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Background

Diffie-Hellman Key Exchange A fundamental and elegant cryptographic scheme.

Current Application Ephemeral key establishment in TLS, Signal, etc..
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Background

Diffie-Hellman (DH) key exchange A fundamental and elegant cryptographic scheme.

Current Application Ephemeral key establishment in TLS, Signal, etc..



PQC and NIST’s Standardization

Post-Quantum Cryptography (PQC) classical cryptosystems that remain secure in the
presence of a quantum adversary

NIST’s PQC Standardization PKE, Digital signatures and KEM



PQC and NIST’s Standardization

Post-Quantum Cryptography (PQC) classical cryptosystems that remain secure in the
presence of a quantum adversary

NIST’s PQC Standardization PKE, Digital signatures and KEM

August 24, 2023, NIST posted the first KEM standard draft (Kyber) FIPS-203.

Kyber is a lattice-based KEM with IND-CCA security.



IND-CCA security



Generic constructions of an IND-CCA-secure KEM

FO-like generic constructions: weakly-secure PKE ⇒ CCA-secure KEM

Gen′

1 : (pk , sk)← Gen

2 : s
$←M

3 : sk ′ := (sk , s)

4 : return (pk, sk ′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk ,m; G (m))

3 : K := H(m, c)

4 : return (K , c)

Decaps(sk ′, c)

1 : Parse sk ′ = (sk , s)

2 : m′ := Dec(sk , c)

3 : if Enc(pk ,m′; G (m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Figure: IND-CCA-secure KEM=FO�⊥[PKE,G ,H]



Generic constructions of an IND-CCA-secure KEM

FO-like generic constructions: weakly-secure PKE ⇒ CCA-secure KEM

Re-encryption in decapsulation makes it an expensive operation. As shown by
[HV22], when re-encryption is removed, there will be a 2.17X and 6.11X speedup
over decapsulation in Kyber and FrodoKEM respectively.

The re-encryption makes the KEM more vulnerable to side-channel attacks and
almost all the NIST-PQC Round-3 KEMs are affected [Mel22].

The side-channel protection of re-encryption will significantly increase deployment
costs and thus complicate the integration of NIST-PQC KEMs [Mel22].



Diffie-Hellman ⇒ KEM

For ephemeral key establishment, one has to move the current DH key-exchange
to post-quantum KEMs.

IND-1CCA security is required for such a substitutive KEM in post-quantum TLS
1.3 [HV22], KEM-TLS [SSW20], post-quantum Signal [BFGJS22] and
post-quantum Noise [ADHSW22].

IND-1CCA security is the same as the IND-CCA security except that the
adversary is restrictive to make at most one single decapsulation query.

Obviously, IND-1CCA security is implied by the IND-CCA security. However, the
current IND-CCA-secure KEMs require re-encryption.

Designing a dedicated IND-1CCA-secure KEM without re-encryption was
taken as an open problem raised by Schwabe, Stebila and Wiggers [SSW20].



Huguenin-Dumittan and Vaudenay’s work [HV22]

Huguenin-Dumittan and Vaudenay shows transforms TCH and TH can turn a
CPA-secure PKE into an IND-1CCA-secure KEM.

Gen

1 : (pk , sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c ← Enc ′(pk,m)

3 : tag = H ′(m, c)//TCH

4 : K := H(m)//TCH

5 : return (K , (c , tag))//TCH

6 : K := H(m, c)//TH

7 : return (K , c)//TH

Decaps(sk, (c , tag))

1 : m′ := Dec ′(sk , c)

2 : if H ′(m′, c) = tag//TCH

3 : if m′ = ⊥//TH

4 : return ⊥
5 : else return K := H(m′)

Figure: KEMCH = TCH [PKE′,H] and KEMH = TH [PKE′,H]



Quantum random oracle model

The constructions KEMCH and KEMH are based on an idealized model called
random oracle model (ROM), where a hash function is idealized to be a publicly
accessible random oracle (RO).

In post-quantum setting, quantum adversary can execute hash functions (the
instantiation of RO) on an arbitrary superposition of inputs.

Therefore, Boneh et al. [BDF+11] argued that to prove post-quantum security
one needs to prove security in the quantum random oracle model (QROM), where
the adversary can query the RO with quantum state.



Huguenin-Dumittan and Vaudenay’s work [HV22]

The security of TCH was proved in the ROM with tightness εR ≈ O(1/q)εA, and
in the QROM with tightness εR ≈ O(1/q3)ε2

A.

The security of TH was proved in the ROM with tightness εR ≈ O(1/q3)εA. The
QROM proof of TH was left open.

Both TCH and TH do not require re-encryption. But, compared with TCH , TH

does not need the key confirmation and thus will not lead to ciphertext expansion.



Our results

First, we prove the security of TH and its implicit variant TRH in both ROM and
QROM. TRH is the same as the TH except that in decapsulation a pseudorandom
value H(?, c) is returned instead of an explicit ⊥ for an invalid ciphertext c such
that Dec(sk , c) = ⊥.

Gen

1 : (pk , sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c ← Enc ′(pk,m)

3 : K := H(m, c)

4 : return (K , c)

Decaps(sk , c)

1 : m′ := Dec ′(sk , c)

2 : if m′ =⊥
3 : return ⊥ //TH

4 : return K := H(?, c) //TRH

5 : else return K := H(m′, c)

Figure: KEMH = TH [PKE′,H] and KEMRH = TRH [PKE′,H]



Remarks on TRH

TRH is essentially the construction U�⊥ in [HHK17], except that the secret seed s
in decapsulation is replaced by a public value ? (? can be any fixed message).

In fact, our proof can work for both secret seed and public value thanks to the
newly introduced decapsulation simulation technique, while the current IND-CCA
proofs for implicit FO-KEMs [HHK17, JZC+18] can only work for secret seed.

We choose to replace secret seed by public value since it reduces the secret key
size and makes the construction more concise.

Moreover, from a high-assurance implementation (i.e., side-channel protected)
point of view, public value is also preferable to secure seed [Sch22].



The tightness of the reduction

Table: Reduction tightness in the ROM/QROM.

Transformation
Reduction
tightness

Ciphertext
expansion

Re-encryption
ROM or
QROM

FO [HHK17] εR ≈ εA N Y ROM
TCH [HV22] εR ≈ O(1/q)εA Y N ROM
TH [HV22] εR ≈ O(1/q3)εA N N ROM

Our TRH and TH εR ≈ O(1/q)εA N N ROM

FO [JZM19,BHH+19] εR ≈ O(1/q)ε2
A N Y QROM

TCH [HV22] εR ≈ O(1/q3)ε2
A Y N QROM

Our TRH and TH εR ≈ O(1/q2)ε2
A N N QROM



The tightness of the reduction

Then, for TH , TRH and TCH , we show that if the underlying PKE meets
malleability property, a O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM
(QROM, resp.).

That is, our ROM reduction is optimal in general. Roughly speaking, the
malleability property says that an adversary can efficiently transform a ciphertext
into another ciphertext which decrypts to a related plaintext.

In particular, such a malleability property is met by real-world PKE schemes, e.g.,
ElGamal, FrodoKEM.PKE, Kyber.PKE, etc.



Relations among notions of CCA security for KEM

Finally, we compare the relative strengths of IND-1-CCA and IND-CCA in the
ROM and QROM. For each pair of notions A, B ∈{IND-1-CCA ROM, IND-CCA
ROM, IND-1-CCA QROM, IND-CCA QROM}, we show either an implication or a
separation, so that no relation remains open.

IND-1-CCA ROM

IND-CCA ROM

IND-1-CCA QROM

IND-CCA QROM

Figure: The relations among notions of security for KEM.



Construction and reduction

Gen

1 : (pk , sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c ← Enc ′(pk,m)

3 : K := H(m, c)

4 : return (K , c)

Decaps(sk , c)

1 : m′ := Dec ′(sk , c)

2 : if m′ =⊥
3 : return ⊥ //TH

4 : return K := H(?, c) //TRH

5 : else return K := H(m′, c)

Figure: KEMH = TH [PKE′,H] and KEMRH = TRH [PKE′,H]



Main theorem

Theorem 3.1 (QROM security of TRH).

For any adversary B against the IND-1-CCA security of KEMs, issuing at most one
single (classical) query to the decapsulation oracle and at most qH queries to the
quantum random oracle H, there exists an IND-CPA adversary D against PKE′ such
that

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)

√
4AdvIND−CPA

PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|

AdvIND-1-CCA
KEMH

(B′) ≤ AdvIND-1-CCA
KEMRH

(B) + εcoll,

where Time(D) ≈ Time(B) + O(q2
H), Time(B′) ≈ Time(B), εcoll is an advantage bound of

an algorithm searching a collision of the random oracle H with qH queries. In particular,
εcoll = q2

H/ |K| in the ROM, and εcoll = q3
H/ |K| in the QROM.



Proof Skeleton of the Main Theorem

A(1λ, pk, c)

H

Decaps

Challenge

� BH,Decaps(pk, c∗, k∗b)



The simulation of the decapsulation oracle

Re-encryption is the core feature of FO-like CCA-KEMs, which guarantees that
only specific valid ciphertexts can be correctly decapsulated, and thus makes the
decapsulation simulation in the ROM/QROM proof easy.

Removing re-encryption makes the current decapsulation simulation for FO-like
CCA-KEMs incompatible with the KEMs in this paper.

For a valid ciphertext c̄ such that (Dec(sk, c̄) = m̄ 6= ⊥), the decapsulation
returns H(m̄, c̄).

If we reprogram H(m̄, c̄) to a random k̄ , we can simulate the decapsulation of c̄
using k̄ without knowledge of sk.

To guarantee the consistency between the outputs of H and the simulated
decapsulation, one needs to correctly guess when the adversary makes a query
(m̄, c̄) to H, and perform a reprogram at that time. In the ROM, a randomly
guess is correct with probability 1/q.



The simulation of the decapsulation oracle

In the QROM, due to adversary’s superposition RO-query, it is hard to define
when the adversary makes a query (m̄, c̄). We find that the consistency between
H and the simulated decapsulation can be guaranteed if the predicate
Decap(sk , c̄) = H(m̄, c̄) is satisfied.
Don, Fehr, Majenz, and Schaffner [DFMS19, DFM20] showed that a random
measure-and-reprogram can keep the predicate satisfied with a high probability.
However, the measure-and-reprogram in [DFMS19, DFM20] cannot be directly
applied to our case. This is due to the fact that the random measure in [DFMS19,
DFM20] is performed for all the H-queries while in our case there is an implicit
(classical) H-query used in the real decapsulation that will be removed in the
simulated decapsulation and thus can not be measured.
Extending the measure-and-reprogram technique in [DFMS19, DFM20], we derive
a variant of measure-and-reprogram, which is suitable for our case. With this new
measure-and-reprogram, the QROM adversary can accept the simulations with
probability at least O(1/q2).



Measure-and-reprogram and our extension

Standard Measure-and-reprogram [DFM20]: PrH [V (x ,H(x), z) = 1 : (x , z)← A|H〉] ≤

O(q2) Pr
H,Θ

[V (x ,Θ, z) = 1 : (x , z)← SA]

Our (Single-Classical-Query) version: PrH [V (x ,H(x), z) = 1 : (x , z)← A|H〉] ≤

O(q2) Pr
H,Θ

[V (x ,Θ, z) = 1 : (x , z)← SA
1 ] + O(q2) Pr

H,Θ
[V (x ,Θ, z) = 1 : (x , z)← SA

2 ]

AH an arbitrary q-query quantum algorithm

SA an algorithm that randomly measure and reprogram on all A’s H-queries

SA
1 an algorithm that randomly measure and reprogram on all A’s H-queries

except for one specific classical H-query x

SA
2 an algorithm that randomly measure and reprogram on A’s H-queries

after A makes the specific classical H-query x



The simulation of the decapsulation oracle

Lemma 3.2 ((Single-Classical-Query) informal Measure-and-reprogram).

Let A|H〉 be an arbitrary oracle quantum algorithm that makes q queries to H, and
outputs some classical x and a (possibly quantum) output z. In particular, A’s i∗-th
query input state is exactly x. Let SA

1 (Θ) be an oracle algorithm that answers A’s i∗-th
query with Θ, randomly measures and reprograms on A’s other queries. Finally, SA

1 (Θ)
returns A’s output. Let SA

2 (Θ) be an oracle algorithm that only randomly measures
and reprograms on A’s j∗-th queries (j ≥ i∗). Finally, SA

2 (Θ) returns A’s output. Thus,
for any x0 ∈ X , i∗ ∈ {1, · · · , q} and any predicate V :

Pr
H

[x = x0 ∧ V (x ,H(x), z) = 1 : (x , z)← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x ,

Θ, z) = 1 : (x , z)← SA
1 ] + 8q2 Pr

H,Θ
[x = x0 ∧ V (x ,Θ, z) = 1 : (x , z)← SA

2 ],



The embedding of the hard instance

We use the oneway-to-hiding (O2H) technique to embed the instance of the
underlying IND-CPA-security experiment.

Lemma 3.3 ((Adapted) Double-sided O2H [BHH+19]).

Let G , H : be oracles such that ∀x 6= x∗. G (x) = H(x). Let z be a random bitstring.
Let A be quantum oracle algorithm that makes at most q queries (not necessarily
unitary). Then, there is an another double-sided oracle algorithm B |G〉,|H〉(z) such that
B runs in about the same amount of time as A, and∣∣∣Pr[1← A|H〉(z)]− Pr[1← A|G〉(z)]

∣∣∣ ≤ 2
√

Pr[x∗ = x ′ : x ′ ← B |G〉,|H〉(z)].



The embedding of the hard instance

Lemma 3.4 (Search in Double-sided Oracle).

Let G , H : be oracles such that ∀x 6= x∗ G (x) = H(x). Let z be a random bitstring.
Let A be quantum oracle algorithm that makes at most q queries (not necessarily
unitary). Let B |G〉,|H〉(z) be a double-sided oracle algorithm defined in Lemma 3.3. Let
C |H〉(z) be an oracle algorithm that picks i ←$ {1, 2, . . . , q}, runs A|H〉(z) until (just
before) the i-th query, measures the query input registers in the computational basis,
and outputs the measurement outcome. Thus, we have

Pr[x∗ = x ′ : x ′ ← B |G〉,|H〉(z)] ≤ q2 Pr[x∗ = x ′ : x ′ ← C |H〉(z)].

In particular, if X = X1 ×X2, x∗ = (x∗1 , x
∗
2 ), x∗1 is uniform and independent of H and

z, then we further have Pr[x∗ = x ′ : x ′ ← B |G〉,|H〉(z)] ≤ q2/ |X1| .



Conclusion

1 An IND-1-CCA KEM is sufficient to replace Diffie-Hellman in the post-quantum
migration of the widely-deployed protocols, such as TLS 1.3, Signal and Noise.

2 Our results show that IND-1-CCA-secure KEMs can be constructed in the ROM
and QROM without re-encryption and cipher-expansion.

3 Compared with IND-CCA-secure KEMs based on FO transform, the
IND-1-CCA-secure KEMs based on TH and TRH do not require the re-encryption
in decapsulation. The re-encryption is highly vulnerable to attacks and its
side-channel protection will significantly increase deployment costs.

4 Thus, from a practical point of view, removing the re-encryption of FO-like KEMs
will improve the performance of embedded side-channel secure implementations.

5 Therefore, according to our results, one can easily transform Kyber.PKE into an
IND-1-CCA-secure KEM without re-encryption and cipher-expansion, and then
establish post-quantum-secure variants of TLS 1.3, Signal and Noise with better
performance in the embedded implementation.
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