i) for a range R

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance of our CHM optimisations for B = 300

For example, we ran B = 1300 using constant-range with R = 5000

9



Further optimisations for larger B

We can run CHM for larger B by restricting the r , s ∈ S(i) to check

global-k: r < s < k · r for fixed 1 < k ≤ 2
constant-range: R successors s of r in S(i) for a range R

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance of our CHM optimisations for B = 300

For example, we ran B = 1300 using constant-range with R = 5000

9



Further optimisations for larger B

We can run CHM for larger B by restricting the r , s ∈ S(i) to check
global-k: r < s < k · r for fixed 1 < k ≤ 2
constant-range: R successors s of r in S(i) for a range R

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance of our CHM optimisations for B = 300

For example, we ran B = 1300 using constant-range with R = 5000

9



Further optimisations for larger B

We can run CHM for larger B by restricting the r , s ∈ S(i) to check
global-k: r < s < k · r for fixed 1 < k ≤ 2
constant-range: R successors s of r in S(i) for a range R

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance of our CHM optimisations for B = 300

For example, we ran B = 1300 using constant-range with R = 5000

9



Further optimisations for larger B

We can run CHM for larger B by restricting the r , s ∈ S(i) to check
global-k: r < s < k · r for fixed 1 < k ≤ 2
constant-range: R successors s of r in S(i) for a range R

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance of our CHM optimisations for B = 300

For example, we ran B = 1300 using constant-range with R = 5000

9



Isogeny-based protocols



Twin smooth integers in isogeny-based cryptography

Cryptographic sized primes p such that p + 1 and p − 1 are as smooth as possible

�����XXXXXB-SIDH ϕ : E → E ′

#E (Fp2) = (p − 1)2, (p + 1)2 SQISign

Such primes can be found from twin smooth integers, (r , r + 1), if p = 2r + 1 is prime

(p − 1, p + 1) = (2r , 2(r + 1))

This p makes all of p2 − 1 smooth, but in isogeny-based cryptosystems a large smooth divisor
of p2 − 1 is sufficient (i.e. a large factor T ′ | p2 − 1 that is smooth)

B-SIDH (pre Kani): M | p − 1 and N | p + 1 with M ≈ N large smooth divisors
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Signing with isogeny skies

SQISign: builds a signature from an identification protocol by solving an isogeny problem

sk=τ

com=ψ
φ◦ψ◦τ̂

resp=σ

chal=φ

E0 pk = EA

E1 E2

Dotted isogenies are secret and
the other isogenies are public

σ is computed from φ ◦ ψ ◦ τ̂ and the secret knowledge of End(EA) and End(E2)
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SQISign requirements

State-of-the-art requirements on the prime p

2f T | p2 − 1, f is as large as possible, T ≈ p5/4+ϵ is B-smooth,
√

B/f is small

T is used in the signing to compute ψ and ϕ;
√

B/f is a rough signing cost metric

2f is used in the verification to compute σ

Thus verification is fast and signing is slow

How big does p need to be?

NIST security level p(bits) Existed?
I 256 ✓

III 384 ✗

V 512 ✗
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State-of-the-art prime prior to this work

254-bit prime p = 0x348757EADF5C9530B7311A63633F03DB535805FA6E9E48B1FFFFFFFFFFFFFFFF:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521 · 3923 · R, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599 · 607 · 619

· 743 · 827 · 941 · 2357 · 10069

This was found using the extended Euclidean algorithm method from Costello (2020):

➣ Force the large power of two and three in p ± 1 as well as some small primes

➣ Use XGCD to recover the integer p

➣ Repeat by changing the distribution of the small prime divisors

While
√

B/f ≈ 0.96 is not optimally small2, it performs the best due to the large power of three

2Some existing primes have
√

B/f as small as 0.63
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New SQISign parameters



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability

14



Boosting CHM twins

Use CHM twins can be combined with pn(x) = 2xn − 1 to find SQISign parameters

4xn(x − 1) | p2
n(x) − 1 for all n, and 4xn(x − 1)(x + 1) | p2

n(x) − 1 when n is even

➣ Find small CHM twins (r , r ± 1)

➣ Choose n and evaluate p = pn(r)

➣ Compute the smooth factor T ′ = 2f · T | p2 − 1, with T odd

➣ Keep p if it is prime, T ≈ p5/4+ϵ and
√

B/f is small

The amount of guaranteed smoothness in T ′ is ≈ p1+1/n coming from (r , r ± 1)

Depending on n and the power of two f , extra smooth factors might be required3 to get
T ≈ p5/4+ϵ

3Which comes with an associated smoothness probability
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Choosing n

(r − 1, r) =⇒ p = pn(r) = 2rn − 1

n = 2 : p2(r)2 − 1 = r2(r − 1)(r + 1)
guaranteed smoothness T ′ ≈ p3/2, requires log2(r) ≈ 128 for log2(p) ≈ 256

n = 3 : p2(r)2 − 1 = r3(r − 1)(r2 + r + 1)
guaranteed smoothness T ′ ≈ p4/3, requires log2(r) ≈ 85 for log2(p) ≈ 256

n = 4 : p2(r)2 − 1 = r4(r − 1)(r + 1)(r2 + 1)
guaranteed smoothness T ′ ≈ p5/4, requires log2(r) ≈ 64 for log2(p) ≈ 256

n = 6 : p2(r)2 − 1 = r6(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)
guaranteed smoothness T ′ ≈ p7/6, requires log2(r) ≈ 43 for log2(p) ≈ 256

For other n, the smoothness probability is too small
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Distribution of CHM twins with B = 547
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NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

253-bit prime p = 2r 4 − 1 with r = 8077251317941145600:

p + 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and

p − 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313 · 347 · 397 · 467 · 479 · R

Comparison with the state-of-the-art:

➣
√

B/f ≈ 0.45

➣ Expect signing to be ≈ 30 - 50% faster

➣ Expect verification to be ≈ 31% slower (which is still very fast)

Remark: True comparison can only be done with an implementation
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NIST-III parameters

We report the first NIST-III and NIST-V parameters

We used n = 3, 4, 6 to find a collection of 384-bit SQISign friendly primes

375-bit prime p = 2r 4 − 1 with r = 12326212283367463507272925184:

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914 · 13194, and

p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283 · 353 · 419

· 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · R

382-bit prime p = 2r 6 − 1 with r = 11896643388662145024:

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and

p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349 · 449 · 463

· 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119 · 10243 · R
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NIST-V parameters

We report the first NIST-III and NIST-V parameters

We used n = 4, 6 to find a collection of 512-bit SQISign friendly primes

499-bit prime p = 2r 6 − 1 with r = 9469787780580604464332800:

p + 1 = 2109 · 512 · 712 · 136 · 616 · 1796 · 2816 · 3796 · 13676 · 14276, and

p − 1 = 2 · 33 · 19 · 233 · 31 · 432 · 73 · 139 · 337 · 461 · 641 · 971 · 1069 · 1097 · 5843

· 12841 · 23671 · 39667 · 51193 · 75223 · 459317 · 703981 · R

508-bit prime p = 2r 6 − 1 with r = 26697973900446483680608256:

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and

p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277 · 347 · 617

· 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139 · 143443 · 150151 · R
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Table of primes

NIST security
level

n r ⌈log2(p)⌉ f B
√

B/f logp(T )

NIST-I

2 1211460311716772790566574529001291776
2091023014142971802357816084152713216

241
243

49
49

1091
887

0.67
0.61

1.28
1.28

3

3474272816789867297357824
10227318375788227199589376
21611736033260878876800000
20461449125500374748856320
26606682403634464748953600

246
251
254
254
255

43
31
31
46
40

547
383
421
523
547

0.54
0.63
0.66
0.50
0.58

1.29
1.31
1.28
1.26
1.28

4
1466873880764125184
8077251317941145600

34848218231355211776∗

243
253
261

49
49
77

701
479
2311

0.54
0.45
0.62

1.28
1.30
1.30

NIST-III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4

5139734876262390964070873088
12326212283367463507272925184
18080754980295452456023326720
27464400309146790228660255744

370
375
377
379

45
77
61
41

11789
55967
95569
13127

2.41
3.07
5.07
2.79

1.26
1.31
1.26
1.29

6
2628583629218279424
5417690118774595584
11896643388662145024

369
375
382

73
79
79

13219
58153
10243

1.58
3.05
1.28

1.27
1.27
1.30

NIST-V

4 114216781548581709439512875801279791104∗

123794274387474298912742543819242587136∗
507
508

65
41

75941
15263

4.24
3.01

1.26
1.29

6

9469787780580604464332800
12233468605740686007808000
26697973900446483680608256
31929740427944870006521856
41340248200900819056793600

499
502
508
510
512

109
73
85
91
67

703981
376963
150151
550657
224911

7.70
8.41
4.56
8.15
7.08

1.25
1.28
1.26
1.25
1.28

Table 2: SQISign parameters p = pn(r) found using CHM twins. The f is the power of two dividing (p2 − 1)/2 and B is the
smoothness bound of T ≈ p5/4+ϵ. Those marked with an asterisk correspond to primes p not found using the CHM machinery.
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Summary



Summary

Question: Can we find the
largest B-smooth twins?

Answer: Yes, but up to 128-bit twins

Can be powerlifted using pn(x) = 2xn − 1
to find new SQISign parameters

Including first parameters targeting higher
security levels

Open question: Can we find cryptographic
sized twins with a small B?
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Thanks for listening
Questions?
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