y 4
h%—,
. 2 = 7 T
inventeurs du monde numeérique E |\ S
ECOLE NORMALE
SUPERIEURE

L

RESEARCH UNIVERSITY PARIS

o8 ETH:irich

Hermes:

10-Efficient Forward-Secure Searchable Encryption

Michael Reichle —

Srice Minaud — Inri

a, ENS, CN
—[H Zurich

RS,

PSL University

Asiacrypt 2023



Outsourcing storage

Data upload

Data queries

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
- Company outsourcing customer/transaction info.

- Private messaging service.



Searchable Encryption

Data upload

Search, update

>

Client Server

Flavors of computing on encrypted data: FHE, FE, MPC, ORAM...

Searchable Symmetric Encryption (SSE):
* High speed.
At the cost of:
> Restricted functionality. Search, basic updates.

~ Weaker security guarantees.



Security model

Data upload

Search, update

>

Server = honest-but-curious

Client adversary

Security model: Server learns nothing except specific leakage.

Example:
- Setup leaks: total number of elements in database.
- Search leaks: |IDs of documents matching each query.
- Forward security: updates leak no information.

Inference attacks: try to infer sensitive information from leakage.



Security model

leakage

Data upload

Search, update

Server = honest-but-curious

Client adversary

Security model: Server learns nothing except specific leakage.

Example:
- Setup leaks: total number of elements in database.
- Search leaks: |IDs of documents matching each query.
- Forward security: updates leak no information.

Inference attacks: try to infer sensitive information from leakage.



An inherent bottleneck in SSE




A simple scenario

Q A
. Store and fetch ‘

Client Server

Minimalist requirement: store and fetch (encrypted) files. No search. No updates.

At fetch time:
 The server can learn which file is fetched.
 The server cannot learn anything about other files (— cannot learn their size).



Simple SSE

A A A

Reverse index:

“car”’ » id4, 1d3

“duck” » 1do, 1d3, Ids, ...



Simple SSE

A A A

Reverse index:

s D




Simple SSE

A A A

Reverse index:

s NG




Simple SSE

A A A

Reverse index:

sinx NG
:| Helper “files”
e




Simple SSE

A A A

Reverse index:

sins NG
T :| Helper “files”
e

— size of some files may relate to properties of the original database.



Naive solution

Client



Naive solution

Client

Encrypt files sequentially.

Position of one file depends on sizes of other files.



Naive solution

Client

Encrypt files sequentially.

Position of one file depends on sizes of other files.



Naive solution

Client

Encrypt files sequentially.
v Efficient

Position of one file depends on sizes of other files.



Standard solution

Server
memory

File stored at pseudo-random locations within hash table

10



Standard solution

Server
memory

File stored at pseudo-random locations within hash table

10



Standard solution

Server
memory

File stored at pseudo-random locations within hash table

10



Standard solution

Server
memory

File stored at pseudo-random locations within hash table

10



Standard solution

Server
memory

v Secure

File stored at pseudo-random locations within hash table

10



Standard solution

Server
memory

v Secure

x |nefficient

File stored at pseudo-random locations within hash table

10



Problem recap

| x Insecure
a a - Sequential storage: o
v Efficient
v Secure
Random storage:
x Insecure

This Is inherent.

- Memory efficiency asks:
data position is correlated with content.

- Security asks:

data position is not correlated with content.
I



Formalizing the issue

Cash & Tessaro EC ’15

Locality: #discontinuous memory accesses to fetch enc. file.

Read efficiency: #memory words accessed to fetch enc. file /
memory words of plaintext file.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

Theorem (Cash & Tessaro EC’15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned a long line of work.

12



Constructions

Asharov, Naor, Segev, Shahaf STOC 16

Scheme Locality Storage eff. Read eff.
[ANSS16] 1C O(1) O(1) O(log N)
[DP17] L O(log N/log L) O(1)
[DPP18] O(1) O(1) O(log2/3+e N)
IMR22] O(1) O(1) O(loge N)

Under assumption: longest list size < N1-1/loglogN

~S

[ANSS16] 2C O(1) O(1) O(log log N)

N = size of DB

|3



A second problem

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

14



A second problem

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

14



Page efficiency




Page efficiency [BBFMR21]

Before:

Storage efficiency + Locality + Read efficiency

Now:

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

|

Page efficiency: #memory pages accessed to answer a query /
#memory pages of plaintext answer.

- Wy Iy

4

ldea was already implicit in [MM17], to some degree [CJJ+13].

|6



Memory Efficiency

HDDs vs SSDs

HDD

Locality:

Page Efficiency:

Number of read
(hon-adjacent)
memory locations

Number of read
pages per query



A second problem

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

Efficiency measures: Page efficiency + Storage efficiency.

|18



A second problem

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C’21):

For secure SSE, can have O(1) in both measures.

|18



A second problem

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC’15):

For secure SSE, at least one measure must be w(1).

Conjecture (Bost CCS’16):

For forward-secure SSE, at least one measure must be Q)(log N).

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C’21):

For secure SSE, can have O(1) in both measures.

Theorem (this paper):

For forward-secure SSE, can have O(loglog N) in both measures.

|18



Forward-security vs memory efficiency

UPDATE

19



Forward-security vs memory efficiency

UPDATE

Leaks “keyword” if previously searched

20



Forward-security vs memory efficiency

UPDATE

Does not retain memory efficiency!

21



Hermes: a solution




Basic solution
Client Server

1 page/keyword (I/V pages)

Update

Full-page SSE scheme
23



Basic solution
Client Server

1 page/keyword (I/V pages)

Update

Full-page SSE scheme
23



Basic solution
Client Server

1 page/keyword (I/V pages)

Update

Full-page SSE scheme
23



Basic solution
Client Server

1 page/keyword (I/V pages)

Update

Full-page SSE scheme
23



|O-DSSE-like approach

Client Server

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4



|O-DSSE-like approach

Client Server

Problems:

- Server learns updated keyword,
due to updates in first buffer.

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4



|O-DSSE-like approach

Client Server

ORAM

Problems:

- Server learns updated keyword,
due to updates in first buffer.

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4



|O-DSSE-like approach

Client Server

ORAM

Problems:

- Server learns u ord,
ates In first buffer.

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4



|O-DSSE-like approach

Client Server

ORAM

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme
Similar to 10-DSSE: Miers & Mohassel, NDSS '17 "4



ldea #1: client-side buffering
Client Server

ORAM

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”
+ Deamortization

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM overhead Q)(polylog W).

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #1: client-side buffering
Client Server

Pushes on fixed
| l H B .. schedule

O(W) client storage”
+ Deamortization

Problems:

- Server learns u ord,
ates In first buffer.

- ORAM. overheae=S{polyiog V.

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

*optimal for forward-secure SSE: [BF19] 25



ldea #2: dummy updates

Client Server

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Server learns u ord,
ates in first buffer.
- ORAM. overheae=S{polyiog V.
Support for
dummy updates

- Sever learns when a page is full,
due to pushing full pages to SSE.

Full-page SSE scheme

26



Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random




Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random




Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random




Two-choice allocation

Throw 7 balls iInto m = O(n) bins at random

O(log log n)



ldea #2: dummy updates

Client Server

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Server learns u ord,
ates in first buffer.
- ORAM. overheae=S{polyiog V.
Support for
dummy updates

shing full pages to SSE.

- Dummy overhead O(loglog N).

Full-page SSE scheme

28



ldea #2: dummy updates

Server

Client

Pushes on fixed
| l H B .. schedule

O(WW) client storage
+ Deamortization

Problems:
- Dummy overhead O(loglog N).

Reduces to overhead of SSE
scheme w/ dummy updates.

Support for
- Modular: can use any SSE with dummy updates

dummy updates.

- Two regimes: this slide assumes
pW = O(N). Other scheme if pW>N. Full-page SSE scheme

29



Conclusion




Takeaways

- Page efficiency circumvents two impossibility results for memory-
efficient SSE:

- [CT15] no optimal memory-efficient secure SSE.

- [B16] no sublogarithmic memory-efficient forward-secure SSE.

= don't have to sacrifice forward security to be memory-efficient.

- New way to build forward security using buffer+deamortization.

Open questions:

- Can we prove memory efficient lower bounds for forward-secure
SSE?

- Make this more practical.



Takeaways

- Page efficiency circumvents two impossibility results for memory-
efficient SSE:

- [CT15] no optimal memory-efficient secure SSE.

- [B16] no sublogarithmic memory-efficient forward-secure SSE.

= don't have to sacrifice forward security to be memory-efficient.

- New way to build forward security using buffer+deamortization.

Open questions:

- Can we prove memory efficient lower bounds for forward-secure
SSE?

- Make this more practical.




