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Outsourcing storage

Data upload

Data queries

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
- Company outsourcing customer/transaction info.

- Private messaging service.



Searchable Encryption

Data upload

Search, update

>

Client Server

Flavors of computing on encrypted data: FHE, FE, MPC, ORAM...

Searchable Symmetric Encryption (SSE):
* High speed.
At the cost of:
> Restricted functionality. Search, basic updates.

~ Weaker security guarantees.



Security model

Data upload

Search, update

>

Server = honest-but-curious

Client adversary

Security model: Server learns nothing except specific leakage.

Example:
- Setup leaks: total number of elements in database.
- Search leaks: |IDs of documents matching each query.
- Forward security: updates leak no information.

Inference attacks: try to infer sensitive information from leakage.
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Example:
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An inherent bottleneck in SSE




A simple scenario

Q A
. Store and fetch ‘

Client Server

Minimalist requirement: store and fetch (encrypted) files. No search. No updates.

At fetch time:
 The server can learn which file is fetched.
 The server cannot learn anything about other files (— cannot learn their size).



Simple SSE

A A A

Reverse index:

“car”’ » id4, 1d3

“duck” » 1do, 1d3, Ids, ...
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Simple SSE

A A A

Reverse index:

sins NG
T :| Helper “files”
e

— size of some files may relate to properties of the original database.
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Position of one file depends on sizes of other files.
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Naive solution

Client

Encrypt files sequentially.
v Efficient

Position of one file depends on sizes of other files.



Standard solution

Server
memory

File stored at pseudo-random locations within hash table
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Standard solution

Server
memory

v Secure

x |nefficient

File stored at pseudo-random locations within hash table
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Problem recap

| x Insecure
a a - Sequential storage: o
v Efficient
v Secure
Random storage:
x Insecure

This Is inherent.

- Memory efficiency asks:
data position is correlated with content.

- Security asks:

data position is not correlated with content.
I



Formalizing the issue

Cash & Tessaro EC ’15

Locality: #discontinuous memory accesses to fetch enc. file.

Read efficiency: #memory words accessed to fetch enc. file /
memory words of plaintext file.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

Theorem (Cash & Tessaro EC’15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned a long line of work.

12



Constructions

Asharov, Naor, Segev, Shahaf STOC 16

Scheme Locality Storage eff. Read eff.
[ANSS16] 1C O(1) O(1) O(log N)
[DP17] L O(log N/log L) O(1)
[DPP18] O(1) O(1) O(log2/3+e N)
IMR22] O(1) O(1) O(loge N)

Under assumption: longest list size < N1-1/loglogN

~S

[ANSS16] 2C O(1) O(1) O(log log N)

N = size of DB

|3



A second problem

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).
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A second problem

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).
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Page efficiency




Page efficiency [BBFMR21]

Before:

Storage efficiency + Locality + Read efficiency

Now:

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

|

Page efficiency: #memory pages accessed to answer a query /
#memory pages of plaintext answer.

- Wy Iy

4

ldea was already implicit in [MM17], to some degree [CJJ+13].

|6



Memory Efficiency

HDDs vs SSDs

HDD

Locality:

Page Efficiency:

Number of read
(hon-adjacent)
memory locations

Number of read
pages per query



A second problem

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

Efficiency measures: Page efficiency + Storage efficiency.

|18
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A second problem

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C’21):

For secure SSE, can have O(1) in both measures.

Theorem (this paper):

For forward-secure SSE, can have O(loglog N) in both measures.

|18



Forward-security vs memory efficiency

UPDATE

19



Forward-security vs memory efficiency

UPDATE

Leaks “keyword” if previously searched

20



Forward-security vs memory efficiency

UPDATE

Does not retain memory efficiency!

21



Hermes: a solution




Basic solution
Client Server

1 page/keyword (I/V pages)

Update

Full-page SSE scheme
23
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|O-DSSE-like approach

Client Server

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4
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ldea #1: client-side buffering
Client Server

ORAM

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”
+ Deamortization

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”
+ Deamortization

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM. overheae=S{polyiog V.

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #2: dummy updates

Client Server

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Server learns u ord,
ates in first buffer.
- ORAM. overheae=S{polyiog V.
Support for
dummy updates

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

26



Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random
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Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random

O(log log n)



ldea #2: dummy updates

Client Server

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Server learns u ord,
ates in first buffer.
- ORAM. overheae=S{polyiog V.
Support for
dummy updates

shing full pages to SSE.

- Dummy overhead O(loglog N).

Full-page SSE scheme
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ldea #2: dummy updates

Server

Client

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Dummy overhead O(loglog N).

Reduces to overhead of SSE
scheme w/ dummy updates.

Support for
- Modular: can use any SSE with dummy updates

dummy updates.

- Two regimes: this slide assumes
pW = O(N). Other scheme if pW>N. Full-page SSE scheme

29



Conclusion




Takeaways

- Page efficiency circumvents two impossibility results for memory-
efficient SSE:

- [CT15] no optimal memory-efficient secure SSE.

- [B16] no sublogarithmic memory-efficient forward-secure SSE.

= don't have to sacrifice forward security to be memory-efficient.

- New way to build forward security using buffer+deamortization.

Open questions:

- Can we prove memory efficient lower bounds for forward-secure
SSE?

- Make this more practical.
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