# Secure Multiparty Computation from Threshold Encryption based on Class Groups

Lennart Braun, Ivan Damgård, and Claudio Orlandi August 23, 2023 – Crypto'23

Aarhus University



# Introduction and Preliminaries



















### Threshold Encryption



### Threshold Encryption: Distributed Key Generation



#### Threshold Encryption: Distributed Key Generation



#### Threshold Encryption: Distributed Key Generation





3







[CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- pp  $\leftarrow \mathsf{CLGen}(1^\lambda, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q > 2^{\lambda}$  prime

[CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q > 2^{\lambda}$  prime
- Cyclic group  $G \simeq G^q \times F$

[CL15]

[CL15]

- pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q > 2^{\lambda}$  prime
- Cyclic group  $G \simeq G^q \times F$ 
  - $F = \langle f \rangle$  subgroup of order q with easy DLog

[CL15]

- pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q > 2^{\lambda}$  prime
- Cyclic group  $G \simeq G^q \times F$ 
  - $F = \langle f \rangle$  subgroup of order q with easy DLog
  - $G^q = \langle g \rangle$  subgroup of *q*th powers with <u>unknown order</u>

# Qlass/Groups of Unknown Order

[CL15]

- pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q>2^{\lambda}$  prime
- Cyclic group  $G \simeq G^q \times F$ 
  - $F = \langle f \rangle$  subgroup of order q with easy DLog
  - $G^q = \langle g \rangle$  subgroup of *q*th powers with <u>unknown order</u>
- Hardness assumptions
  - ORD: hard to find the order of any  $h \in G \setminus F$
  - HSM: hard to distinguish random elements of G and  $G^q$

# Class/Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 
  - $1^{\lambda}$  computational security parameter
  - $q>2^{\lambda}$  prime
- Cyclic group  $G \simeq G^q \times F$ 
  - $F = \langle f \rangle$  subgroup of order q with easy DLog
  - $G^q = \langle g \rangle$  subgroup of *q*th powers with <u>unknown order</u>
- Hardness assumptions
  - ORD: hard to find the order of any  $h \in G \setminus F$
  - HSM: hard to distinguish random elements of G and  $G^q$
- Advantages
  - can choose q freely as large prime
  - transparent setup
  - faster and smaller than Paillier (~> BICYCL by Bouvier et al. [BCIL22])

[CL15]

 $\mathsf{Setup}(1^{\lambda},q)$ 

1. Output pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 

 $\mathsf{Setup}(1^{\lambda},q)$ 

1. Output pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 

KeyGen(pp)

- 1. Sample sk  $\leftarrow_R$  [0, 2<sup>large</sup>), set pk :=  $g^{sk}$
- 2. Output (pk,sk)

 $\mathsf{Setup}(1^{\lambda}, q)$ 

1. Output pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 

 $Enc(pk, m \in \mathbb{F}_q)$ 

- 1. Sample  $r \leftarrow_R [0, 2^{\text{large}})$
- 2. Output ct :=  $(g^r, f^m \cdot pk^r)$

KeyGen(pp)

1. Sample sk  $\leftarrow_R$  [0, 2<sup>large</sup>), set pk :=  $g^{sk}$ 

2. Output (pk,sk)

 $\mathsf{Setup}(1^{\lambda},q)$ 

1. Output pp  $\leftarrow \mathsf{CLGen}(1^{\lambda}, q)$ 

 $Enc(pk, m \in \mathbb{F}_q)$ 

- 1. Sample  $r \leftarrow_R [0, 2^{\text{large}})$
- 2. Output ct :=  $(g^r, f^m \cdot pk^r)$

KeyGen(pp)

1. Sample sk  $\leftarrow_R$  [0, 2<sup>large</sup>), set pk :=  $g^{sk}$ 

2. Output (pk,sk)

Dec(sk, ct)

1. Compute  $f^m := \operatorname{ct}_2 \cdot \operatorname{ct}_1^{-\operatorname{sk}}$ 

2. Output m

 $\mathsf{Setup}(1^{\lambda},q)$ 

1. Output pp  $\leftarrow \mathsf{CLGen}(1^\lambda, q)$ 

 $Enc(pk, m \in \mathbb{F}_q)$ 

- 1. Sample  $r \leftarrow_R [0, 2^{\text{large}})$
- 2. Output ct :=  $(g^r, f^m \cdot pk^r)$

KeyGen(pp)

- 1. Sample sk  $\leftarrow_R$  [0, 2<sup>large</sup>), set pk :=  $g^{sk}$
- 2. Output (pk,sk)

Dec(sk, ct)

1. Compute  $f^m := \operatorname{ct}_2 \cdot \operatorname{ct}_1^{-\operatorname{sk}}$ 

2. Output m

- IND-CPA secure by the HSM assumption
- Analogue of Camenisch-Shoup encryption for the CL framework

# The CDN Paradigm for MPC [CDN01]

#### Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

# The CDN Paradigm for MPC [CDN01]

#### Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

#### **Highlevel Overview**

- Input: encrypt input + PoPK
- Output: threshold decryption
- Linear operations: use homomorphic properties

# The CDN Paradigm for MPC [CDN01]

#### Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

#### **Highlevel Overview**

- Input: encrypt input + PoPK
- Output: threshold decryption
- Linear operations: use homomorphic properties
- Multiplication  $ct_z \leftarrow ct_x \cdot ct_y$ :
  - 1. jointly sample mask  $\operatorname{ct}_d, \llbracket d \rrbracket$  such that  $d \in_r \mathbb{F}_q$
  - 2. create additive sharing  $\llbracket x \rrbracket \leftarrow \llbracket d \rrbracket \mathsf{TDec}(\mathsf{ct}_x + \mathsf{ct}_d)$
  - 3. broadcast  $ct_{z_i} \leftarrow [\![x]\!]_i \cdot ct_y$  with PoCM, and accumulate  $ct_z \leftarrow \sum_i ct_{z_i}$

#### Security model

- active security
- static corruptions
- honest majority (t < N/2)
- broadcast available

#### Goals

- guaranteed output delivery
- transparent setup
# Zero-Knowledge

| Prover | Verifier |
|--------|----------|
|        |          |
|        |          |
|        |          |
|        |          |
|        |          |









**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$



**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$
unknown order!



**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$
  
Over the integers?



**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$
unknown order!

# Over the integers?

• Binary challenges ~>> repetitions



**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$

#### Over the integers?

- Binary challenges ~>> repetitions
- $\bullet\,$  Strong Root / Low Order assumptions  $\rightsquigarrow$  additional setup and complications



**Knowledge Soundness:** Extract from accepting (t, k, u), (t, k', u') with  $k \neq k'$ :

$$x = (u - u') \cdot (k - k')^{-1} \pmod{\operatorname{ord}(g)}$$

#### Over the integers?

- Binary challenges ~>> repetitions
- $\bullet\,$  Strong Root / Low Order assumptions  $\rightsquigarrow$  additional setup and complications
- Sometimes normal, set-membership soundness  $(\exists x \ . \ h = g^x)$  is enough!

unknown order!

#### Definition (C-Rough Order Assumption (informal))

Let  $C \in \mathbb{N}$ . The following are computationally indistinguishable:

#### Definition (C-Rough Order Assumption (informal))

Let  $C \in \mathbb{N}$ . The following are computationally indistinguishable:

1. class groups generated by CLGen

#### Definition (C-Rough Order Assumption (informal))

Let  $C \in \mathbb{N}$ . The following are computationally indistinguishable:

- 1. class groups generated by CLGen
- 2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

#### Definition (C-Rough Order Assumption (informal))

Let  $C \in \mathbb{N}$ . The following are computationally indistinguishable:

- $1. \ \mbox{class}$  groups generated by CLGen
- 2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

How does it help?

#### Definition (C-Rough Order Assumption (informal))

Let  $C \in \mathbb{N}$ . The following are computationally indistinguishable:

- $1. \ \mbox{class}$  groups generated by CLGen
- 2. class groups generated by CLGen with a C-rough order (ord(G) has no divisors < C)

How does it help?

• C-rough order  $\implies$  all  $x \in [1, C)$  are invertible modulo ord(G)  $\implies (k - k')^{-1}$  exists  $\implies$  witness exists

Justified?

- Cohen-Lenstra heuristic [CL84] → class group orders roughly "behave like random integers" ⇒ there are significantly many *C*-rough-order class groups
- Efficient distinguisher would be great!

# **Building Threshold Encryption**

## Key Generation

- Run (pk, sk)  $\leftarrow$  KeyGen(pp)
- Output pk to all parties and store sk

## Key Generation

- Run (pk, sk)  $\leftarrow$  KeyGen(pp)
- Output pk to all parties and store sk

#### **Threshold Decryption**

- On input  $ct = (ct_1, ct_2)$  from at least t + 1 parties, compute  $M := ct_2 \cdot ct_1^{-sk}$
- Output  $m := \log_f(M)$  to all parties

## Key Generation

- Run (pk, sk)  $\leftarrow$  KeyGen(pp)
- Output pk to all parties and store sk

#### **Threshold Decryption**

- On input  $ct = (ct_1, ct_2)$  from at least t + 1 parties, compute  $M := ct_2 \cdot ct_1^{-sk}$
- Output  $m := \log_f(M)$  to all parties

## Key Generation

- Run (pk, sk)  $\leftarrow$  KeyGen(pp)
- Output pk to all parties and store sk

#### **Threshold Decryption**

- On input  $ct = (ct_1, ct_2)$  from at least t + 1 parties, compute  $M := ct_2 \cdot ct_1^{-sk}$
- Output  $m := \log_f(M)$  to all parties



## Key Generation

- Run (pk, sk)  $\leftarrow$  KeyGen(pp)
- Output pk to all parties and store sk

#### **Threshold Decryption**

- On input  $ct = (ct_1, ct_2)$  from at least t + 1 parties, compute  $M := ct_2 \cdot ct_1^{-sk}$
- Output  $m := \log_f(M)$  to all parties

(t, N)-threshold

secret sharing

reconstruction in the exponent of unknown order group element

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$ 1.2 publish  $g^{\alpha_i}$ 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$

- 3. Define public key pk :=  $\prod_{P_i} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{P_i} \langle \alpha_i \rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$ 1.2 publish  $g^{\alpha_i}$ 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$

- 3. Define public key pk :=  $\prod_{P_i} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{P_i} \langle \alpha_i \rangle$

#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

- sample random  $f(X) := \alpha_i + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$
- give  $y_j := f(j)$  to  $P_j$

#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

• sample random  $f(X) := \alpha_i + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$ 



#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

• sample random  $f(X) := \alpha_i + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$ 





#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,



#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

- sample random  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$
- give  $y_j := f(j)$  to  $P_j$

#### **Reconstruction (in the Exponent)**

Lagrange interpolation: Given  $\geq t + 1$  shares ( $x_j = j, y_j = f(j)$ ), compute

$$f(X) = \sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{x_{j} - X}{x_{j} - x_{i}}$$

$$\implies$$
 See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Define  $\Delta := N!$ 

#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

- sample random  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$
- give  $y_j := f(j)$  to  $P_j$

#### **Reconstruction (in the Exponent)**

Lagrange interpolation: Given  $\geq t + 1$  shares  $(x_j = j, y_j = f(j))$ , compute



 $\implies$  See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Define  $\Delta := N!$ 

#### Sharing

Just do it over the integers: To share  $\alpha_i \in [0, 2^{\ell})$ ,

- sample random  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  with large enough  $r_k$
- give  $y_j := f(j)$  to  $P_j$

#### **Reconstruction (in the Exponent)**

Lagrange interpolation: Given  $\geq t + 1$  shares  $(x_j = j, y_j = f(j))$ , compute



- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$ 1.2 publish  $g^{\alpha_i}$ 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$

- 3. Define public key pk :=  $\prod_{P_i} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{P_i} \langle \alpha_i \rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$
  - 1.4 prove consistency
- 3. Define public key pk :=  $\prod_{P_i} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{\mathit{P}_i} \langle \alpha_i \rangle$

#### Feldman's Verifiable Secret Sharing over $\ensuremath{\mathbb{Z}}$

**Goal:** Shares of  $\alpha_i$  consistent with each other and  $g^{\alpha_i}$ 

Recall: Sharing polynomial  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  and shares  $(x_j = j, y_j = f(j))$ 

### Feldman's Verifiable Secret Sharing over $\ensuremath{\mathbb{Z}}$

**Goal:** Shares of  $\alpha_i$  consistent with each other and  $g^{\alpha_i}$ 

Recall: Sharing polynomial  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  and shares  $(x_j = j, y_j = f(j))$ F-Share:

- additionally publish  $C_0 := g^{\alpha_i}$  and  $C_k := g^{\Delta \cdot r_k}$  for  $k \in [1, t]$
- prove that  $C_k \in \langle g \rangle$

commit to coefficients of f
#### Feldman's Verifiable Secret Sharing over $\ensuremath{\mathbb{Z}}$

**Goal:** Shares of  $\alpha_i$  consistent with each other and  $g^{\alpha_i}$ 

Recall: Sharing polynomial  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  and shares  $(x_j = j, y_j = f(j))$ F-Share:

- additionally publish  $C_0:=g^{lpha_i}$  and  $C_k:=g^{\Delta\cdot r_k}$  for  $k\in[1,t]$
- prove that  $C_k \in \langle g 
  angle$

F-Check:  $P_j \neq P_i$  checks

evaluate  $\Delta \cdot f(j)$  in the exponent

$$g^{\Delta \cdot y_j} \stackrel{?}{=} C_0^{\Delta^2} \cdot \prod_{k=1}^t (C_k)^{(j^k)} = g^{\overline{\Delta^2 \cdot \alpha_i + \sum_{k=1}^t \Delta \cdot r_k \cdot j^k}}$$

#### Feldman's Verifiable Secret Sharing over $\ensuremath{\mathbb{Z}}$

**Goal:** Shares of  $\alpha_i$  consistent with each other and  $g^{\alpha_i}$ 

Recall: Sharing polynomial  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  and shares  $(x_j = j, y_j = f(j))$ F-Share:

- additionally publish  $C_0 := g^{\alpha_i}$  and  $C_k := g^{\Delta \cdot r_k}$  for  $k \in [1, t]$
- prove that  $C_k \in \langle g \rangle$

F-Check:  $P_j \neq P_i$  checks

$$g^{\Delta \cdot y_j} \stackrel{?}{=} C_0^{\Delta^2} \cdot \prod_{k=1}^t (C_k)^{(j^k)} = g^{\Delta^2 \cdot lpha_i + \sum_{k=1}^t \Delta \cdot r_k \cdot j^k}$$

ORD Assumption  $\land$  gcd(ord(g),  $\Delta$ ) = 1  $\land$  PoK for  $C_0 = g^{\alpha_i} \implies$  Integer VSS

#### Feldman's Verifiable Secret Sharing over $\ensuremath{\mathbb{Z}}$

**Goal:** Shares of  $\alpha_i$  consistent with each other and  $g^{\alpha_i}$ 

Recall: Sharing polynomial  $f(X) := \alpha_i \cdot \Delta + \sum_{k=1}^t r_k \cdot X^k$  and shares  $(x_j = j, y_j = f(j))$ F-Share:

- additionally publish  $C_0 := g^{\alpha_i}$  and  $C_k := g^{\Delta \cdot r_k}$  for  $k \in [1, t]$
- prove that  $C_k \in \langle g \rangle$

F-Check:  $P_j \neq P_i$  checks

$$g^{\Delta\cdot y_j} \stackrel{?}{=} C_0^{\Delta^2} \cdot \prod_{k=1}^t (C_k)^{(j^k)} = g^{\Delta^2 \cdot lpha_i + \sum_{k=1}^t \Delta \cdot r_k \cdot j^k}$$

 $\mathit{ORD}$  Assumption  $\land$  gcd(ord(g),  $\Delta$ ) = 1  $\land$  PoK for  $\mathit{C}_0 = g^{lpha_i} \implies$  Integer VSS

- Issues with Rabin's VSS [Rab98]: Does not use ORD
  - $\implies$  Corrupt dealer knowing ord(g) can prevent reconstruction

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$
  - 1.4 prove consistency
- 3. Define public key pk :=  $\prod_{P_i} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{\mathit{P}_i} \langle \alpha_i \rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$
  - 1.4 prove consistency
- 2. Disqualify misbehaving parties  $\rightsquigarrow$  set of  $\geq t+1$  remaining parties  ${\cal Q}$
- 3. Define public key pk :=  $\prod_{P_i \in \mathcal{Q}} g^{\alpha_i}$
- 4. Have shared secret key  $\langle \mathsf{sk} \rangle := \sum_{P_i \in \mathcal{Q}} \langle \alpha_i \rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$
  - 1.4 prove consistency
- 2. Disqualify misbehaving parties  $\rightsquigarrow$  set of  $\ge t+1$  remaining parties  $\mathcal{Q}$
- 3. Define public key  $pk := \prod_{P_i \in Q} g^{\alpha_i}$
- 4. Have shared secret key  $\langle\mathsf{sk}\rangle:=\sum_{P_i\in\mathcal{Q}}\langle\alpha_i\rangle$

- 1. All parties  $P_i$ 
  - 1.1 sample contribution  $\alpha_i$
  - 1.2 publish  $g^{\alpha_i}$
  - 1.3 share  $\alpha_i \rightarrow \langle \alpha_i \rangle$
  - 1.4 prove consistency
- 2. Disqualify misbehaving parties  $\rightsquigarrow$  set of  $\geq t+1$  remaining parties  ${\mathcal Q}$
- 3. Define public key  $pk := \prod_{P_i \in Q} g^{\alpha_i}$ 4. Have shared secret key  $\langle sk \rangle := \sum_{P_i \in Q} \langle \alpha_i \rangle$   $\bigwedge$  Can bias distribution of pk! (Gennaro et al. [GJKR07])

## Fixing the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

## Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

## Fixing with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

 $\mathsf{BiasedKeyGen}^{\mathcal{A}}$ 

 $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$ 

## Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

 $\mathsf{BiasedKeyGen}^\mathcal{A}$ 

 $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$ 



## Fixing with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

## $\mathsf{BiasedKeyGen}^\mathcal{A}$

- $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$
- 2.  $\delta \leftarrow \mathcal{A}(\mathsf{pk}^*)$
- 3. Output sk := sk<sup>\*</sup> +  $\delta$ , pk :=  $g^{sk} = pk^* \cdot g^{\delta}$

## Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

 $\mathsf{BiasedKeyGen}^\mathcal{A}$ 

- $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$
- 2.  $\delta \leftarrow \mathcal{A}(\mathsf{pk}^*)$
- 3. Output sk := sk<sup>\*</sup> +  $\delta$ , pk :=  $g^{sk} = pk^* \cdot g^{\delta}$

## Fixing with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk\*

#### $\mathsf{BiasedKeyGen}^{\mathcal{A}}$

- $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$
- 2.  $\delta \leftarrow \mathcal{A}(\mathsf{pk}^*)$
- 3. Output sk := sk<sup>\*</sup> +  $\delta$ , pk :=  $g^{sk} = pk^* \cdot g^{\delta}$

$$\mathsf{ct} := (g^r, (\mathsf{pk}^*)^r \cdot f^m)$$

## Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk\*

 $\mathsf{BiasedKeyGen}^{\mathcal{A}}$ 

- $1. ~(\mathsf{pk}^*,\mathsf{sk}^*) \gets \mathsf{KeyGen}$
- 2.  $\delta \leftarrow \mathcal{A}(\mathsf{pk}^*)$
- 3. Output sk := sk<sup>\*</sup> +  $\delta$ , pk := g<sup>sk</sup> = pk<sup>\*</sup> · g<sup> $\delta$ </sup>

 $\mathsf{ct} := (g^r, (\mathsf{pk}^*)^r \cdot f^m)$ 

2. compute encryption under (biased) pk

$$\mathsf{ct}' := (g^r, ((\mathsf{pk}^*)^r \cdot f^m) \cdot (g^r)^{\textcircled{\delta}})$$
$$= (g^r, (\mathsf{pk})^r \cdot f^m)$$

## YOSO

## YOSO MPC – You Only Speak Once

#### YOSO???

- large scale MPC for many parties
- work done by many small committees
- mechanism for passing secrets to future committees without knowing them
- each party sends only one round of messages

#### YOSO???

- large scale MPC for many parties
- work done by many small committees
- mechanism for passing secrets to future committees without knowing them
- each party sends only one round of messages

#### Why is our work YOSO-friendly?

- transparent setup! open problem in previous work [Gen+21]
- simple one-round distributed key generation and decryption protocols
- small secret state: only shared sk needs to be passed between the committees

#### Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

#### Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

#### **Open problems**

- [CLT22] give a HSM-CL (threshold) variant for  $\mathbb{Z}_{2^k}.$  Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (~> Cramer-Shoup-style)

#### Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

#### **Open problems**

- [CLT22] give a HSM-CL (threshold) variant for  $\mathbb{Z}_{2^k}.$  Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (~> Cramer-Shoup-style)

#### Full version on ePrint: https://ia.cr/2022/1437

#### Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

#### **Open problems**

- [CLT22] give a HSM-CL (threshold) variant for  $\mathbb{Z}_{2^k}.$  Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (~> Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437

# Thank you!

### References i

[BCIL22] C. Bouvier, G. Castagnos, L. Imbert, and F. Laguillaumie. <u>I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups.</u> Cryptology ePrint Archive, Report 2022/1466. https://eprint.iacr.org/2022/1466. 2022.

- [CCLST20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
   "Bandwidth-Efficient Threshold EC-DSA". In: PKC 2020, Part II. May 2020.
- [CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. **"Multiparty Computation from Threshold Homomorphic Encryption".** In: EUROCRYPT 2001. May 2001.
- [CGGI13] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. "Distributed ElGamal à la Pedersen: Application to Helios". In:

Workshop on Privacy in the Electronic Society – WPES 2013. Nov. 2013.

## References ii

- [CL15] G. Castagnos and F. Laguillaumie. "Linearly Homomorphic Encryption from DDH". In: CT-RSA 2015. Apr. 2015.
- [CL84] H. Cohen and H. W. Lenstra. "Heuristics on class groups of number fields". In: Number Theory Noordwijkerhout 1983. 1984.
- [CLT18] G. Castagnos, F. Laguillaumie, and I. Tucker. "Practical Fully Secure Unrestricted Inner Product Functional Encryption Modulo p". In: ASIACRYPT 2018, Part II. Dec. 2018.
- [CLT22]G. Castagnos, F. Laguillaumie, and I. Tucker. "Threshold LinearlyHomomorphic Encryption on Z/2<sup>k</sup>Z". In: ASIACRYPT 2022, Part II. Dec. 2022.
- [DF92]
   Y. Desmedt and Y. Frankel. "Shared Generation of Authenticators and Signatures (Extended Abstract)". In: <u>CRYPTO'91</u>. Aug. 1992.

## References iii

- [FGMY97] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. "Optimal Resilience Proactive Public-Key Cryptosystems". In: 38th FOCS. Oct. 1997.
- [Gen+21] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yakoubov. "YOSO: You Only Speak Once - Secure MPC with Stateless Ephemeral Roles". In: CRYPTO 2021, Part II. Aug. 2021.
- [GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. "Secure Distributed Key Generation for Discrete-Log Based Cryptosystems". In: Journal of Cryptology 1 (Jan. 2007).
- [Rab98] T. Rabin. "A Simplified Approach to Threshold and Proactive RSA". In: CRYPTO'98. Aug. 1998.

[SRMH21] O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein. "ETHTID: Deployable Threshold Information Disclosure on Ethereum". In: Conference on Blockchain Computing and Applications – BCCA 2021. Nov. 2021. Emoji graphics licensed under CC-BY 4.0:

https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other contributors