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Boolean Circuits 

Convenient for cryptographic 
protocols and complexity theory
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Boolean Circuits 

Convenient for cryptographic 
protocols and complexity theory


RAM

Random Access Machines 

Convenient for algorithms 
and applications
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RAM

efficient emulation would be convenient
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RAM

Key challenge: how can we emulate 
memory access?

We do not have efficient (i.e. quasilinear) 
Boolean circuits that emulate RAM 



7

RAM

Tri-state circuits can efficiently 
emulate RAM  

(i.e. with quasilinear overhead) 

Tri-State 
Circuits
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Encode  as a 
Boolean circuit

f

Garbler Evaluator

Enables constant 
round MPC protocols

Our Application: Yao’s Garbled Circuit
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f
Garbler Evaluator

Garbled RAM

  // functionality.c


  int main (int argc,   

    char** argv) {

  …


  }
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f
Garbler Evaluator

Garbled RAM

  // functionality.c


  int main (int argc,   

    char** argv) {

  …


  }
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Garbled RAM constructions 
were monolithic

Difficult to Improve

Incorporate gate garbling, 
algorithms, Oblivious RAM



RAMTSCsGarbled TSCs
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RAMTSCsGarbled TSCs

Detailed circuit design 
involving Oblivious 

RAM (ORAM [GO96])
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involving Oblivious 
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Basic encrypted truth 
tables are sufficient
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RAMTSCsGarbled TSCs

Detailed circuit design 
involving Oblivious 

RAM (ORAM [GO96])

Basic encrypted truth 
tables are sufficient
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(See our paper for 
details)
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Model Primitive Size of Garbled Program (bits)

[PLS22] basic Semi-honest Random Oracle 
(CCRH)

[PLS22] standard 
assumptions Semi-honest One Way Functions

[PLS22] with cut & 
choose Malicious Random Oracle 

(CCRH)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ ⋅ σ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ2)

 - runtime of the RAM program, size of memory is 

 - computational security parameter

 - statistical security parameter

T O(T)
λ
σ

All protocols are in 
OT hybrid model

GRAM Improvements
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Model Primitive Size of Garbled Program (bits)

[PLS22] basic Semi-honest Random Oracle 
(CCRH)

[PLS22] standard 
assumptions Semi-honest One Way Functions

[PLS22] with cut & 
choose Malicious Random Oracle 

(CCRH)

Ours Semi-honest One Way Functions

Ours Malicious Random Oracle

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ ⋅ σ)

O(T ⋅ log3 T ⋅ log2 log T ⋅ λ2)

O(T ⋅ log3 T ⋅ log log T ⋅ λ)

O(T ⋅ log3 T ⋅ log log T ⋅ λ)

 - runtime of the RAM program, size of memory is 

 - computational security parameter

 - statistical security parameter

T O(T)
λ
σ

All protocols are in 
OT hybrid model

GRAM Improvements
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Tri-State Circuits



x ∈ {0,1}
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What is a tri-state circuit?



x ∈ {0,1, Z}

Nil: “this wire does not have a value”
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What is a tri-state circuit?
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XOR
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Definition. A tri-state circuit is a 
circuit composed from buffers, joins, 
and XORs. Tri-state circuits allow 

cycles in their circuit graph.

⨁
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Order of gate execution depends on the input

Primitive form of control flow

Enough control to efficiently implement random access memory
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How to emulate 
RAM with TSCs
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x if s = 0
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Z if s = Z
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Reordering Components
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f0
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Quasilinear 
Size!
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See our paper for

Oblivious TSC definition

Full RAM construction

Semi-honest garbling of TSCs

Malicious garbling of TSCs
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Contributions

Tri-State circuits (TSCs): adds lightweight 
“control flow” to Boolean circuits

A quasilinear TSC that emulates RAM

State of the art improvements to GRAM


