

IO-Efficient Forward-Secure Searchable Encryption

Brice Minaud – Inria, ENS, CNRS, PSL University Michael Reichle — ETH Zürich

Hermes:

Asiacrypt 2023

Outsourcing storage

Client

Examples:

- Company outsourcing customer/transaction info.
- Private messaging service.

Server

Scenario: Client outsources storage of sensitive data to Server.

Searchable Encryption

Client

Flavors of computing on encrypted data: FHE, FE, MPC, ORAM... **Searchable Symmetric Encryption (SSE):**

High speed.

- At the cost of:
 - Restricted functionality. Search, basic updates.
 - Weaker security guarantees.

Server

Security model

Client

Example:

- Setup leaks: total number of elements in database.
- Search leaks: IDs of documents matching each query.
- Forward security: updates leak no information.

Server = honest-but-curious adversary

Security model: Server learns **nothing** except specific leakage.

Inference attacks: try to infer sensitive information from leakage.

Client

Example:

- Setup leaks: total number of elements in database.
- Search leaks: IDs of documents matching each query.
- Forward security: updates leak no information.

Inference attacks: try to infer sensitive information from leakage.

Server = honest-but-curious adversary

Security model: Server learns **nothing** except specific leakage.

An inherent bottleneck in SSE

A simple scenario

Client

Minimalist requirement: store and fetch (encrypted) files. No search. No updates.

At fetch time:

- The server can learn which file is fetched.

Store and fetch

Server

The server **cannot** learn *anything* about other files (\rightarrow cannot learn their size).

. . .

. . .

- - -

Helper "files"

- - -

\rightarrow size of some files may relate to properties of the original database.

Client

Naive solution

Server

Position of one file depends on sizes of other files.

Encrypt files sequentially.

Position of one file depends on sizes of other files.

Position of one file depends on sizes of other files.

✓ Efficient × Insecure

Server

memory

Server

memory

File stored at pseudo-random locations within hash table

Server

memory

File stored at pseudo-random locations within hash table

This is inherent.

- Memory efficiency asks: data position is correlated with content.
- Security asks:

data position is **not** correlated with content.

Formalizing the issue

Cash & Tessaro EC '15

Locality: #discontinuous memory accesses to fetch enc. file.

Read efficiency: #memory words accessed to fetch enc. file / #memory words of plaintext file.

Storage efficiency: #memory words to store encrypted DB / #memory words of plaintext DB.

Theorem (Cash & Tessaro EC'15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned a long line of work.

Constructions

Asharov, Naor, Segev, Shahaf STOC '16

Scheme	Locality	Storage eff.	Read eff.
[ANSS16] 1C	O(1)	O(1)	Õ(log N)
[DP17]	L	O(log N/log L)	O(1)
[DPP18]	O(1)	O(1)	O(log ^{2/3+ε} N)
[MR22]	O(1)	O(1)	O(logε N)

Under assumption: longest list size $\leq N^{1-1/\log \log N}$

[ANSS16] 2C	O(1)
-------------	------

Õ(log log N) O(1)

N = size of DB

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC'15):

For secure SSE, at least one measure must be $\omega(1)$.

3 efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC'15):

For secure SSE, at least one measure must be $\omega(1)$.

Conjecture (Bost CCS'16):

For **forward-secure** SSE, at least one measure must be $\Omega(\log N)$.

Page efficiency [BBFMR21]

Before:

Storage efficiency + Locality + Read efficiency

Now:

Storage efficiency: #memory words to store encrypted DB / #memory words of plaintext DB.

Page efficiency: #memory pages accessed to answer a query / #memory pages of plaintext answer.

Idea was already implicit in [MM17], to some degree [CJJ+13].

Memory Efficiency HDDs vs SSDs

Locality:

Number of read (non-adjacent) memory locations

Page Efficiency:

Number of read pages per query

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC'15):

For secure SSE, at least one measure must be $\omega(1)$.

Conjecture (Bost CCS'16):

For **forward-secure** SSE, at least one measure must be $\Omega(\log N)$.

Efficiency measures: Page efficiency + Storage efficiency.

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC'15):

For secure SSE, at least one measure must be $\omega(1)$.

Conjecture (Bost CCS'16):

For **forward-secure** SSE, at least one measure must be $\Omega(\log N)$.

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C'21):

For secure SSE, can have O(1) in both measures.

Efficiency measures: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC'15):

For secure SSE, at least one measure must be $\omega(1)$.

Conjecture (Bost CCS'16):

For **forward-secure** SSE, at least one measure must be $\Omega(\log N)$.

Efficiency measures: Page efficiency + Storage efficiency.

Theorem (BBFMR C'21):

For **secure** SSE, can have O(1) in both measures.

Theorem (*this paper*):

For **forward-secure** SSE, can have Õ(loglog N) in both measures.

Forward-security vs memory efficiency

	 : : :	: : : :	
			:
1	: : :		
			:
:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	
			:
	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	

UPDATE

Forward-security vs memory efficiency

i			i	i		1				1		I		
							1	1	1	1	1	1		
									-					
				i i					i			- - 		
:	:	-	1	1	:	:	1	:	:	1 1	:	1	: :	
		_					1 1					1 1 1		
									:			- - 		
						1	1	1	:	1	1	1		
-								-				1 1 1		i
		i i		i i		1	- 	1		- 	1	- 		
						1		!			!	1 1		
								•		9 1	•	• •		

UPDATE

Leaks "keyword" if previously searched

Forward-security vs memory efficiency

:	I I	_		
-				1
•	i i			i
1				
;	i i		i i	i
1				
;	i i		i i	i
:				1
	i i	i i	i i	1
	i i	i i	i i	i i
	i i	i i	i i	i i
i	i i			i de la companya de la
	i i			1

UPDATE

Does not retain memory efficiency!

Hermes: a solution

Basic solution

<u>Server</u>

Full-page SSE scheme

1			
÷			
i			
1	•	• •	•
1			
1			

Basic solution

<u>Server</u>

1 page/keyword (W pages)

Full-page SSE scheme

1			
÷			
i			
1	•	• •	•
1			
1			

Update

Basic solution

Full-page SSE scheme

1			
÷			
i			
1	•	• •	•
1			
1			

Basic solution

<u>Server</u>

Full-page SSE scheme

1			
÷			
i			
1	•	• •	•
1			
1			

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

<u>Server</u>

Full-page SSE scheme

I	
-	
•	
-	
:	
•	
:	
•	
-	
-	
-	
1	
-	
÷.	
-	
÷	
I	

. . .

Problems:

 Server learns updated keyword, due to updates in first buffer.

Sever learns when a page is full, due to pushing full pages to SSE.

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

IO-DSSE-like approach

<u>Server</u>

Full-page SSE scheme

I	
-	
•	
-	
:	
•	
:	
•	
-	
-	
-	
1	
-	
÷.	
-	
÷	
I	

Client

Problems:

 Server learns updated keyword, due to updates in first buffer.

Sever learns when a page is full, due to pushing full pages to SSE.

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

I	
-	
•	
-	
:	
•	
:	
•	
-	
-	
-	
1	
-	
÷.	
-	
÷	
I	

- **Problems:**
 - Server learns updated keyword, due to updates in first buffer.

Sever learns when a page is full, due to pushing full pages to SSE.

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

I	
-	
•	
-	
:	
•	
:	
•	
-	
-	
-	
1	
-	
÷.	
-	
÷	
I	

Client

Problems:

- Server learns updated keyword, due to updates in first buffer.
- **ORAM overhead** Ω (polylog *W*).

Sever learns when a page is full, due to pushing full pages to SSE.

Similar to IO-DSSE: Miers & Mohassel, NDSS '17

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage*

Problems:

- Server learns updated keyword, due to updates in first buffer.
- **ORAM overhead** Ω (polylog *W*).

Sever learns when a page is full, due to pushing full pages to SSE.

*optimal for forward-secure SSE: [BF19]

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage*

Problems:

- Server learns updated keyword, due to updates in first buffer.
- **ORAM overhead** Ω (polylog *W*).

Sever learns when a page is full, due to pushing full pages to SSE.

*optimal for forward-secure SSE: [BF19]

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage*

Problems:

- Server learns updated keyword, due to updates in first buffer.
- **ORAM overhead** Ω (polylog *W*).

Sever learns when a page is full, due to pushing full pages to SSE.

*optimal for forward-secure SSE: [BF19]

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage* + Deamortization

Problems:

- Server learns updated keyword, due to updates in first buffer.
- **ORAM overhead** Ω (polylog *W*).

Sever learns when a page is full, due to pushing full pages to SSE.

*optimal for forward-secure SSE: [BF19]

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage* + Deamortization

Problems:

 Server learns updated keyword, due to updates in first buffer.

• ORAM overhead Ω(polylog VV).

Sever learns when a page is full, due to pushing full pages to SSE.

*optimal for forward-secure SSE: [BF19]

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

Client

O(W) client storage + Deamortization

Problems:

- Server learns updated keyword, due to updates in first buffer.
- ORAM overhead Ω(polylog VV).

Sever learns when a page is full, due to pushing full pages to SSE.

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage + Deamortization

Problems:

- Server learns updated keyword, due to updates in first buffer.
- ORAM overhead Ω(polylog VV).

- Sever learns when a page is tull, due to pushing full pages to SSE.
- Dummy overhead Õ(loglog N).

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

O(W) client storage + Deamortization

Problems:

- Dummy overhead Õ(loglog N). Reduces to overhead of SSE scheme w/ dummy updates.
- Modular: can use any SSE with dummy updates.

• Two regimes: this slide assumes pW = O(N). Other scheme if pW > N.

_	
I	
-	
-	
1	
:	
i	
I	
:	
1	
-	
÷.	
i.	
•	
i.	
I	

Conclusion

- Page efficiency circumvents two impossibility results for memoryefficient SSE:
 - [CT15] no optimal memory-efficient secure SSE.
 - [B16] no sublogarithmic memory-efficient forward-secure SSE.
 - \Rightarrow don't have to sacrifice forward security to be memory-efficient.
- New way to build forward security using buffer+deamortization.

Open questions:

- Can we prove memory efficient lower bounds for forward-secure SSE?
- Make this more practical.

Takeaways

- Page efficiency circumvents two impossibility results for memoryefficient SSE:
 - [CT15] no optimal memory-efficient secure SSE.
 - [B16] no sublogarithmic memory-efficient forward-secure SSE.
 - \Rightarrow don't have to sacrifice forward security to be memory-efficient.
- New way to build forward security using buffer+deamortization.

Open questions:

- Can we prove memory efficient lower bounds for forward-secure SSE?
- Make this more practical.

Takeaways

