
Tri-State Circuits
A Circuit Model that Captures RAM

David Heath
Vlad Kolesnikov
Rafi Ostrovsky

1

UIUC
Georgia Tech
UCLA

2

Boolean Circuits

Convenient for cryptographic
protocols and complexity theory

3

Boolean Circuits

Convenient for cryptographic
protocols and complexity theory

RAM

Random Access Machines

Convenient for algorithms
and applications

4

RAM

efficient emulation would be convenient

5

RAM

We do not have efficient (i.e. quasilinear)
Boolean circuits that emulate RAM

6

RAM

Key challenge: how can we emulate
memory access?

We do not have efficient (i.e. quasilinear)
Boolean circuits that emulate RAM

7

RAM

Tri-state circuits can efficiently
emulate RAM

(i.e. with quasilinear overhead)

Tri-State
Circuits

8

f

x y

f(x, y)f(x, y)Garbler Evaluator

Our Application: Yao’s Garbled Circuit

9

f

x y

f(x, y)f(x, y)

Encode as a
Boolean circuit

f

Garbler Evaluator

Enables constant
round MPC protocols

Our Application: Yao’s Garbled Circuit

10

f
Garbler Evaluator

Garbled RAM

 // functionality.c

 int main (int argc,

 char** argv) {

 …

 }

11

f
Garbler Evaluator

Garbled RAM

 // functionality.c

 int main (int argc,

 char** argv) {

 …

 }

12

Garbled RAM constructions
were monolithic

Difficult to Improve

Incorporate gate garbling,
algorithms, Oblivious RAM

RAMTSCsGarbled TSCs

13

RAMTSCsGarbled TSCs

Detailed circuit design
involving Oblivious

RAM (ORAM [GO96])

14

RAMTSCsGarbled TSCs

Detailed circuit design
involving Oblivious

RAM (ORAM [GO96])

Basic encrypted truth
tables are sufficient

15

RAMTSCsGarbled TSCs

Detailed circuit design
involving Oblivious

RAM (ORAM [GO96])

Basic encrypted truth
tables are sufficient

16

(See our paper for
details)

17

Model Primitive Size of Garbled Program (bits)

[PLS22] basic Semi-honest Random Oracle
(CCRH)

[PLS22] standard
assumptions Semi-honest One Way Functions

[PLS22] with cut &
choose Malicious Random Oracle

(CCRH)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ ⋅ σ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ2)

 - runtime of the RAM program, size of memory is

 - computational security parameter

 - statistical security parameter

T O(T)
λ
σ

All protocols are in
OT hybrid model

GRAM Improvements

18

Model Primitive Size of Garbled Program (bits)

[PLS22] basic Semi-honest Random Oracle
(CCRH)

[PLS22] standard
assumptions Semi-honest One Way Functions

[PLS22] with cut &
choose Malicious Random Oracle

(CCRH)

Ours Semi-honest One Way Functions

Ours Malicious Random Oracle

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ ⋅ σ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ2)

O(T ⋅ log3 T ⋅ log log T ⋅ λ)

O(T ⋅ log3 T ⋅ log log T ⋅ λ)

 - runtime of the RAM program, size of memory is

 - computational security parameter

 - statistical security parameter

T O(T)
λ
σ

All protocols are in
OT hybrid model

GRAM Improvements

19

Tri-State Circuits

x ∈ {0,1}

20

What is a tri-state circuit?

x ∈ {0,1, Z}

Nil: “this wire does not have a value”

21

What is a tri-state circuit?

control

data output

0 1 Z

0 Z 0 Z

1 Z 1 Z

Z Z Z Z

control

da
ta

22

Buffer

Buffer

1

val

0 1 Z

0 Z 0 Z

1 Z 1 Z

Z Z Z Z

control

da
ta

val

23

Buffer

0

val

0 1 Z

0 Z 0 Z

1 Z 1 Z

Z Z Z Z

control

da
ta

Z

24

Join

data0

output

0 1 Z

0 0 ⊥ 0

1 ⊥ 1 1

Z 0 1 Z
data1

data1

da
ta

0

25

Join

0 1 Z

0 0 ⊥ 0

1 ⊥ 1 1

Z 0 1 Z

data1

da
ta

0

val

Z

val

26

Join

0 1 Z

0 0 ⊥ 0

1 ⊥ 1 1

Z 0 1 Z

data1

da
ta

0

val

Z

val

27

XOR

data0

output

0 1 Z

0 0 1 Z

1 1 0 Z

Z Z Z Z

data1

da
ta

0

data1

⨁
28

29

Definition. A tri-state circuit is a
circuit composed from buffers, joins,
and XORs. Tri-state circuits allow

cycles in their circuit graph.

⨁

30

Order of gate execution depends on the input

Primitive form of control flow

Enough control to efficiently implement random access memory

31

How to emulate
RAM with TSCs

32

x

y

¬s

s

MUX

33

x

y

¬s

s

MUX

MUX(s, x, y) =
x if s = 0
y if s = 1
Z if s = Z

34

x

y

1

0

MUX

MUX(s, x, y) =
x if s = 0
y if s = 1
Z if s = Z

35

x

y
1

0
MUX

MUX(s, x, y) =
x if s = 0
y if s = 1
Z if s = Z

36

Z

y
1

0
MUX

MUX(s, x, y) =
x if s = 0
y if s = 1
Z if s = Z

37

x

y

¬s

s

s
x

y

MUX

38

Reordering Components

x
f

g

¬s
s

s
g(f(x)) if s = 0
f(g(x)) if s = 1
Z if s = Z

39

Reordering Components

x
f

g

1
0

0

g(f(x))

g(f(x)) if s = 0
f(g(x)) if s = 1
Z if s = Z

40

Reordering Components

x
f

g

0
1

1

f(g(x))

g(f(x)) if s = 0
f(g(x)) if s = 1
Z if s = Z

41

Reordering Components

x
f

g

0
1

1

f(g(x))

g(f(x)) if s = 0
f(g(x)) if s = 1
Z if s = Z

42

f0

f1

f2

f3

permutation
network

write read

43

f0

f1

f2

f3

permutation
network

write read

Quasilinear
Size!

44

See our paper for

Oblivious TSC definition

Full RAM construction

Semi-honest garbling of TSCs

Malicious garbling of TSCs

45

Contributions

Tri-State circuits (TSCs): adds lightweight
“control flow” to Boolean circuits

A quasilinear TSC that emulates RAM

State of the art improvements to GRAM

