Post-Quantum Security of Key Encapsulation Mechanism against
CCA Attacks with a Single Decapsulation Query

Haodong Jiang! * Zhi Ma * Zhenfeng Zhang |

*Henan Key Laboratory of Network Cryptography Technology

TInstitute of Software, Chinese Academy of Sciences

Dec., 2023

!Presented by Yiting Liu

Overview

Background

Main Contribution

Techniques

Conclusion

Background

Diffie-Hellman Key Exchange A fundamental and elegant cryptographic scheme.

Current Application Ephemeral key establishment in TLS, Signal, etc..

Alice Bob

aer{2,....,p—2}

A:gamodp*
&/

K=(B) =g"

bGR{2,...,p—2}

B =g mod p

K=(A) =g

Background

Diffie-Hellman (DH) key exchange A fundamental and elegant cryptographic scheme.
Current Application Ephemeral key establishment in TLS, Signal, etc..

, . Rapid advance in
Shor’s algorithm quantum computing

PQC and NIST's Standardization

Post-Quantum Cryptography (PQC) classical cryptosystems that remain secure in the
presence of a quantum adversary

NIST's PQC Standardization PKE, Digital signatures and KEM

KEM = (Gen, Encap, Decaps)
Alice Bob

Pk

C

Gen(1") — (pk, sk) Encap(pk) — (K, c)
Decaps(sk,c) > K

PQC and NIST's Standardization

Post-Quantum Cryptography (PQC) classical cryptosystems that remain secure in the
presence of a quantum adversary

NIST's PQC Standardization PKE, Digital signatures and KEM

m August 24, 2023, NIST posted the first KEM standard draft (Kyber) FIPS-203.
m Kyber is a lattice-based KEM with IND-CCA security.

IND-CCA security

Adversary Challenger
(pk,c",K,) (‘gﬁ;
-— ((}
B

Gen(1) > (pk, k)
Decap Oracle Encap(pk) = (K2,¢")

K «>—K
> b<«>—{0,1}

AdvRRe ™ (A) =[Pr{IND- CCA,, =1]-1/2|

Decaps(sk,c) —> K

Generic constructions of an IND-CCA-secure KEM

FO-like generic constructions: weakly-secure PKE = CCA-secure KEM

Gen’ Encaps(pk) Decaps(sk’, c)

m& M

¢ = Enc(pk, m; G(m))
K := H(m,c)

return (K, c)

Parse sk’ = (sk, s)

m' := Dec(sk, c)

if Enc(pk,m’; G(m')) =c
return K := H(m', c)

1: (pk,sk) < Gen 1

20 s&EM 2

3: sk’ :=(sk,s) 3
4:

4: return (pk,sk’)
else return

K :=H(s,c)

o g~ wN =

Figure: IND-CCA-secure KEM:FO‘L/[PKE, G,H]

Generic constructions of an IND-CCA-secure KEM

FO-like generic constructions: weakly-secure PKE = CCA-secure KEM

m Re-encryption in decapsulation makes it an expensive operation. As shown by
[HV22], when re-encryption is removed, there will be a 2.17X and 6.11X speedup
over decapsulation in Kyber and FrodoKEM respectively.

m The re-encryption makes the KEM more vulnerable to side-channel attacks and
almost all the NIST-PQC Round-3 KEMs are affected [Mel22].

m The side-channel protection of re-encryption will significantly increase deployment
costs and thus complicate the integration of NIST-PQC KEMs [Mel22].

Diffie-Hellman = KEM

m For ephemeral key establishment, one has to move the current DH key-exchange
to post-quantum KEMs.

m IND-1CCA security is required for such a substitutive KEM in post-quantum TLS
1.3 [HV22], KEM-TLS [SSW20], post-quantum Signal [BFGJS22] and
post-quantum Noise [ADHSW22].

m IND-1CCA security is the same as the IND-CCA security except that the
adversary is restrictive to make at most one single decapsulation query.

m Obviously, IND-1CCA security is implied by the IND-CCA security. However, the
current IND-CCA-secure KEMs require re-encryption.

Designing a dedicated IND-1CCA-secure KEM without re-encryption was
taken as an open problem raised by Schwabe, Stebila and Wiggers [SSW20].

Huguenin-Dumittan and Vaudenay's work [HV22]

Huguenin-Dumittan and Vaudenay shows transforms T¢y and Ty can turn a
CPA-secure PKE into an IND-1CCA-secure KEM.

Gen Encaps(pk) Decaps(sk, (c, tag))

1: (pk,sk) < Gen’
2: return (pk, sk)

. m' := Dec(sk, c)

2 if H'(m',c) = tag// Ten
cifm' =1//Ty

return L

1: m«sM

2: ¢+ Enc'(pk, m)

3: tag=H'(m,c)//Tcu
4: K:=H(m)//TcH
5
6
7

g » W0N =

. return (K, (c, tag))//Tcu
: K:=H(m,c)//Tn
: return (K, c)//Tu

. else return K := H(m')

Figure: KEMcy = Ten[PKE', H] and KEMy = T[PKE', H]

Quantum random oracle model

m The constructions KEM ¢y and KEMy are based on an idealized model called
random oracle model (ROM), where a hash function is idealized to be a publicly
accessible random oracle (RO).

m In post-quantum setting, quantum adversary can execute hash functions (the
instantiation of RQ) on an arbitrary superposition of inputs.

m Therefore, Boneh et al. [BDF+11] argued that to prove post-quantum security
one needs to prove security in the quantum random oracle model (QROM), where
the adversary can query the RO with quantum state.

Huguenin-Dumittan and Vaudenay's work [HV22]

m The security of Ty was proved in the ROM with tightness eg ~ O(1/q)e4, and
in the QROM with tightness eg ~ O(1/q>)e?.

m The security of Ty was proved in the ROM with tightness eg ~ O(1/q%)e4. The
QROM proof of Ty was left open.

m Both T¢y and Ty do not require re-encryption. But, compared with Ty, Ty
does not need the key confirmation and thus will not lead to ciphertext expansion.

Our results

m First, we prove the security of Ty and its implicit variant Try in both ROM and
QROM. Tgy is the same as the Ty except that in decapsulation a pseudorandom
value H(x, c) is returned instead of an explicit L for an invalid ciphertext ¢ such
that Dec(sk,c) = L.

Gen Encaps(pk) Decaps(sk, c)
1: (pk,sk) < Gen' 1: m<+sM 1: m' = Dec'(sk,c)
2: return (pk,sk) 2: c<+ Enc'(pk,m) 2: if m" =L
3: K:=H(m,c) 3: return L //Ty
4: return (K, c) 4: return K := H(x,¢c) //TgrH
5: else return K := H(m', ¢)

Figure: KEMy = TH[PKE’, H] and KEMgy = Try[PKE', H]

Remarks on Tgry

m Tgy is essentially the construction UL in [HHK17], except that the secret seed s
in decapsulation is replaced by a public value x (* can be any fixed message).

m In fact, our proof can work for both secret seed and public value thanks to the
newly introduced decapsulation simulation technique, while the current IND-CCA
proofs for implicit FO-KEMs [HHK17, JZC+18] can only work for secret seed.

m We choose to replace secret seed by public value since it reduces the secret key
size and makes the construction more concise.

m Moreover, from a high-assurance implementation (i.e., side-channel protected)
point of view, public value is also preferable to secure seed [Sch22].

The tightness of the reduction

Table: Reduction tightness in the ROM/QROM.

Transformation Reduction Ciphertext Re-encryption ROM or
tightness expansion yP QROM

FO [HHK17] €ER R €Y N Y ROM

TCH [HV22] ER = O(l/q)E_A Y N ROM

Ty [HV22] er~ 0(1/q%)eq N N ROM

Our TRH and TH ER R O(l/q)eA N N ROM
FO [JZM19,BHH+19] €~ O(l/q)ei N Y QROM
Tcn [HV22] er ~ 0(1/¢%)e% Y N QROM

Our TRH and TH ER O(l/qz)ei\ N N QROM

The tightness of the reduction

m Then, for Ty, Try and T¢cy, we show that if the underlying PKE meets
malleability property, a O(1/q) (O(1/g?), resp.) loss is unavoidable in the ROM
(QROM, resp.).

m That is, our ROM reduction is optimal in general. Roughly speaking, the
malleability property says that an adversary can efficiently transform a ciphertext
into another ciphertext which decrypts to a related plaintext.

m In particular, such a malleability property is met by real-world PKE schemes, e.g.,
ElGamal, FrodoKEM.PKE, Kyber.PKE, etc.

Relations among notions of CCA security for KEM

m Finally, we compare the relative strengths of IND-1-CCA and IND-CCA in the
ROM and QROM. For each pair of notions A, B €{IND-1-CCA ROM, IND-CCA
ROM, IND-1-CCA QROM, IND-CCA QROM}, we show either an implication or a
separation, so that no relation remains open.

IND-1-CCA ROM IND-1-CCA QROM

/

IND-CCA ROM IND-CCA QROM

Figure: The relations among notions of security for KEM.

Construction and reduction

Gen Encaps(pk) Decaps(sk, c)

. m' = Dec(sk, c)
. ¢« Enc'(pk,m) 2: if m' =1

1: m<sM 1
2 2
3: K:=H(m,c) 3: return L //Ty
4 4

5

1: (pk,sk) < Gen
2: return (pk, sk)

return K := H(x,c) //Tru
. else return K := H(m', ¢)

. return (K, c)

Figure: KEMy = Ty[PKE', H] and KEMgy = Tru[PKE', H]

Main theorem

Theorem 3.1 (QROM security of Tgy).

For any adversary B against the IND-1-CCA security of KEMs, issuing at most one
single (classical) query to the decapsulation oracle and at most qy queries to the
quantum random oracle H, there exists an IND-CPA adversary D against PKE such
that

AdvRI-COA(B) < 6(qn + 1)y 4RV, “A(D) + 2qu + 1)2/ |M| + 1/ K]

IND-1-CCA IND-1-CCA
Advgry, (B') < Advig,, (B) + €cons

where Time(D) ~ Time(B) + 0(q?), Time(B') ~ Time(B), econ is an advantage bound of
an algorithm searching a collision of the random oracle H with qy queries. In particular,
€coll = G5/ |K| in the ROM, and e.on = g3,/ |K| in the QROM.

Proof Skeleton of the Main Theorem

A(1*, pk, c)
H
Decaps =

BH,Decaps(pk’ C*, k;)

Challenge

The simulation of the decapsulation oracle

m Re-encryption is the core feature of FO-like CCA-KEMs, which guarantees that
only specific valid ciphertexts can be correctly decapsulated, and thus makes the
decapsulation simulation in the ROM/QROM proof easy.

m Removing re-encryption makes the current decapsulation simulation for FO-like
CCA-KEMs incompatible with the KEMs in this paper.

m For a valid ciphertext ¢ such that (Dec(sk,c) = m # L), the decapsulation
returns H(m,).

m If we reprogram H(m, €) to a random k, we can simulate the decapsulation of ¢
using k without knowledge of sk.

m To guarantee the consistency between the outputs of H and the simulated
decapsulation, one needs to correctly guess when the adversary makes a query
(M, T) to H, and perform a reprogram at that time. In the ROM, a randomly
guess is correct with probability 1/q.

The simulation of the decapsulation oracle

m In the QROM, due to adversary's superposition RO-query, it is hard to define
when the adversary makes a query (m,). We find that the consistency between
H and the simulated decapsulation can be guaranteed if the predicate
Decap(sk,c) = H(m, ¢) is satisfied.

m Don, Fehr, Majenz, and Schaffner [DFMS19, DFM20] showed that a random
measure-and-reprogram can keep the predicate satisfied with a high probability.

m However, the measure-and-reprogram in [DFMS19, DFM20] cannot be directly
applied to our case. This is due to the fact that the random measure in [DFMS19,
DFM20] is performed for all the H-queries while in our case there is an implicit
(classical) H-query used in the real decapsulation that will be removed in the
simulated decapsulation and thus can not be measured.

m Extending the measure-and-reprogram technique in [DFMS19, DFM20], we derive
a variant of measure-and-reprogram, which is suitable for our case. With this new
measure-and-reprogram, the QROM adversary can accept the simulations with
probability at least O(1/g?).

Measure-and-reprogram and our extension

Standard Measure-and-reprogram [DFM20]: Pry[V/(x, H(x),z) = 1: (x,z) + AF)] <

0(q?) I-E?E)[V(X’@’Z) =1:(x,2)+ 54

Our (Single-Classical-Query) version: Pry[V/(x, H(x),z) = 1: (x,z) «+ AF)] <

O(qz) ,_Izé[V(x,@,z) =1:(x,2z)+ Sf‘] + O(q2) I_I:(ra[V(x, ©,z)=1:(x,z) + Sf\]

A" an arbitrary g-query quantum algorithm
SA an algorithm that randomly measure and reprogram on all A's H-queries

SlA an algorithm that randomly measure and reprogram on all A's H-queries
except for one specific classical H-query x

52A an algorithm that randomly measure and reprogram on A's H-queries
after A makes the specific classical H-query x

The simulation of the decapsulation oracle

Lemma 3.2 ((Single-Classical-Query) informal Measure-and-reprogram).

Let AH) be an arbitrary oracle quantum algorithm that makes q queries to H, and
outputs some classical x and a (possibly quantum) output z. In particular, A's i*-th
query input state is exactly x. Let SlA(@) be an oracle algorithm that answers A's i*-th
query with ©, randomly measures and reprograms on A’s other queries. Finally, S{*(©)
returns A’s output. Let 5?(@) be an oracle algorithm that only randomly measures
and reprograms on A’s j*-th queries (j > i*). Finally, S3'(©) returns A's output. Thus,
for any xo € X, i* € {1,--- ,q} and any predicate V :

Prix = xo A V(x, H(x),2) = 11 (x,2) + A < 2(2g — 1)? Prix=xnVix,

©,z)=1:(x,2) <—Sf]+8q2l_|;’(r9[x:x0/\ V(x,0,z) =1:(x,2) <—S§4],

The embedding of the hard instance

m We use the oneway-to-hiding (O2H) technique to embed the instance of the
underlying IND-CPA-security experiment.

Lemma 3.3 ((Adapted) Double-sided O2H [BHH+-19]).

Let G, H : be oracles such that Vx # x*. G(x) = H(x). Let z be a random bitstring.
Let A be quantum oracle algorithm that makes at most q queries (not necessarily
unitary). Then, there is an another double-sided oracle algorithm BI):IH)(z) such that
B runs in about the same amount of time as A, and

Pril A (2)] — Prl1 « A9)(2)]| < 2y/Prix* = x': x' BISWH)(2)].

The embedding of the hard instance

Lemma 3.4 (Search in Double-sided Oracle).

Let G, H : be oracles such that Vx # x* G(x) = H(x). Let z be a random bitstring.
Let A be quantum oracle algorithm that makes at most q queries (not necessarily
unitary). Let BIH)(2) be a double-sided oracle algorithm defined in Lemma 3.3. Let
CIH)(z) be an oracle algorithm that picks i <s{1,2,...,q}, runs A" (z) until (just
before) the i-th query, measures the query input registers in the computational basis,
and outputs the measurement outcome. Thus, we have

Prix* = x' : x' « BIIH(2)] < ? Pr[x* = x' - x' « CIH)(2)].

In particular, if X = X1 X Xp, x* = (x1 x3), x1 is uniform and independent of H and
z, then we further have Pr[x* = x' : x' « BI®)IH)(2)] < %/ |X1|.

Conclusion

An IND-1-CCA KEM is sufficient to replace Diffie-Hellman in the post-quantum
migration of the widely-deployed protocols, such as TLS 1.3, Signal and Noise.

Our results show that IND-1-CCA-secure KEMs can be constructed in the ROM
and QROM without re-encryption and cipher-expansion.

Compared with IND-CCA-secure KEMs based on FO transform, the
IND-1-CCA-secure KEMs based on Ty and Tgry do not require the re-encryption
in decapsulation. The re-encryption is highly vulnerable to attacks and its
side-channel protection will significantly increase deployment costs.

Thus, from a practical point of view, removing the re-encryption of FO-like KEMs
will improve the performance of embedded side-channel secure implementations.

Therefore, according to our results, one can easily transform Kyber.PKE into an
IND-1-CCA-secure KEM without re-encryption and cipher-expansion, and then
establish post-quantum-secure variants of TLS 1.3, Signal and Noise with better
performance in the embedded implementation.

Thanks for your attention!

hdjiangl13@gmail.com

hdjiang13@gmail.com

References

HV22

Mel22

SSW20

BFGJS22

Sch22
BDF+11

Huguenin-Dumittan, L., Vaudenay, S.: On IND-qCCA security in the ROM and its
applications - CPA security is sufficient for TLS 1.3.

Melissa Azouaoui et al. Surviving the fo-calypse: Securing pqc implementations in
practice. RWC 2022 (2022)

Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake
signatures.

Brendel, J., Fiedler, R., Giinther, F., Janson, C., Stebila, D.: Post-quantum
asynchronous deniable key exchange and the signal handshake

Schneider, T.: Implicit rejection in kyber. NIST pgc-forum (2022)

Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world

References

HHK17 Dennis Hofheinz, Kathrin Hovelmanns and Eike Kiltz, A modular analysis of the
Fujisaki-Okamoto transformation

JZC+18 Haodong Jiang et al., IND-CCA-secure Key Encapsulation Mechanism in the
Quantum Random Oracle Model, Revisited
DFEM19 Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model
DFM20 Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: Multi-
round fiat-shamir and more
BHH-+19 Bindel, N., Hamburg, M., Hovelmanns, K., Hiilsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model

	Background
	Main Contribution
	Techniques
	Conclusion

