
Asiacrypt 2023

Brice Minaud — Inria, ENS, CNRS, PSL University
Michael Reichle — ETH Zürich

Hermes:
IO-Efficient Forward-Secure Searchable Encryption

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Outsourcing storage

2

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
‣ Company outsourcing customer/transaction info.

‣ Private messaging service.

Data upload

Data queries

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Searchable Encryption

3

Client Server

Searchable Symmetric Encryption (SSE):
‣High speed.

At the cost of:
‣ Restricted functionality. Search, basic updates.
‣Weaker security guarantees.

Data upload

Search, update

Flavors of computing on encrypted data: FHE, FE, MPC, ORAM...

Data upload

Search, update

Security model

4

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client

Security model: Server learns nothing except specific leakage.

Example:
‣ Setup leaks: total number of elements in database.
‣ Search leaks: IDs of documents matching each query.

‣ Forward security: updates leak no information.

Server = honest-but-curious
adversary

Inference attacks: try to infer sensitive information from leakage.

Data upload

Search, update

Security model

4

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client

Security model: Server learns nothing except specific leakage.

leakage

Example:
‣ Setup leaks: total number of elements in database.
‣ Search leaks: IDs of documents matching each query.

‣ Forward security: updates leak no information.

Server = honest-but-curious
adversary

Inference attacks: try to infer sensitive information from leakage.

An inherent bottleneck in SSE

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

A simple scenario

6

Client Server

Minimalist requirement: store and fetch (encrypted) files. No search. No updates.

At fetch time:
‣ The server can learn which file is fetched.

‣ The server cannot learn anything about other files (→ cannot learn their size).

Store and fetch

Simple SSE

7

id1 id2 id3 ...

Reverse index:
“car” ↦ id1, id3

“duck” ↦ id2, id3, id6, ...

...

8

id1 id2 id3 ...

Reverse index:

...

Simple SSE

8

id1 id2 id3 ...

Reverse index:

...

Simple SSE

8

id1 id2 id3 ...

Reverse index:

...

Simple SSE

Helper “files”

8

id1 id2 id3 ...

Reverse index:

...

Simple SSE

Helper “files”

→ size of some files may relate to properties of the original database.

Naive solution

9

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

?

Naive solution

9

...

Position of one file depends on sizes of other files.

Encrypt files sequentially.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

?

Naive solution

9

...

Position of one file depends on sizes of other files.

Encrypt files sequentially.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

?

✓ Efficient

Naive solution

9

...

Position of one file depends on sizes of other files.

Encrypt files sequentially.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

?

✓ Efficient
× Insecure

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

✓ Secure

Standard solution

10

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

File stored at pseudo-random locations within hash table

✓ Secure
× Inefficient

Problem recap

11

... Sequential storage:

This is inherent.

‣ Memory efficiency asks:

data position is correlated with content.

‣ Security asks:

data position is not correlated with content.

Random storage:
✓ Secure
× Insecure

× Insecure
✓ Efficient

...

Formalizing the issue

12

Locality: #discontinuous memory accesses to fetch enc. file.

Read efficiency: #memory words accessed to fetch enc. file / p
#memory words of plaintext file.

Storage efficiency: #memory words to store encrypted DB / imp
#memory words of plaintext DB.

Cash & Tessaro EC ’15

Theorem (Cash & Tessaro EC’15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned a long line of work.

Constructions

13

Scheme Locality Storage eff. Read eff.

[ANSS16] 1C O(1) O(1) Õ(log N)

[DP17] L O(log N/log L) O(1)

[DPP18] O(1) O(1) O(log2/3+ε N)

[MR22] O(1) O(1) O(logε N)

N = size of DB

Under assumption: longest list size ≤ N1-1/log log N

[ANSS16] 2C O(1) O(1) Õ(log log N)

Asharov, Naor, Segev, Shahaf STOC ’16

A second problem

14

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be 𝜔(1).

A second problem

14

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be 𝜔(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Ω(log N).

Page efficiency

Page efficiency [BBFMR21]

16

Now:

Storage efficiency: #memory words to store encrypted DB / imp
#memory words of plaintext DB.

Page efficiency: #memory pages accessed to answer a query /
p #memory pages of plaintext answer.

Before:

Storage efficiency + Locality + Read efficiency

Idea was already implicit in [MM17], to some degree [CJJ+13].

Memory Efficiency

HDD

Page Efficiency:

Number of read  
pages per query

Locality:

Number of read 
(non-adjacent)  

memory locations

SSD

HDDs vs SSDs

A second problem

18

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be 𝜔(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Ω(log N).

Efficiency measures: Page efficiency + Storage efficiency.

A second problem

18

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be 𝜔(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Ω(log N).

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C’21):

For secure SSE, can have O(1) in both measures.

A second problem

18

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be 𝜔(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Ω(log N).

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C’21):

For secure SSE, can have O(1) in both measures.

Theorem (this paper):

For forward-secure SSE, can have Õ(loglog N) in both measures.

Forward-security vs memory efficiency

19

…p

UPDATE

Forward-security vs memory efficiency

20

…p

Leaks “keyword” if previously searched

UPDATE

Forward-security vs memory efficiency

21

…p

Does not retain memory efficiency!

UPDATE

Hermes: a solution

...

Basic solution

23

…

Client Server

Update

1 page/keyword (W pages)

If page full

…

Full-page SSE scheme

Basic solution

23

…

Client Server

Update

1 page/keyword (W pages)

If page full

…

Full-page SSE scheme

Basic solution

23

…

Client Server

Update

1 page/keyword (W pages)

If page full

…

Full-page SSE scheme

Basic solution

23

…

Client Server

Update

1 page/keyword (W pages)

If page full

…

Full-page SSE scheme

IO-DSSE-like approach

24

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

24

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

24

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

ORAM

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

24

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

ORAM

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

24

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

ORAM

‣ ORAM overhead Ω(polylog W).

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

Idea #1: client-side buffering

25

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

*optimal for forward-secure SSE: [BF19]

...

O(W) client storage*

W pages

ORAM

Idea #1: client-side buffering

25

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

*optimal for forward-secure SSE: [BF19]

...

O(W) client storage*

W pages

Idea #1: client-side buffering

25

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

*optimal for forward-secure SSE: [BF19]

...

O(W) client storage*

Pushes on fixed
schedule

W pages

Idea #1: client-side buffering

25

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

*optimal for forward-secure SSE: [BF19]

...

O(W) client storage*

Pushes on fixed
schedule

W pages

+ Deamortization

Idea #1: client-side buffering

25

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

*optimal for forward-secure SSE: [BF19]

...

O(W) client storage*

Pushes on fixed
schedule

W pages

+ Deamortization

Idea #2: dummy updates

26

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ ORAM overhead Ω(polylog W).

...

O(W) client storage

Pushes on fixed
schedule

W pages

Support for
dummy updates

+ Deamortization

Two-choice allocation
Throw balls into bins at randomn m = O(n)

Two-choice allocation
Throw balls into bins at randomn m = O(n)

Two-choice allocation
Throw balls into bins at randomn m = O(n)

Two-choice allocation

O(log log n)

Throw balls into bins at randomn m = O(n)

Idea #2: dummy updates

28

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Server learns updated keyword,

due to updates in first buffer.

‣ Sever learns when a page is full,
due to pushing full pages to SSE.

‣ Dummy overhead Õ(loglog N).

‣ ORAM overhead Ω(polylog W).

...

O(W) client storage

Pushes on fixed
schedule

W pages

Support for
dummy updates

+ Deamortization

Idea #2: dummy updates

29

…

Client Server

…

Full-page SSE scheme

Incomplete pages buffer

Problems:
‣ Dummy overhead Õ(loglog N).

Reduces to overhead of SSE
scheme w/ dummy updates.

‣ Modular: can use any SSE with
dummy updates.

‣ Two regimes: this slide assumes
pW = O(N). Other scheme if pW>N.

...

O(W) client storage

Pushes on fixed
schedule

W pages

Support for
dummy updates

+ Deamortization

Conclusion

Takeaways

‣ Page efficiency circumvents two impossibility results for memory-
efficient SSE:

- [CT15] no optimal memory-efficient secure SSE.

- [B16] no sublogarithmic memory-efficient forward-secure SSE.

⇒ don't have to sacrifice forward security to be memory-efficient.

‣ New way to build forward security using buffer+deamortization.

Open questions:
‣ Can we prove memory efficient lower bounds for forward-secure

SSE?

‣ Make this more practical.

Takeaways

‣ Page efficiency circumvents two impossibility results for memory-
efficient SSE:

- [CT15] no optimal memory-efficient secure SSE.

- [B16] no sublogarithmic memory-efficient forward-secure SSE.

⇒ don't have to sacrifice forward security to be memory-efficient.

‣ New way to build forward security using buffer+deamortization.

Open questions:
‣ Can we prove memory efficient lower bounds for forward-secure

SSE?

‣ Make this more practical.

谢谢!

