Secure Multiparty Computation
from Threshold Encryption based on Class Groups

Lennart Braun, lvan Damgard, and Claudio Orlandi
August 23, 2023 — Crypto'23

Aarhus University /

AARHUS UNIVERSITY



Introduction and Preliminaries



Secure Multiparty Computation

Py P,

Py P,



Secure Multiparty Computation

Py P,

XN X3

X1 X2

Py P,



Secure Multiparty Computation

Py P,

XN X3

y="f(x1,. .., xn)

X1 X2

Py P,



Secure Multiparty Computation

Py P,

XN X3

y="f(x1,. .., xn)

X1 X2

Py P,



Secure Multiparty Computation

Py P,

XN X3

N * o
y="f(x1,. .., xn)

X1 X2

Py P,



Secure Multiparty Computation

Py P,

XN X3

N * o
y="f(x1,. .., xn)

X1 X2

Py P,



Secure Multiparty Computation

Py P,

XN X3

XN X3

y="f(x1,. .., xn)

X1 X2

Py P,



Secure Multiparty Computation




Secure Multiparty Computation

P3

X3

y ="f(x1,...,xn)

X2




Threshold Encryption

Py P,

Py P>



Threshold Encryption: Distributed Key Generation

“i




Threshold Encryption: Distributed Key Generation




Threshold Encryption: Distributed Key Generation

Py P,

SkN Sk3

pk

Py P>



Threshold Encryption: Distributed Key Generation and Decryption

Py P,

SkN Sk3
pk

ct

Sk1 SI(2

Py P>



Threshold Encryption: Distributed Key Generation and Decryption

Pn

SkN
pk

ct

Sk1 SI(2

Py P>



Threshold Encryption: Distributed Key Generation and Decryption

ct \@ M Dec

Sk2

;0
I

P>



Threshold Encryption: Distributed Key Generation and Decryption

D
//\b
Sk1 % - % Sk2
Py P



Class Groups



Clags/Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)



Clags/Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)

e 1* computational security parameter
e g > 2* prime



Clags/Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)
e 1* computational security parameter
e g > 2" prime

e Cyclic group G ~ G x F



Clags/Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)
e 1* computational security parameter
e g > 2* prime
e Cyclic group G ~ G x F
e F = (f) — subgroup of order g with easy DLog



Clags/Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)
e 1* computational security parameter
e g > 2" prime
e Cyclic group G ~ G x F
e F = (f) — subgroup of order g with easy DLog
e G = (g) — subgroup of gth powers with unknown order



Cldss/Groups The CL Framework for Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp «+ CLGen(1%,q)

e 1* computational security parameter

e g > 2* prime
e Cyclic group G ~ G9 x F

e F = (f) — subgroup of order g with easy DLog

e G = (g) — subgroup of gth powers with unknown order
e Hardness assumptions

e ORD: hard to find the order of any h€ G\ F
e HSM: hard to distinguish random elements of G and GY



Cldss/Groups The CL Framework for Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)

e 1* computational security parameter

e g > 2" prime
e Cyclic group G ~ G9 x F

e F = (f) — subgroup of order g with easy DLog

e G = (g) — subgroup of gth powers with unknown order
e Hardness assumptions

e ORD: hard to find the order of any h€ G\ F

e HSM: hard to distinguish random elements of G and GY
e Advantages

e can choose g freely as large prime

e transparent setup
e faster and smaller than Paillier (~» BICYCL by Bouvier et al. [BCIL22])




HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1*, q)
1. Output pp + CLGen(1?*, q)



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1*, q)
1. Output pp + CLGen(1%,q)

KeyGen(pp)
1. Sample sk < [0,2'>8¢), set pk := gk
2. Output (pk, sk)



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Eiel(pls 5 € Fig)
1. Sample r < [0, 2'2re¢)

2. Output ct := (g", f™- pk")

Setup(1*, q)
1. Output pp + CLGen(1%,q)

KeyGen(pp)
1. Sample sk < [0,2'>8¢), set pk := gk
2. Output (pk, sk)



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Enc(pk, m € Fy)
1. Sample r +— [0, 2'aree)

2. Output ct := (g", f™- pk")

Setup(1*, q)
1. Output pp + CLGen(1?*, q)

KeyGen(pp) Dec(sk. ct)

1. Sample sk < [0, 2"2"8¢) set pk := gk
P 2| ) P & 1. Compute f™ := ct; - ct]

2. Output (pk, sk) 2. Output m



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Enc(pk, m € Fy)
1. Sample r +— [0, 2'aree)

2. Output ct := (g", f™- pk")

Setup(1*, q)
1. Output pp + CLGen(1?*, q)

KeyGen(pp) Dec(sk. ct)

1. Sample sk < [0, 2"2"8¢) set pk := gk
P 2| ) P & 1. Compute f™ := ct; - ct]

2. Output (pk, sk) 2. Output m

e IND-CPA secure by the HSM assumption
e Analogue of Camenisch-Shoup encryption for the CL framework



The CDN Paradigm for MPC [CDNO1]

Ingredients

e Threshold Linearly Homomorphic Encryption
e ZK Proof of Plaintext Knowledge (PoPK)
e ZK Proof of Correct Multiplication (PoCM)



The CDN Paradigm for MPC [CDNO1]

Ingredients

e Threshold Linearly Homomorphic Encryption
e ZK Proof of Plaintext Knowledge (PoPK)
e ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

e Input: encrypt input + PoPK
e Output: threshold decryption

e Linear operations: use homomorphic properties



The CDN Paradigm for MPC [CDNO1]

Ingredients

e Threshold Linearly Homomorphic Encryption
e ZK Proof of Plaintext Knowledge (PoPK)
e ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

e Input: encrypt input + PoPK

Output: threshold decryption

e Linear operations: use homomorphic properties

Multiplication ct, < ct, - cty:
1. jointly sample mask ctq, [d] such that d €, Fq
2. create additive sharing [x] < [d] — TDec(ctx + ctq)
3. broadcast ct;; < [x]; - ct, with PoCM, and accumulate ct, < >, ct;,



Security model Goals
e active security e guaranteed output delivery
e static corruptions e transparent setup
e honest majority (t < N/2)

broadcast available



Zero-Knowledge



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier




Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier

reglA], t:=g" t




Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier

reglA], t:=g" t

k er [C]




Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier

reglA], t:=g" t

k er [C]

u<r+k-xez & Check:g”éthk




Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

x=(u—u)(k—Kk)" (mod ord(g))



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

X:(u—u’)~(k—k” (mod



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

X:(u—u’)~(k—k” (mod

Over the integers?



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

X:(u—u’)~(k—k” (mod

Over the integers?

e Binary challenges ~~ repetitions



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

e Strong Root / Low Order assumptions ~~ additional setup and complications

X:(u—u’)~(k—k” (mod

Over the integers?

e Binary challenges ~~ repetitions



Example: Schnorr Proof over Z — Rpos := {h;x | h=g*}

Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

e Strong Root / Low Order assumptions ~~ additional setup and complications

X:(u—u’)~(k—k” (mod

Over the integers?

e Binary challenges ~~ repetitions

e Sometimes normal, set-membership soundness (3x . h = g*¥) is enough!




New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:



New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:

1. class groups generated by CLGen



New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)



New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

How does it help?

e C-rough order = all x € [1, C) are invertible modulo ord(G)
= (k — k’)! exists = witness exists



New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

How does it help?
e C-rough order = all x € [1, C) are invertible modulo ord(G)
= (k — k’)! exists = witness exists
Justified?

e Cohen-Lenstra heuristic [CL84] ~~ class group orders roughly “behave like random integers”
— there are significantly many C-rough-order class groups

e Efficient distinguisher would be great!



Building Threshold Encryption




Our Goal: Frg ldeal Functionality

FTE

Key Generation
e Run (pk,sk) < KeyGen(pp)
e Output pk to all parties and store sk

10



Our Goal: Frg ldeal Functionality

FTE

Key Generation
e Run (pk,sk) < KeyGen(pp)
e Output pk to all parties and store sk

Threshold Decryption
e On input ct = (cty, cty) from at least t + 1 parties, compute M := ct; - ctl_Sk

e Output m := log;(M) to all parties

10



Our Goal: Frg ldeal Functionality

FTE

Key Generation
e Run (pk,sk) < KeyGen(pp)
e Output pk to all parties and |store sk

Threshold Decryption
e On input ct = (cty, cty) from [at least &+ 1 parties, compute M := ct, - ct;

e Output m := log;(M) to all parties

10



Our Goal: Frg ldeal Functionality

FTE

Key Generation

(t, N)-threshold

e Run (pk,sk) < KeyGen(pp) secret sharing

e Output pk to all parties and |store sk

Threshold Decryption
e On input ct = (cty, cty) from [at least &+ 1 parties, compute M := ct, - ct;

e Output m := log;(M) to all parties

10



Our Goal: Frg ldeal Functionality

FTE

Key Generation

(t, N)-threshold

e Run (pk,sk) < KeyGen(pp) secret sharing

e Output pk to all parties and |store sk

Threshold Decryption
e On input ct = (cty, cty) from [at least &+ 1 parties, compute M := ct, - cti %

e Output m := log;(M) to all parties

reconstruction in the exponent
of unknown order group element

10



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — (o)

11



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — (o)

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

11



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — («;

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

11



Shamir's Secret Sharing over Z

Sharing
Just do it over the integers: To share a; € [0,2¢),

e sample random f(X) := a; + > ,_; rc - XX with large enough ry
e give yj 1= f(j) to P;

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z

Sharing
Just do it over the integers: To share a; € [0,2¢),

e sample random f(X) := a; + > ,_; rc - XX with large enough ry

e give yj 1= f(j) to P;

| f(j) modj leaks aj mod j

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z

Sharing

Just do it over the integers: To share a; € [0,2¢),

= (G E - XK wi
° sz_;mple rando.m f(X) :=ai+ > ;1 r- X* with large enough r, Define A — NI
e give yj 1= f(j) to P;

| f(j) modj leaks aj mod j

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z
Sharing
Define A := N!

share «a; - A instead J

Just do it over the integers: To share a; € [0,2¢),

e sample random f(X) :=a;- A+, _; re - XX with large enough r,

e give yj 1= f(j) to P;

| f(j) modj leaks aj mod j

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z

Sharing

Just do it over the integers: To share a; € [0,2¢),

le random £(X) :=c; - A+ 34y rc - X wi
O eaple R (X) =« SSD) (e with large enough r Define A — NI
e give yj 1= f(j) to P;

Reconstruction (in the Exponent)

Lagrange interpolation: Given > t + 1 shares (x; = j, y; = f(j)), compute

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z

Sharing

Just do it over the integers: To share a; € [0,2¢),

le random £(X) :=a; - A+, _; rc- X¥ wi
° sz_;mpe ran o.m (X) =« SSD) (e with large enough ri Define A = NI
e give yj 1= f(j) to P;

Reconstruction (in the Exponent)

Lagrange interpolation: Given > t + 1 shares (x; = j, y; = f(j)), compute
xj— X

0 =2 v I15—

i J#i

unknown group order —>
* cannot divide in the exponent

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir's Secret Sharing over Z

Sharing

Just do it over the integers: To share a; € [0,2¢),

le random £(X) :=a; - A+, _; rc- X¥ wi
° sz_;mpe ran o.m (X) =« SSD) (e with large enough ri Define A = NI
e give yj 1= f(j) to P;

Reconstruction (in the Exponent)
Lagrange interpolation: Given > t + 1 shares (x; = j, y; = f(j)), compute

f(X)—ZyrHZ:ii'A

i J#i

multiply by A, J
reconstruct «; - A?

unknown group order —>
* cannot divide in the exponent

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — (o)

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

13



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/

1.3 share a; — (o)

1.4 prove consistency

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

13



Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%

Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))

14



Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%
Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

commit to coefficients of £

14



Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%
Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

F-Check: P; # P; checks

evaluate A - 7(j) in the exponent

t _
g2 L " TGV = g ot B aond”
k=1

14



Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%
Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

F-Check: P; # P; checks

t
gA'yj ; COAZ . H(Ck)(Jk) — gA2~a,-+Zi:1A-I’k~jk
k=1

ORD Assumption A ged(ord(g), A) =1 A PoK for Gy = g® = Integer VSS

14



Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%
Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

F-Check: P; # P; checks
t

g2 2 A TGV = ghhar i dn
k=1

ORD Assumption A ged(ord(g), A) =1 A PoK for Gy = g® = Integer VSS

e Issues with Rabin's VSS [Rab98]: Does not use ORD

= Corrupt dealer knowing ord(g) can prevent reconstruction
14



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/

1.3 share a; — (o)

1.4 prove consistency

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

15



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/

1.3 share a; — (o)

1.4 prove consistency

2. Disqualify misbehaving parties ~~ set of > t 4+ 1 remaining parties Q
3. Define public key pk := [[p - &
4. Have shared secret key (sk) := > "p _(ai)

15



Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/

1.3 share a; — (o)

1.4 prove consistency

2. Disqualify misbehaving parties ~ set of > t + 1 remaining parties Q

3. Define public key_

4. Have shared secret key (sk) := > p o {ai)

15



Pedersen-style Distributed Key Generation

1. All parties P;
1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — (o)
1.4 prove consistency

2. Disqualify misbehaving parties ~ set of > t + 1 remaining parties Q
3. Define public key

4. Have shared secret key (sk) := > p o {ai)
A can bias distribution of pk!
(Gennaro et al. [GJKRO07])

15



Fixing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS

e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

16



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA
1. (pk*,sk®) + KeyGen

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA
1. (pk*,sk®) + KeyGen

)

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk*,sk®) + KeyGen

e dw)

3. Output sk := sk™ + .
pk = g = pk - g@

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:
IND-CPA by reduction of unbiased encryption:

BiasedKeyGenA

1. (pk*,sk®) + KeyGen

e dw)

3. Output sk := sk™ + .
pk = g = pk - g@

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk*
BiasedKeyGenA

1. (pk*,sk®) + KeyGen ct:= (g, (pk")" - ™)
e )
3. Output sk := sk™ + .

pk = g = pk” - g®

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk*
BiasedKeyGenA

1. (pk*,sk®) + KeyGen ct:= (g, (pk")" - ™)

2. - 2. compute encryption under (biased) pk

3. Output sk := sk™ + .
. r ®\r £my | r .
pk := gSk _ pk* .g. ct = (g ,((pk ) f ) (g ) )

= (&, (pk)" - ™)

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -



YOSO




YOSO MPC - You Only Speak Once

YOS07??

large scale MPC for many parties

work done by many small committees

mechanism for passing secrets to future committees without knowing them

e each party sends only one round of messages

17



YOSO MPC - You Only Speak Once

YOS07??

large scale MPC for many parties

work done by many small committees

mechanism for passing secrets to future committees without knowing them

e cach party sends only one round of messages
Why is our work YOSO-friendly?

e transparent setup! — open problem in previous work [Gen+21]
e simple one-round distributed key generation and decryption protocols

e small secret state: only shared sk needs to be passed between the committees

17



Summary




Contributions

First actively-secure threshold version of the HSM-CL cryptosystem
UC-secure MPC using the CDN paradigm

New zero-knowledge protocols for multiplicative relations of encrypted values

Adaption to the YOSO setting and solution to the open problem of transparent setup

18


https://ia.cr/2022/1437

Contributions

First actively-secure threshold version of the HSM-CL cryptosystem
UC-secure MPC using the CDN paradigm

New zero-knowledge protocols for multiplicative relations of encrypted values

Adaption to the YOSO setting and solution to the open problem of transparent setup
Open problems

e [CLT22] give a HSM-CL (threshold) variant for Z,«. Can we adapt our techniques?

e Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(~ Cramer-Shoup-style)

18


https://ia.cr/2022/1437

Contributions

First actively-secure threshold version of the HSM-CL cryptosystem
UC-secure MPC using the CDN paradigm

New zero-knowledge protocols for multiplicative relations of encrypted values

Adaption to the YOSO setting and solution to the open problem of transparent setup
Open problems

e [CLT22] give a HSM-CL (threshold) variant for Z,«. Can we adapt our techniques?

e Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(~ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437

18


https://ia.cr/2022/1437

Contributions

First actively-secure threshold version of the HSM-CL cryptosystem
UC-secure MPC using the CDN paradigm

New zero-knowledge protocols for multiplicative relations of encrypted values

Adaption to the YOSO setting and solution to the open problem of transparent setup
Open problems

e [CLT22] give a HSM-CL (threshold) variant for Z,«. Can we adapt our techniques?

e Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(~ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437 T h an k yO u !

18


https://ia.cr/2022/1437

References i

[BCIL22]

[CCLST20]

[CDNO1]

[CGGI13]

C. Bouvier, G. Castagnos, L. Imbert, and F. Laguillaumie.
I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups.

Cryptology ePrint Archive, Report 2022/1466. https://eprint.iacr.org/2022/1466.
2022.

G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and |. Tucker.
“Bandwidth-Efficient Threshold EC-DSA”. In: PKC 2020, Part II. May 2020.

R. Cramer, I. Damgard, and J. B. Nielsen. “Multiparty Computation from
Threshold Homomorphic Encryption”. In: EUROCRYPT 2001. May 2001.

V. Cortier, D. Galindo, S. Glondu, and M. lzabachéne. “Distributed EIGamal a
la Pedersen: Application to Helios”. In:
Workshop on Privacy in the Electronic Society — WPES 2013. Nov. 2013.

19


https://eprint.iacr.org/2022/1466

References i

[CL15] G. Castagnos and F. Laguillaumie. “Linearly Homomorphic Encryption from
DDH". In: CT-RSA 2015. Apr. 2015.

[CL84] H. Cohen and H. W. Lenstra. “Heuristics on class groups of number fields”.
In: Number Theory Noordwijkerhout 1983. 1984.

[CLT18] G. Castagnos, F. Laguillaumie, and |. Tucker. “Practical Fully Secure
Unrestricted Inner Product Functional Encryption Modulo p”. In:
ASIACRYPT 2018, Part II. Dec. 2018.

[CLT22] G. Castagnos, F. Laguillaumie, and I. Tucker. “Threshold Linearly
Homomorphic Encryption on Z/2%7". In: ASIACRYPT 2022, Part II. Dec. 2022.

[DF92] Y. Desmedt and Y. Frankel. “Shared Generation of Authenticators and
Signatures (Extended Abstract)”. In: CRYPTO'91. Aug. 1992.

20



References iii

[FGMY97]

[Gen+21]

[GJKRO7]

[Rabos]

[SRMH21]

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. “Optimal Resilience
Proactive Public-Key Cryptosystems”. In: 38th FOCS. Oct. 1997.

C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and
S. Yakoubov. “YOSO: You Only Speak Once - Secure MPC with Stateless
Ephemeral Roles”. In: CRYPTO 2021, Part Il. Aug. 2021.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”. In: Journal of Cryptology 1
(Jan. 2007).

T. Rabin. “A Simplified Approach to Threshold and Proactive RSA”. In:
CRYPTO'98. Aug. 1998.

O. Stengele, M. Raiber, J. Miiller-Quade, and H. Hartenstein. “ETHTID:
Deployable Threshold Information Disclosure on Ethereum’. In:
Conference on Blockchain Computing and Applications — BCCA 2021. Nov. 2021.

21



References iv

Emoji graphics licensed under CC-BY 4.0:
https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other
contributors

22


https://creativecommons.org/licenses/by/4.0/

	Introduction and Preliminaries
	Zero-Knowledge
	Building Threshold Encryption
	YOSO
	Summary

