
Secure Multiparty Computation
from Threshold Encryption based on Class Groups

Lennart Braun, Ivan Damgård, and Claudio Orlandi

August 23, 2023 – Crypto’23

Aarhus University

1



Introduction and Preliminaries



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Secure Multiparty Computation

. . .

P1 P2

P3PN

x1 x2

x3xN

y = f (x1, . . . , xN)

Ff

x1 x2

x3xN

Πf

2



Threshold Encryption

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation and Decryption

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct

ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation and Decryption

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct

ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation and Decryption

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Threshold Encryption: Distributed Key Generation and Decryption

. . .

P1 P2

P3PN

ΠKeyGen

sk1 sk2

sk3skN

pk

ct ΠTDec

msg

3



Class Groups

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog

• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



//////Class/////////Groups The CL Framework for Groups of Unknown Order [CL15]

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

• pp← CLGen(1λ, q)
• 1λ computational security parameter
• q > 2λ prime

• Cyclic group G ≃ G q × F

• F = ⟨f ⟩ – subgroup of order q with easy DLog
• G q = ⟨g⟩ – subgroup of qth powers with unknown order

• Hardness assumptions
• ORD: hard to find the order of any h ∈ G \ F
• HSM: hard to distinguish random elements of G and G q

• Advantages
• can choose q freely as large prime
• transparent setup
• faster and smaller than Paillier (⇝ BICYCL by Bouvier et al. [BCIL22])

4



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1λ, q)

1. Output pp← CLGen(1λ, q)

KeyGen(pp)

1. Sample sk←R [0, 2large), set pk := g sk

2. Output (pk, sk)

Enc(pk,m ∈ Fq)

1. Sample r ←R [0, 2large)

2. Output ct := (g r , f m · pkr )

Dec(sk, ct)

1. Compute f m := ct2 · ct−sk
1

2. Output m

• IND-CPA secure by the HSM assumption
• Analogue of Camenisch-Shoup encryption for the CL framework

5



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1λ, q)

1. Output pp← CLGen(1λ, q)

KeyGen(pp)

1. Sample sk←R [0, 2large), set pk := g sk

2. Output (pk, sk)

Enc(pk,m ∈ Fq)

1. Sample r ←R [0, 2large)

2. Output ct := (g r , f m · pkr )

Dec(sk, ct)

1. Compute f m := ct2 · ct−sk
1

2. Output m

• IND-CPA secure by the HSM assumption
• Analogue of Camenisch-Shoup encryption for the CL framework

5



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1λ, q)

1. Output pp← CLGen(1λ, q)

KeyGen(pp)

1. Sample sk←R [0, 2large), set pk := g sk

2. Output (pk, sk)

Enc(pk,m ∈ Fq)

1. Sample r ←R [0, 2large)

2. Output ct := (g r , f m · pkr )

Dec(sk, ct)

1. Compute f m := ct2 · ct−sk
1

2. Output m

• IND-CPA secure by the HSM assumption
• Analogue of Camenisch-Shoup encryption for the CL framework

5



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1λ, q)

1. Output pp← CLGen(1λ, q)

KeyGen(pp)

1. Sample sk←R [0, 2large), set pk := g sk

2. Output (pk, sk)

Enc(pk,m ∈ Fq)

1. Sample r ←R [0, 2large)

2. Output ct := (g r , f m · pkr )

Dec(sk, ct)

1. Compute f m := ct2 · ct−sk
1

2. Output m

• IND-CPA secure by the HSM assumption
• Analogue of Camenisch-Shoup encryption for the CL framework

5



HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

Setup(1λ, q)

1. Output pp← CLGen(1λ, q)

KeyGen(pp)

1. Sample sk←R [0, 2large), set pk := g sk

2. Output (pk, sk)

Enc(pk,m ∈ Fq)

1. Sample r ←R [0, 2large)

2. Output ct := (g r , f m · pkr )

Dec(sk, ct)

1. Compute f m := ct2 · ct−sk
1

2. Output m

• IND-CPA secure by the HSM assumption
• Analogue of Camenisch-Shoup encryption for the CL framework

5



The CDN Paradigm for MPC [CDN01]

Ingredients

• Threshold Linearly Homomorphic Encryption

• ZK Proof of Plaintext Knowledge (PoPK)

• ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

• Input: encrypt input + PoPK

• Output: threshold decryption

• Linear operations: use homomorphic properties
• Multiplication ctz ← ctx · cty :

1. jointly sample mask ctd , JdK such that d ∈r Fq

2. create additive sharing JxK← JdK− TDec(ctx + ctd)
3. broadcast ctzi ← JxKi · cty with PoCM, and accumulate ctz ←

∑
i ctzi

6



The CDN Paradigm for MPC [CDN01]

Ingredients

• Threshold Linearly Homomorphic Encryption

• ZK Proof of Plaintext Knowledge (PoPK)

• ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

• Input: encrypt input + PoPK

• Output: threshold decryption

• Linear operations: use homomorphic properties

• Multiplication ctz ← ctx · cty :
1. jointly sample mask ctd , JdK such that d ∈r Fq

2. create additive sharing JxK← JdK− TDec(ctx + ctd)
3. broadcast ctzi ← JxKi · cty with PoCM, and accumulate ctz ←

∑
i ctzi

6



The CDN Paradigm for MPC [CDN01]

Ingredients

• Threshold Linearly Homomorphic Encryption

• ZK Proof of Plaintext Knowledge (PoPK)

• ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

• Input: encrypt input + PoPK

• Output: threshold decryption

• Linear operations: use homomorphic properties
• Multiplication ctz ← ctx · cty :

1. jointly sample mask ctd , JdK such that d ∈r Fq

2. create additive sharing JxK← JdK− TDec(ctx + ctd)
3. broadcast ctzi ← JxKi · cty with PoCM, and accumulate ctz ←

∑
i ctzi

6



Setting

Security model

• active security

• static corruptions

• honest majority (t < N/2)

• broadcast available

Goals

• guaranteed output delivery

• transparent setup

7



Zero-Knowledge



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

unknown order!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

unknown order!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions

• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

unknown order!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications

• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

unknown order!

8



Example: Schnorr Proof over Z – RDLog := {h; x | h = g x}

Prover Verifier

r ∈R [A], t := g r t

k ∈R [C ]

u ← r + k · x ∈ Z u Check: gu ?
= t · hk

Knowledge Soundness: Extract from accepting (t, k , u), (t, k ′, u′) with k ̸= k ′:

x = (u − u′) · (k − k ′)
−1

(mod ord(g))

Over the integers?

• Binary challenges ⇝ repetitions
• Strong Root / Low Order assumptions ⇝ additional setup and complications
• Sometimes normal, set-membership soundness (∃x . h = g x) is enough!

unknown order!

8



New Assumption

Definition (C -Rough Order Assumption (informal))
Let C ∈ N. The following are computationally indistinguishable:

1. class groups generated by CLGen

2. class groups generated by CLGen with a C -rough order (ord(G ) has no divisors < C )

How does it help?

• C -rough order =⇒ all x ∈ [1,C ) are invertible modulo ord(G )

=⇒ (k − k ′)−1 exists =⇒ witness exists

Justified?

• Cohen-Lenstra heuristic [CL84]⇝ class group orders roughly “behave like random integers”
=⇒ there are significantly many C -rough-order class groups

• Efficient distinguisher would be great!

9



New Assumption

Definition (C -Rough Order Assumption (informal))
Let C ∈ N. The following are computationally indistinguishable:

1. class groups generated by CLGen

2. class groups generated by CLGen with a C -rough order (ord(G ) has no divisors < C )

How does it help?

• C -rough order =⇒ all x ∈ [1,C ) are invertible modulo ord(G )

=⇒ (k − k ′)−1 exists =⇒ witness exists

Justified?

• Cohen-Lenstra heuristic [CL84]⇝ class group orders roughly “behave like random integers”
=⇒ there are significantly many C -rough-order class groups

• Efficient distinguisher would be great!

9



New Assumption

Definition (C -Rough Order Assumption (informal))
Let C ∈ N. The following are computationally indistinguishable:

1. class groups generated by CLGen

2. class groups generated by CLGen with a C -rough order (ord(G ) has no divisors < C )

How does it help?

• C -rough order =⇒ all x ∈ [1,C ) are invertible modulo ord(G )

=⇒ (k − k ′)−1 exists =⇒ witness exists

Justified?

• Cohen-Lenstra heuristic [CL84]⇝ class group orders roughly “behave like random integers”
=⇒ there are significantly many C -rough-order class groups

• Efficient distinguisher would be great!

9



New Assumption

Definition (C -Rough Order Assumption (informal))
Let C ∈ N. The following are computationally indistinguishable:

1. class groups generated by CLGen

2. class groups generated by CLGen with a C -rough order (ord(G ) has no divisors < C )

How does it help?

• C -rough order =⇒ all x ∈ [1,C ) are invertible modulo ord(G )

=⇒ (k − k ′)−1 exists =⇒ witness exists

Justified?

• Cohen-Lenstra heuristic [CL84]⇝ class group orders roughly “behave like random integers”
=⇒ there are significantly many C -rough-order class groups

• Efficient distinguisher would be great!

9



New Assumption

Definition (C -Rough Order Assumption (informal))
Let C ∈ N. The following are computationally indistinguishable:

1. class groups generated by CLGen

2. class groups generated by CLGen with a C -rough order (ord(G ) has no divisors < C )

How does it help?

• C -rough order =⇒ all x ∈ [1,C ) are invertible modulo ord(G )

=⇒ (k − k ′)−1 exists =⇒ witness exists

Justified?

• Cohen-Lenstra heuristic [CL84]⇝ class group orders roughly “behave like random integers”
=⇒ there are significantly many C -rough-order class groups

• Efficient distinguisher would be great!

9



Building Threshold Encryption



Our Goal: FTE Ideal Functionality

FTE

Key Generation

• Run (pk, sk)← KeyGen(pp)

• Output pk to all parties and store sk

Threshold Decryption

• On input ct = (ct1, ct2) from at least t + 1 parties, compute M := ct2 · ct−sk
1

• Output m := logf (M) to all parties

10



Our Goal: FTE Ideal Functionality

FTE

Key Generation

• Run (pk, sk)← KeyGen(pp)

• Output pk to all parties and store sk

Threshold Decryption

• On input ct = (ct1, ct2) from at least t + 1 parties, compute M := ct2 · ct−sk
1

• Output m := logf (M) to all parties

10



Our Goal: FTE Ideal Functionality

FTE

Key Generation

• Run (pk, sk)← KeyGen(pp)

• Output pk to all parties and store sk

Threshold Decryption

• On input ct = (ct1, ct2) from at least t + 1 parties, compute M := ct2 · ct−sk
1

• Output m := logf (M) to all parties

10



Our Goal: FTE Ideal Functionality

FTE

Key Generation

• Run (pk, sk)← KeyGen(pp)

• Output pk to all parties and store sk

Threshold Decryption

• On input ct = (ct1, ct2) from at least t + 1 parties, compute M := ct2 · ct−sk
1

• Output m := logf (M) to all parties

=⇒ (t,N)-threshold
secret sharing

10



Our Goal: FTE Ideal Functionality

FTE

Key Generation

• Run (pk, sk)← KeyGen(pp)

• Output pk to all parties and store sk

Threshold Decryption

• On input ct = (ct1, ct2) from at least t + 1 parties, compute M := ct2 · ct−sk
1

• Output m := logf (M) to all parties

=⇒ (t,N)-threshold
secret sharing

reconstruction in the exponent
of unknown order group element

10



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩

1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q
3. Define public key pk :=

∏
Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

11



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩

1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q

3. Define public key pk :=
∏

Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

11



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩

1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q

3. Define public key pk :=
∏

Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

11



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi +
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]
12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi +
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

f (j) mod j leaks αi mod j

12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi +
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

f (j) mod j leaks αi mod j

Define ∆ := N!

12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi ·∆+
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

f (j) mod j leaks αi mod j

Define ∆ := N!

share αi ·∆ instead

12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi ·∆+
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

Define ∆ := N!

12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi ·∆+
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi

·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

Define ∆ := N!

unknown group order =⇒
cannot divide in the exponent

12



Shamir’s Secret Sharing over Z

Sharing

Just do it over the integers: To share αi ∈ [0, 2ℓ),

• sample random f (X ) := αi ·∆+
∑t

k=1 rk · X k with large enough rk
• give yj := f (j) to Pj

Reconstruction (in the Exponent)

Lagrange interpolation: Given ≥ t + 1 shares (xj = j , yj = f (j)), compute

f (X ) =
∑
i

yi ·
∏
j ̸=i

xj − X

xj − xi
·∆

=⇒ See 90’s papers for threshold RSA [DF92; FGMY97; Rab98]

Define ∆ := N!

unknown group order =⇒
cannot divide in the exponent

multiply by ∆,
reconstruct αi ·∆2

12



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩

1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q

3. Define public key pk :=
∏

Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

13



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩
1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q

3. Define public key pk :=
∏

Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

13



Feldman’s Verifiable Secret Sharing over Z

Goal: Shares of αi consistent with each other and gαi

Recall: Sharing polynomial f (X ) := αi ·∆+
∑t

k=1 rk · X k and shares (xj = j , yj = f (j))

F-Share:

• additionally publish C0 := gαi and Ck := g∆·rk for k ∈ [1, t]
• prove that Ck ∈ ⟨g⟩

F-Check: Pj ̸= Pi checks

g∆·yj ?
= C∆2

0 ·
t∏

k=1

(Ck)
(jk ) = g∆2·αi+

∑t
k=1 ∆·rk ·jk

ORD Assumption ∧ gcd(ord(g),∆) = 1 ∧ PoK for C0 = gαi =⇒ Integer VSS

• Issues with Rabin’s VSS [Rab98]: Does not use ORD

=⇒ Corrupt dealer knowing ord(g) can prevent reconstruction

14



Feldman’s Verifiable Secret Sharing over Z

Goal: Shares of αi consistent with each other and gαi

Recall: Sharing polynomial f (X ) := αi ·∆+
∑t

k=1 rk · X k and shares (xj = j , yj = f (j))

F-Share:

• additionally publish C0 := gαi and Ck := g∆·rk for k ∈ [1, t]
• prove that Ck ∈ ⟨g⟩

F-Check: Pj ̸= Pi checks

g∆·yj ?
= C∆2

0 ·
t∏

k=1

(Ck)
(jk ) = g∆2·αi+

∑t
k=1 ∆·rk ·jk

ORD Assumption ∧ gcd(ord(g),∆) = 1 ∧ PoK for C0 = gαi =⇒ Integer VSS

• Issues with Rabin’s VSS [Rab98]: Does not use ORD

=⇒ Corrupt dealer knowing ord(g) can prevent reconstruction

commit to coefficients of f

14



Feldman’s Verifiable Secret Sharing over Z

Goal: Shares of αi consistent with each other and gαi

Recall: Sharing polynomial f (X ) := αi ·∆+
∑t

k=1 rk · X k and shares (xj = j , yj = f (j))

F-Share:

• additionally publish C0 := gαi and Ck := g∆·rk for k ∈ [1, t]
• prove that Ck ∈ ⟨g⟩

F-Check: Pj ̸= Pi checks

g∆·yj ?
= C∆2

0 ·
t∏

k=1

(Ck)
(jk ) = g

︷ ︸︸ ︷
∆2·αi+

∑t
k=1 ∆·rk ·jk

ORD Assumption ∧ gcd(ord(g),∆) = 1 ∧ PoK for C0 = gαi =⇒ Integer VSS

• Issues with Rabin’s VSS [Rab98]: Does not use ORD

=⇒ Corrupt dealer knowing ord(g) can prevent reconstruction

evaluate ∆ · f (j) in the exponent

14



Feldman’s Verifiable Secret Sharing over Z

Goal: Shares of αi consistent with each other and gαi

Recall: Sharing polynomial f (X ) := αi ·∆+
∑t

k=1 rk · X k and shares (xj = j , yj = f (j))

F-Share:

• additionally publish C0 := gαi and Ck := g∆·rk for k ∈ [1, t]
• prove that Ck ∈ ⟨g⟩

F-Check: Pj ̸= Pi checks

g∆·yj ?
= C∆2

0 ·
t∏

k=1

(Ck)
(jk ) = g∆2·αi+

∑t
k=1 ∆·rk ·jk

ORD Assumption ∧ gcd(ord(g),∆) = 1 ∧ PoK for C0 = gαi =⇒ Integer VSS

• Issues with Rabin’s VSS [Rab98]: Does not use ORD

=⇒ Corrupt dealer knowing ord(g) can prevent reconstruction

14



Feldman’s Verifiable Secret Sharing over Z

Goal: Shares of αi consistent with each other and gαi

Recall: Sharing polynomial f (X ) := αi ·∆+
∑t

k=1 rk · X k and shares (xj = j , yj = f (j))

F-Share:

• additionally publish C0 := gαi and Ck := g∆·rk for k ∈ [1, t]
• prove that Ck ∈ ⟨g⟩

F-Check: Pj ̸= Pi checks

g∆·yj ?
= C∆2

0 ·
t∏

k=1

(Ck)
(jk ) = g∆2·αi+

∑t
k=1 ∆·rk ·jk

ORD Assumption ∧ gcd(ord(g),∆) = 1 ∧ PoK for C0 = gαi =⇒ Integer VSS

• Issues with Rabin’s VSS [Rab98]: Does not use ORD

=⇒ Corrupt dealer knowing ord(g) can prevent reconstruction
14



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩
1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q

3. Define public key pk :=
∏

Pi
gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi
⟨αi ⟩

15



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩
1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q
3. Define public key pk :=

∏
Pi∈Q gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi∈Q⟨αi ⟩

15



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩
1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q
3. Define public key pk :=

∏
Pi∈Q gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi∈Q⟨αi ⟩

15



Pedersen-style Distributed Key Generation

1. All parties Pi

1.1 sample contribution αi

1.2 publish gαi

1.3 share αi → ⟨αi ⟩
1.4 prove consistency

2. Disqualify misbehaving parties ⇝ set of ≥ t + 1 remaining parties Q
3. Define public key pk :=

∏
Pi∈Q gαi

4. Have shared secret key ⟨sk⟩ :=
∑

Pi∈Q⟨αi ⟩
A can bias distribution of pk!

(Gennaro et al. [GJKR07])

15



Fixing the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



///////Fixing Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

• needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

BiasedKeyGenA

1. (pk∗, sk∗)← KeyGen

2. δ ← A(pk∗)

3. Output sk := sk∗ + δ ,

pk := g sk = pk∗ · g δ

IND-CPA by reduction of unbiased encryption:

1. given encryption under (unbiased) pk∗

ct := (g r , (pk∗)r · f m)

2. compute encryption under (biased) pk

ct′ := (g r , ((pk∗)r · f m) · (g r ) δ )

= (g r , (pk)r · f m)

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21]. 16



YOSO



YOSO MPC – You Only Speak Once

YOSO???

• large scale MPC for many parties

• work done by many small committees

• mechanism for passing secrets to future committees without knowing them

• each party sends only one round of messages

Why is our work YOSO-friendly?

• transparent setup! – open problem in previous work [Gen+21]

• simple one-round distributed key generation and decryption protocols

• small secret state: only shared sk needs to be passed between the committees

17



YOSO MPC – You Only Speak Once

YOSO???

• large scale MPC for many parties

• work done by many small committees

• mechanism for passing secrets to future committees without knowing them

• each party sends only one round of messages

Why is our work YOSO-friendly?

• transparent setup! – open problem in previous work [Gen+21]

• simple one-round distributed key generation and decryption protocols

• small secret state: only shared sk needs to be passed between the committees

17



Summary



Summary

Contributions

• First actively-secure threshold version of the HSM-CL cryptosystem

• UC-secure MPC using the CDN paradigm

• New zero-knowledge protocols for multiplicative relations of encrypted values

• Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

• [CLT22] give a HSM-CL (threshold) variant for Z2k . Can we adapt our techniques?

• Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(⇝ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437 Thank you!

18

https://ia.cr/2022/1437


Summary

Contributions

• First actively-secure threshold version of the HSM-CL cryptosystem

• UC-secure MPC using the CDN paradigm

• New zero-knowledge protocols for multiplicative relations of encrypted values

• Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

• [CLT22] give a HSM-CL (threshold) variant for Z2k . Can we adapt our techniques?

• Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(⇝ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437 Thank you!

18

https://ia.cr/2022/1437


Summary

Contributions

• First actively-secure threshold version of the HSM-CL cryptosystem

• UC-secure MPC using the CDN paradigm

• New zero-knowledge protocols for multiplicative relations of encrypted values

• Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

• [CLT22] give a HSM-CL (threshold) variant for Z2k . Can we adapt our techniques?

• Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(⇝ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437

Thank you!

18

https://ia.cr/2022/1437


Summary

Contributions

• First actively-secure threshold version of the HSM-CL cryptosystem

• UC-secure MPC using the CDN paradigm

• New zero-knowledge protocols for multiplicative relations of encrypted values

• Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

• [CLT22] give a HSM-CL (threshold) variant for Z2k . Can we adapt our techniques?

• Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle?
(⇝ Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437 Thank you!
18

https://ia.cr/2022/1437


References i

[BCIL22] C. Bouvier, G. Castagnos, L. Imbert, and F. Laguillaumie.
I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups.
Cryptology ePrint Archive, Report 2022/1466. https://eprint.iacr.org/2022/1466.
2022.

[CCLST20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
“Bandwidth-Efficient Threshold EC-DSA”. In: PKC 2020, Part II. May 2020.

[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. “Multiparty Computation from
Threshold Homomorphic Encryption”. In: EUROCRYPT 2001. May 2001.

[CGGI13] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. “Distributed ElGamal à
la Pedersen: Application to Helios”. In:
Workshop on Privacy in the Electronic Society – WPES 2013. Nov. 2013.

19

https://eprint.iacr.org/2022/1466


References ii

[CL15] G. Castagnos and F. Laguillaumie. “Linearly Homomorphic Encryption from
DDH”. In: CT-RSA 2015. Apr. 2015.

[CL84] H. Cohen and H. W. Lenstra. “Heuristics on class groups of number fields”.
In: Number Theory Noordwijkerhout 1983. 1984.

[CLT18] G. Castagnos, F. Laguillaumie, and I. Tucker. “Practical Fully Secure
Unrestricted Inner Product Functional Encryption Modulo p”. In:
ASIACRYPT 2018, Part II. Dec. 2018.

[CLT22] G. Castagnos, F. Laguillaumie, and I. Tucker. “Threshold Linearly
Homomorphic Encryption on Z/2kZ”. In: ASIACRYPT 2022, Part II. Dec. 2022.

[DF92] Y. Desmedt and Y. Frankel. “Shared Generation of Authenticators and
Signatures (Extended Abstract)”. In: CRYPTO’91. Aug. 1992.

20



References iii

[FGMY97] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. “Optimal Resilience
Proactive Public-Key Cryptosystems”. In: 38th FOCS. Oct. 1997.

[Gen+21] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and
S. Yakoubov. “YOSO: You Only Speak Once - Secure MPC with Stateless
Ephemeral Roles”. In: CRYPTO 2021, Part II. Aug. 2021.

[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”. In: Journal of Cryptology 1
(Jan. 2007).

[Rab98] T. Rabin. “A Simplified Approach to Threshold and Proactive RSA”. In:
CRYPTO’98. Aug. 1998.

[SRMH21] O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein. “ETHTID:
Deployable Threshold Information Disclosure on Ethereum”. In:
Conference on Blockchain Computing and Applications – BCCA 2021. Nov. 2021.

21



References iv

Emoji graphics licensed under CC-BY 4.0:
https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other
contributors

22

https://creativecommons.org/licenses/by/4.0/

	Introduction and Preliminaries
	Zero-Knowledge
	Building Threshold Encryption
	YOSO
	Summary

