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Cldss/Groups The CL Framework for Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

e pp « CLGen(1%,q)

e 1* computational security parameter

e g > 2" prime
e Cyclic group G ~ G9 x F

e F = (f) — subgroup of order g with easy DLog

e G = (g) — subgroup of gth powers with unknown order
e Hardness assumptions

e ORD: hard to find the order of any h€ G\ F

e HSM: hard to distinguish random elements of G and GY
e Advantages

e can choose g freely as large prime

e transparent setup
e faster and smaller than Paillier (~» BICYCL by Bouvier et al. [BCIL22])
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HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Enc(pk, m € Fy)
1. Sample r +— [0, 2'aree)

2. Output ct := (g", f™- pk")

Setup(1*, q)
1. Output pp + CLGen(1?*, q)

KeyGen(pp) Dec(sk. ct)

1. Sample sk < [0, 2"2"8¢) set pk := gk
P 2| ) P & 1. Compute f™ := ct; - ct]

2. Output (pk, sk) 2. Output m

e IND-CPA secure by the HSM assumption
e Analogue of Camenisch-Shoup encryption for the CL framework
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The CDN Paradigm for MPC [CDNO1]

Ingredients

e Threshold Linearly Homomorphic Encryption
e ZK Proof of Plaintext Knowledge (PoPK)
e ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

e Input: encrypt input + PoPK

Output: threshold decryption

e Linear operations: use homomorphic properties

Multiplication ct, < ct, - cty:
1. jointly sample mask ctq, [d] such that d €, Fq
2. create additive sharing [x] < [d] — TDec(ctx + ctq)
3. broadcast ct;; < [x]; - ct, with PoCM, and accumulate ct, < >, ct;,



Security model Goals
e active security e guaranteed output delivery
e static corruptions e transparent setup
e honest majority (t < N/2)

broadcast available



Zero-Knowledge
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Prover Verifier
reglA], t:=g" t
k er [C]
u<r+k-xez t Check: g" < t - b

Knowledge Soundness: Extract from accepting (t, k, u), (t, k', u") with k # k'

unknown order!

e Strong Root / Low Order assumptions ~~ additional setup and complications

X:(u—u’)~(k—k” (mod

Over the integers?

e Binary challenges ~~ repetitions

e Sometimes normal, set-membership soundness (3x . h = g*¥) is enough!
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New Assumption

Definition (C-Rough Order Assumption (informal))
Let C € N. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

How does it help?
e C-rough order = all x € [1, C) are invertible modulo ord(G)
= (k — k’)! exists = witness exists
Justified?

e Cohen-Lenstra heuristic [CL84] ~~ class group orders roughly “behave like random integers”
— there are significantly many C-rough-order class groups

e Efficient distinguisher would be great!
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Our Goal: Frg ldeal Functionality

FTE

Key Generation

(t, N)-threshold

e Run (pk,sk) < KeyGen(pp) secret sharing

e Output pk to all parties and |store sk

Threshold Decryption
e On input ct = (cty, cty) from [at least &+ 1 parties, compute M := ct, - ct;

e Output m := log;(M) to all parties
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Our Goal: Frg ldeal Functionality

FTE

Key Generation

(t, N)-threshold

e Run (pk,sk) < KeyGen(pp) secret sharing

e Output pk to all parties and |store sk

Threshold Decryption
e On input ct = (cty, cty) from [at least &+ 1 parties, compute M := ct, - cti %

e Output m := log;(M) to all parties

reconstruction in the exponent
of unknown order group element

10
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Shamir's Secret Sharing over Z

Sharing

Just do it over the integers: To share a; € [0,2¢),

le random £(X) :=a; - A+, _; rc- X¥ wi
° sz_;mpe ran o.m (X) =« SSD) (e with large enough ri Define A = NI
e give yj 1= f(j) to P;

Reconstruction (in the Exponent)
Lagrange interpolation: Given > t + 1 shares (x; = j, y; = f(j)), compute

f(X)—ZyrHZ:ii'A

i J#i

multiply by A, J
reconstruct «; - A?

unknown group order —>
* cannot divide in the exponent

= See 90's papers for threshold RSA [DF92; FGMY97; Rab98]
12
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Pedersen-style Distributed Key Generation

1. All parties P;

1.1 sample contribution «;
1.2 publish g¢/

1.3 share a; — (o)

1.4 prove consistency

3. Define public key pk := [[p g
4. Have shared secret key (sk) := > p ()

13
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Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

F-Check: P; # P; checks

t
gA'yj ; COAZ . H(Ck)(Jk) — gA2~a,-+Zi:1A-I’k~jk
k=1
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Feldman’s Verifiable Secret Sharing over 7Z

Goal: Shares of «; consistent with each other and g%
Recall: Sharing polynomial f(X) := a;- A+ 34, rc - X¥ and shares (x; = j, y; = f(j))
F-Share:

e additionally publish Co := g% and C, := g®" for k € [1, 1]
e prove that Cx € (g)

F-Check: P; # P; checks
t

g2 2 A TGV = ghhar i dn
k=1

ORD Assumption A ged(ord(g), A) =1 A PoK for Gy = g® = Integer VSS

e Issues with Rabin's VSS [Rab98]: Does not use ORD

= Corrupt dealer knowing ord(g) can prevent reconstruction
14
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Pedersen-style Distributed Key Generation

1. All parties P;
1.1 sample contribution «;
1.2 publish g¢/
1.3 share a; — (o)
1.4 prove consistency

2. Disqualify misbehaving parties ~ set of > t + 1 remaining parties Q
3. Define public key

4. Have shared secret key (sk) := > p o {ai)
A can bias distribution of pk!
(Gennaro et al. [GJKRO07])

15
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FiXing the Bias

Gennaro et al. [GJKRO7]: Unbiased DKG with two-stage approach + Pedersen VSS
e needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk*
BiasedKeyGenA

1. (pk*,sk®) + KeyGen ct:= (g, (pk")" - ™)

2. - 2. compute encryption under (biased) pk

3. Output sk := sk™ + .
. r ®\r £my | r .
pk := gSk _ pk* .g. ct = (g ,((pk ) f ) (g ) )

= (&, (pk)" - ™)

Similar observations for EIGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. -
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YOSO MPC - You Only Speak Once

YOS07??

large scale MPC for many parties

work done by many small committees

mechanism for passing secrets to future committees without knowing them

e cach party sends only one round of messages
Why is our work YOSO-friendly?

e transparent setup! — open problem in previous work [Gen+21]
e simple one-round distributed key generation and decryption protocols

e small secret state: only shared sk needs to be passed between the committees

17
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Contributions

First actively-secure threshold version of the HSM-CL cryptosystem
UC-secure MPC using the CDN paradigm

New zero-knowledge protocols for multiplicative relations of encrypted values

Adaption to the YOSO setting and solution to the open problem of transparent setup
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