Asiacrypt 2023

ANTRAG: Annular NTRU Trapdoor Generation Making Mitaka as secure as Falcon

Thomas Espitau, Thi Thu Quyen Nguyen, Chao Sun,

Mehdi Tibouchi, Alexandre Wallet

1

- Fast
- Short signature
- Security NIST I,V

Falcon (*NIST 2017*)

- Hard implementation
- Fast
- Short signature
- Security NIST I,V

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast
- Signature 15% larger
- Lower security

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast
- Signature 15% larger
- Lower security

ANTRAG: Make Mitaka as secure as Falcon

Sign(m, sk_{Λ}, γ):

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

 \rightarrow **c** := H(**m**)

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

- \rightarrow **c** := *H*(**m**)
- $v \leftarrow CloseVector_{Λ,γ}(\mathbf{c})$

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

- \rightarrow **c** := *H*(**m**)
- → **v** ← CloseVector_{Λ,γ}(**c**)
- $\mathbf{s} \coloneqq \mathbf{c} \mathbf{v}$
- > Return sig \coloneqq s.

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

- \rightarrow **c** := $H(\mathbf{m})$
- → **v** ← CloseVector_{Λ,γ}(**c**)
- $\mathbf{s} \coloneqq \mathbf{c} \mathbf{v}$
- > Return $sig \coloneqq s$.

Verify(m, sig, $\mathbf{pk}_{\Lambda}, \gamma$):

→ Accept iff $\|sig\| \le \gamma$ and $H(\mathbf{m}) - sig \in \Lambda$.

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

- \rightarrow **c** := $H(\mathbf{m})$
- > **v** ← DiscreteGaussianSampler(sk_{Λ}, c)
- $\mathbf{s} \coloneqq \mathbf{c} \mathbf{v}$
- > Return $sig \coloneqq s$.

Verify(m, sig, $\mathbf{pk}_{\Lambda}, \gamma$):

Accept iff $\|sig\| ≤ \gamma$ and $H(\mathbf{m}) - sig ∈ Λ$.

5

Sign(m, $\mathbf{sk}_{\Lambda}, \gamma$):

- \rightarrow **c** := $H(\mathbf{m})$
- > **v** ← DiscreteGaussianSampler(sk_{Λ}, c)
- $\mathbf{s} \coloneqq \mathbf{c} \mathbf{v}$
- > Return $sig \coloneqq s$.

Remarks:

- Security : related to Close Vector Problem (CVP) hard to solve without sk.
- > Smaller DiscreteGaussianSampler(sk,·) : better security.
- \rightarrow need sk of « good quality ».

• $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$, n = 512 and q is a prime

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$, n = 512 and q is a prime
- Small polynomials $f, g \in \mathcal{K}$

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$, n = 512 and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q

 \mathcal{K}^2

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$, n = 512 and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q
- Large $h \coloneqq f^{-1}g \mod q$

 \mathcal{K}^2

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$, n = 512 and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q
- Large $h \coloneqq f^{-1}g \mod q$
- $\Lambda_{NTRU} \coloneqq \{(u, v) \in \mathcal{K}^2 | v = uh \mod q\}$

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Discrete Gaussian Distribution on \mathbb{Z} : $D_{\mathbb{Z},c,\sigma}$

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Discrete Gaussian Distribution on \mathbb{Z} : $D_{\mathbb{Z},c,\sigma}$

• Discrete Gaussian Distribution on Ring $\mathcal{R}: D_{\mathcal{R},c,\sigma}$

Sampler/Signature's size

 $\|\mathbf{sig}_F\| \propto \|\mathbf{sk}\|_{Klein} \approx 1.17\sqrt{q}$

Mitaka

Sampler/Signature's size

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: minimize α .

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: minimize α .

> Observation: α only depends on f, g.

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: minimize α .

- > Observation: α only depends on f, g.
- > Previous method: Sample f, g from a small $D_{\mathbb{Z}^n,0,\sigma}$

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: minimize α .

- > Observation: α only depends on f, g.
- > Previous method: Sample f, g from a small $D_{\mathbb{Z}^n,0,\sigma}$ With a reasonable number of repetitions we can find f, g with $\|\mathbf{sk}\| \le \alpha(\sigma)\sqrt{q}$.

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: minimize α .

- > Observation: α only depends on f, g.
- > Previous method: Sample f, g from a small $D_{\mathbb{Z}^n,0,\sigma}$ With a reasonable number of repetitions we can find f, g with $\|\mathbf{sk}\| \le \alpha(\sigma)\sqrt{q}$.
- > Our method:

ANTRAG: Annular Trapdoor Generation for Mitaka $\alpha_{Mitaka} = 1.15$

$$\mathbb{Z}^{n} \approx \mathcal{K} \ni \sum_{n} f_{i} x^{i} = f \xrightarrow{\mathsf{DFT}} \left(f(\zeta_{1}), \cdots, f(\zeta_{n}) \right) \in \mathbb{C}^{n}$$

$$\mathbb{Z}^n \approx \mathcal{K} \ni \sum_n f_i x^i = f \xrightarrow{\mathsf{DFT}} (f(\zeta_1), \cdots, f(\zeta_n)) \in \mathbb{C}^n$$

• For fixed $\alpha_{Mitaka} = \alpha$, we want to find f, g such that for $\forall i \leq n$

$$\frac{q}{\alpha^2} \le |f(\zeta_i)|^2 + |g(\zeta_i)|^2 \le \alpha^2 q$$

$$\mathbb{Z}^n \approx \mathcal{K} \ni \sum_n f_i x^i = f \xrightarrow{\text{DFT}} (f(\zeta_1), \cdots, f(\zeta_n)) \in \mathbb{C}^n$$

• For fixed $\alpha_{Mitaka} = \alpha$, we want to find f, g such that for $\forall i \leq n$

$$\frac{q}{\alpha^2} \le |f(\zeta_i)|^2 + |g(\zeta_i)|^2 \le \alpha^2 q$$

DFT representation

16

Quality/repetition in ANTRAG

Performance comparison with Mitaka and Falcon

	Antrag+Hybrid				
n	512	1024			
α	1.15	1.23*			
Keygen repetitions	3	4			
Classical security (bits)	124	264			
Sign speed (μs)	8	15			
Signature size (bytes)	646	1260			

Performance comparison with Mitaka and Falcon

	Antrag	+Hybrid	Mitaka $(D_{\mathbb{Z}^n,0} ext{+Hybrid})$			
n	512	1024	512	1024		
α	1.15	1.23*	2.04	2.33		
Keygen repetitions	3	4	-	-		
Classical security (bits)	124	264	102	233		
Sign speed (μs)	8	15	8	16		
Signature size (bytes)	646	1260	713	1405		

- No precise number is given but Mitaka is estimated to have many repetitions.

Performance comparison with Mitaka and Falcon

	Antrag+Hybrid		Mit $(oldsymbol{D}_{\mathbb{Z}^{n},0}$ +	aka Hybrid)	Falcon ($m{D}_{\mathbb{Z}^{n},0}$ +FFO)		
n	512	1024	512	1024	512	1024	
α	1.15	1.23*	2.04	2.33	1.17	1.17	
Keygen repetitions	3	4	-	-	8	8	
Classical security (bits)	124	264	102	233	123	284	
Sign speed (μs)	8	15	8	16	18	36	
Signature size (bytes)	646	1260	713	1405	666	1280	

*We do not need too small α to obtain the level NIST V of security.

- No precise number is given but Mitaka is estimated to have many repetitions.

3-smooth dimensions

n		648 (2 ³ · 3 ⁴)	1		768 (2 ⁸ · 3)			864 (2 ⁵ · 3 ³))		972 (2 ² · 3 ⁵)	1
\boldsymbol{q}	12289	3889	9721	12289	3329	18433	12289	3727	10369	12289	4373	17497
α	1.17	1.32	1.19	1.19	1.39	1.16	1.21	1.40	1.23	1.22	1.40	1.18
Repetitions	4	4	4	3	4	3	3	4	3	4	4	4
Classical/Quantum Security (bits)	166/ 151	159/ 144	164/ 149	196/ 178	192/ 174	195/ 177	222/ 201	220/ 200	222/ 201	251/ 227	254/ 230	250/ 227
Signature size (bytes)	808	747	796	952	883	977	1069	1000	1058	1701	1580	1225

Versatility with security!

Perspectives

- Antrag is integrated in the signature Solmae submitted at KPQC (Solmae = Antrag + Hybrid Sampler) (ongoing)
- More optimizations in Antrag's design (ongoing)
 - > Annulus -> Circle sampling?
 - > Integrating new rejection sampling technique
 - > Full-fledged implementation?

Thank you!