Secure Multiparty Computation from Threshold Encryption based on Class Groups

Lennart Braun, Ivan Damgård, and Claudio Orlandi
August 23, 2023 - Crypto'23
Aarhus University

AARHUS UNIVERSITY

Introduction and Preliminaries

Secure Multiparty Computation

Secure Multiparty Computation

-••

Secure Multiparty Computation

-••

$$
y=f\left(x_{1}, \ldots, x_{N}\right)
$$

Secure Multiparty Computation

Threshold Encryption

Threshold Encryption: Distributed Key Generation

Threshold Encryption: Distributed Key Generation

Threshold Encryption: Distributed Key Generation

...

Threshold Encryption: Distributed Key Generation and Decryption

...

ct

Threshold Encryption: Distributed Key Generation and Decryption

Threshold Encryption: Distributed Key Generation and Decryption

Threshold Encryption: Distributed Key Generation and Decryption

Cláss/Groupps The CL Framework for Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime
- Cyclic group $G \simeq G^{q} \times F$

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime
- Cyclic group $G \simeq G^{q} \times F$
- $F=\langle f\rangle$ - subgroup of order q with easy DLog

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime
- Cyclic group $G \simeq G^{q} \times F$
- $F=\langle f\rangle$ - subgroup of order q with easy DLog
- $G^{q}=\langle g\rangle$ - subgroup of q th powers with unknown order

Clas\$/Groups The CL Framework for Groups of Unknown Order

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime
- Cyclic group $G \simeq G^{q} \times F$
- $F=\langle f\rangle$ - subgroup of order q with easy DLog
- $G^{q}=\langle g\rangle$ - subgroup of q th powers with unknown order
- Hardness assumptions
- ORD: hard to find the order of any $h \in G \backslash F$
- HSM: hard to distinguish random elements of G and G^{q}

Following Castagnos and Laguillaumie ([CL15] and follow-up works)

- $\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)$
- 1^{λ} computational security parameter
- $q>2^{\lambda}$ prime
- Cyclic group $G \simeq G^{q} \times F$
- $F=\langle f\rangle$ - subgroup of order q with easy DLog
- $G^{q}=\langle g\rangle$ - subgroup of q th powers with unknown order
- Hardness assumptions
- ORD: hard to find the order of any $h \in G \backslash F$
- HSM: hard to distinguish random elements of G and G^{q}
- Advantages
- can choose q freely as large prime
- transparent setup
- faster and smaller than Paillier (\rightsquigarrow BICYCL by Bouvier et al. [BCIL22])

HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

$$
\frac{\operatorname{Setup}\left(1^{\lambda}, q\right)}{\text { 1. Output } \mathrm{pp}} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)
$$

```
Setup(1\lambda,q)
    1. Output pp }\leftarrow\operatorname{CLGen}(\mp@subsup{1}{}{\lambda},q
KeyGen(pp)
    1. Sample sk }\mp@subsup{\leftarrow}{R}{}[0,\mp@subsup{2}{}{\mathrm{ large }})\mathrm{ , set pk := gsk
    2. Output (pk, sk)
```


HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

$$
\frac{\operatorname{Setup}\left(1^{\lambda}, q\right)}{\text { 1. Output } \mathrm{pp}} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)
$$

KeyGen(pp)

1. Sample sk $\leftarrow_{R}\left[0,2^{\text {large }}\right)$, set $\mathrm{pk}:=g^{\text {sk }}$
2. Output (pk, sk)

$$
\begin{aligned}
& \frac{\text { Enc }\left(\mathrm{pk}, m \in \mathbb{F}_{q}\right)}{\text { 1. Sample } r \leftarrow_{R}\left[0,2^{\text {large }}\right)} \\
& \text { 2. Output ct }:=\left(g^{r}, f^{m} \cdot \mathrm{pk}^{r}\right)
\end{aligned}
$$

HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

$$
\frac{\operatorname{Setup}\left(1^{\lambda}, q\right)}{\text { 1. Output } \mathrm{pp}} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)
$$

KeyGen(pp)

1. Sample sk $\leftarrow_{R}\left[0,2^{\text {large }}\right)$, set $\mathrm{pk}:=g^{\text {sk }}$
2. Output (pk, sk)
$\operatorname{Enc}\left(\mathrm{pk}, m \in \mathbb{F}_{q}\right)$
3. Sample $r \leftarrow_{R}\left[0,2^{\text {large }}\right)$
4. Output ct $:=\left(g^{r}, f^{m} \cdot \mathrm{pk}^{r}\right)$

Dec(sk, ct)

1. Compute $f^{m}:=\mathrm{ct}_{2} \cdot \mathrm{ct}_{1}^{-\mathrm{sk}}$
2. Output m

HSM-CL Linearly Homomorphic Encryption [CLT18; CCLST20]

```
\(\operatorname{Setup}\left(1^{\lambda}, q\right)\)
1. Output \(\mathrm{pp} \leftarrow \operatorname{CLGen}\left(1^{\lambda}, q\right)\)
```

$$
\begin{aligned}
& \frac{\text { Enc }\left(\mathrm{pk}, m \in \mathbb{F}_{q}\right)}{\text { 1. Sample } r \leftarrow_{R}\left[0,2^{\text {large }}\right)} \\
& \text { 2. Output ct }:=\left(g^{r}, f^{m} \cdot \mathrm{pk}^{r}\right)
\end{aligned}
$$

KeyGen(pp)

1. Sample sk $\leftarrow_{R}\left[0,2^{\text {large }}\right)$, set $\mathrm{pk}:=g^{\text {sk }}$
2. Output (pk, sk)

- IND-CPA secure by the HSM assumption
- Analogue of Camenisch-Shoup encryption for the CL framework

The CDN Paradigm for MPC [CDN01]

Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

The CDN Paradigm for MPC [CDN01]

Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

- Input: encrypt input + PoPK
- Output: threshold decryption
- Linear operations: use homomorphic properties

The CDN Paradigm for MPC [CDN01]

Ingredients

- Threshold Linearly Homomorphic Encryption
- ZK Proof of Plaintext Knowledge (PoPK)
- ZK Proof of Correct Multiplication (PoCM)

Highlevel Overview

- Input: encrypt input + PoPK
- Output: threshold decryption
- Linear operations: use homomorphic properties
- Multiplication $\mathrm{ct}_{z} \leftarrow \mathrm{ct}_{x} \cdot \mathrm{ct}_{y}$:

1. jointly sample mask $\mathrm{ct}_{d}, \llbracket d \rrbracket$ such that $d \in_{r} \mathbb{F}_{q}$
2. create additive sharing $\llbracket x \rrbracket \leftarrow \llbracket d \rrbracket-\operatorname{TDec}\left(\mathrm{ct}_{x}+\mathrm{ct}_{d}\right)$
3. broadcast $\mathrm{ct}_{z_{i}} \leftarrow \llbracket x \rrbracket_{i} \cdot \mathrm{ct}_{y}$ with PoCM, and accumulate $\mathrm{ct}_{z} \leftarrow \sum_{i} \mathrm{ct}_{z_{i}}$

Setting

Security model

- active security
- static corruptions
- honest majority $(t<N / 2)$
- broadcast available

Goals

- guaranteed output delivery
- transparent setup

Zero-Knowledge

Example: Schnorr Proof over $\mathbb{Z}-\mathrm{R}_{\mathrm{DLog}}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover	Verifier

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r} \quad t$		

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
	$k \in_{R}[C]$ 	

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

$$
\begin{array}{lll}
\hline \text { Prover } & & \text { Verifier } \\
r \in_{R}[A], t:=g^{r} \xrightarrow{\longleftrightarrow} \quad t & \\
u \leftarrow r+k \cdot x \in \mathbb{Z} & \text { Check: } g^{u} \stackrel{?}{=} t \cdot h^{k}
\end{array}
$$

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
	$k \in_{R}[C]$	
$u \leftarrow r+k \cdot x \in \mathbb{Z}$	u	Check: $g^{u} \stackrel{?}{=} t \cdot h^{k}$

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
	$k \in_{R}[C]$	
$u \leftarrow r+k \cdot x \in \mathbb{Z}$	u	Check: $g^{u} \stackrel{?}{=} t \cdot h^{k}$

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Over the integers?

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
	$k \in_{R}[C]$	
$u \leftarrow r+k \cdot x \in \mathbb{Z}$	u	Check: $g^{u} \stackrel{?}{=} t \cdot h^{k}$

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Over the integers?

- Binary challenges \rightsquigarrow repetitions

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
	$k \in_{R}[C]$	
$u \leftarrow r+k \cdot x \in \mathbb{Z}$	u	Check: $g^{u} \stackrel{?}{=} t \cdot h^{k}$

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Over the integers?

- Binary challenges \rightsquigarrow repetitions
- Strong Root / Low Order assumptions \rightsquigarrow additional setup and complications

Example: Schnorr Proof over $\mathbb{Z}-R_{\text {DLog }}:=\left\{h ; x \mid h=g^{\star}\right\}$

Prover		Verifier
$r \in_{R}[A], t:=g^{r}$	t	
$u \leftarrow r+k \cdot x \in \mathbb{Z} \xrightarrow{\longleftrightarrow} \xrightarrow{u \in_{R}[C]}$	Check: $g^{u} \stackrel{?}{=} t \cdot h^{k}$	

Knowledge Soundness: Extract from accepting $(t, k, u),\left(t, k^{\prime}, u^{\prime}\right)$ with $k \neq k^{\prime}$:

$$
x=\left(u-u^{\prime}\right) \cdot\left(k-k^{\prime}\right)^{-1}(\bmod \operatorname{ord}(g))
$$

Over the integers?

- Binary challenges \rightsquigarrow repetitions
- Strong Root / Low Order assumptions \rightsquigarrow additional setup and complications
- Sometimes normal, set-membership soundness $\left(\exists x . h=g^{\times}\right)$is enough!

New Assumption

Definition (C-Rough Order Assumption (informal))

Let $C \in \mathbb{N}$. The following are computationally indistinguishable:

New Assumption

Definition (C-Rough Order Assumption (informal))

Let $C \in \mathbb{N}$. The following are computationally indistinguishable:

1. class groups generated by CLGen

New Assumption

Definition (C-Rough Order Assumption (informal))

Let $C \in \mathbb{N}$. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough $\operatorname{order}(\operatorname{ord}(G)$ has no divisors $<C)$

New Assumption

Definition (C-Rough Order Assumption (informal))

Let $C \in \mathbb{N}$. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough $\operatorname{order}(\operatorname{ord}(G)$ has no divisors $<C)$

How does it help?

- C-rough order \Longrightarrow all $x \in[1, C)$ are invertible modulo $\operatorname{ord}(G)$
$\Longrightarrow\left(k-k^{\prime}\right)^{-1}$ exists \Longrightarrow witness exists

New Assumption

Definition (C-Rough Order Assumption (informal))

Let $C \in \mathbb{N}$. The following are computationally indistinguishable:

1. class groups generated by CLGen
2. class groups generated by CLGen with a C-rough $\operatorname{order}(\operatorname{ord}(G)$ has no divisors $<C)$

How does it help?

- C-rough order \Longrightarrow all $x \in[1, C)$ are invertible modulo $\operatorname{ord}(G)$
$\Longrightarrow\left(k-k^{\prime}\right)^{-1}$ exists \Longrightarrow witness exists
Justified?
- Cohen-Lenstra heuristic [CL84] \rightsquigarrow class group orders roughly "behave like random integers" \Longrightarrow there are significantly many C-rough-order class groups
- Efficient distinguisher would be great!

Building Threshold Encryption

Our Goal: $\mathcal{F}_{\mathrm{TE}}$ Ideal Functionality

$\mathcal{F}_{\text {TE }}$

Key Generation

- Run (pk, sk) \leftarrow KeyGen(pp)
- Output pk to all parties and store sk

Our Goal: $\mathcal{F}_{\mathrm{TE}}$ Ideal Functionality

$\mathcal{F}_{\text {TE }}$

Key Generation

- Run (pk, sk) \leftarrow KeyGen(pp)
- Output pk to all parties and store sk

Threshold Decryption

- On input $\mathrm{ct}=\left(\mathrm{ct}_{1}, \mathrm{ct}_{2}\right)$ from at least $t+1$ parties, compute $M:=\mathrm{ct}_{2} \cdot \mathrm{ct}_{1}^{-\mathrm{sk}}$
- Output $m:=\log _{f}(M)$ to all parties

Our Goal: $\mathcal{F}_{\mathrm{TE}}$ Ideal Functionality

$\mathcal{F}_{\text {TE }}$

Key Generation

- Run (pk, sk) $\leftarrow \operatorname{KeyGen}(\mathrm{pp})$
- Output pk to all parties and store sk

Threshold Decryption

- On input $\mathrm{ct}=\left(\mathrm{ct}_{1}, \mathrm{ct}_{2}\right)$ from at least $t+1$ parties, compute $M:=\mathrm{ct}_{2} \cdot \mathrm{ct}_{1}^{-\mathrm{sk}}$
- Output $m:=\log _{f}(M)$ to all parties

Our Goal: $\mathcal{F}_{\mathrm{TE}}$ Ideal Functionality

$\mathcal{F}_{\text {TE }}$

Key Generation

- Run (pk, sk) \leftarrow KeyGen(pp)
- Output pk to all parties and store sk

Threshold Decryption

- On input ct $=\left(\mathrm{ct}_{1}, \mathrm{ct}_{2}\right)$ from at least $t+1$ parties, compute $M:=\mathrm{ct}_{2} \cdot \mathrm{ct}_{1}^{-s k}$
- Output $m:=\log _{f}(M)$ to all parties

Our Goal: $\mathcal{F}_{\mathrm{TE}}$ Ideal Functionality

$\mathcal{F}_{\text {TE }}$

Key Generation

- Run (pk, sk) \leftarrow KeyGen(pp)
- Output pk to all parties and store sk

Threshold Decryption

- On input $\mathrm{ct}=\left(\mathrm{ct}_{1}, \mathrm{ct}_{2}\right)$ from at least $t+1$ parties, compute $M:=\mathrm{ct}_{2} \cdot \mathrm{ct}_{1}^{- \text {-sk }}$
- Output $m:=\log _{f}(M)$ to all parties

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
2. Define public key pk $:=\prod_{p_{i}} g^{\alpha_{i}}$
3. Have shared secret key \langle sk $\rangle:=\sum_{P_{i}}\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
2. Define public key pk $:=\prod_{p_{i}} g^{\alpha_{i}}$
3. Have shared secret key \langle sk $\rangle:=\sum_{P_{i}}\left\langle\alpha_{i}\right\rangle$

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i}+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}
\Longrightarrow See 90 's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i}+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}
! $f(j) \bmod j$ leaks $\alpha_{i} \bmod j$
\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i}+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}
! $f(j) \bmod j$ leaks $\alpha_{i} \bmod j$
\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}

\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}

Reconstruction (in the Exponent)
Lagrange interpolation: Given $\geq t+1$ shares $\left(x_{j}=j, y_{j}=f(j)\right)$, compute

$$
f(X)=\sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{x_{j}-X}{x_{j}-x_{i}}
$$

\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}

Reconstruction (in the Exponent)

Lagrange interpolation: Given $\geq t+1$ shares $\left(x_{j}=j, y_{j}=f(j)\right)$, compute

$$
f(X)=\sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{x_{j}-X}{x_{j}-x_{i}}
$$

unknown group order \Longrightarrow
cannot divide in the exponent
\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Shamir's Secret Sharing over \mathbb{Z}

Sharing

Just do it over the integers: To share $\alpha_{i} \in\left[0,2^{\ell}\right)$,

- sample random $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ with large enough r_{k}
- give $y_{j}:=f(j)$ to P_{j}

Reconstruction (in the Exponent)

Lagrange interpolation: Given $\geq t+1$ shares $\left(x_{j}=j, y_{j}=f(j)\right)$, compute

$$
f(X)=\sum_{i} y_{i} \cdot \prod_{j \neq i} \frac{x_{j}-X}{x_{j}-x_{i}} \cdot \Delta
$$

unknown group order \Longrightarrow
cannot divide in the exponent
\Longrightarrow See 90's papers for threshold RSA [DF92; FGMY97; Rab98]

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
2. Define public key pk $:=\prod_{p_{i}} g^{\alpha_{i}}$
3. Have shared secret key \langle sk $\rangle:=\sum_{P_{i}}\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
1.4 prove consistency
2. Define public key pk $:=\prod_{p_{i}} g^{\alpha_{i}}$
3. Have shared secret key \langle sk $\rangle:=\sum_{P_{i}}\left\langle\alpha_{i}\right\rangle$

Feldman's Verifiable Secret Sharing over \mathbb{Z}

Goal: Shares of α_{i} consistent with each other and $g^{\alpha_{i}}$
Recall: Sharing polynomial $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ and shares $\left(x_{j}=j, y_{j}=f(j)\right)$

Feldman's Verifiable Secret Sharing over \mathbb{Z}

Goal: Shares of α_{i} consistent with each other and $g^{\alpha_{i}}$
Recall: Sharing polynomial $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ and shares $\left(x_{j}=j, y_{j}=f(j)\right)$ F-Share:

- additionally publish $C_{0}:=g^{\alpha_{i}}$ and $C_{k}:=g^{\Delta \cdot r_{k}}$ for $k \in[1, t]$
- prove that $C_{k} \in\langle g\rangle$

Feldman's Verifiable Secret Sharing over \mathbb{Z}

Goal: Shares of α_{i} consistent with each other and $g^{\alpha_{i}}$
Recall: Sharing polynomial $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ and shares $\left(x_{j}=j, y_{j}=f(j)\right)$ F-Share:

- additionally publish $C_{0}:=g^{\alpha_{i}}$ and $C_{k}:=g^{\Delta \cdot r_{k}}$ for $k \in[1, t]$
- prove that $C_{k} \in\langle g\rangle$

F-Check: $P_{j} \neq P_{i}$ checks

```
                evaluate }\Delta\cdotf(j)\mathrm{ in the exponent
```

$$
g^{\Delta \cdot y_{j}} \stackrel{?}{=} C_{0}^{\Delta^{2}} \cdot \prod_{k=1}^{t}\left(C_{k}\right)^{\left(j^{k}\right)}=g_{\Delta^{\Delta^{2} \cdot \alpha_{i}+\sum_{k=1}^{t} \Delta \cdot r_{k} \cdot j^{k}}}
$$

Feldman's Verifiable Secret Sharing over \mathbb{Z}

Goal: Shares of α_{i} consistent with each other and $g^{\alpha_{i}}$
Recall: Sharing polynomial $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ and shares $\left(x_{j}=j, y_{j}=f(j)\right)$
F-Share:

- additionally publish $C_{0}:=g^{\alpha_{i}}$ and $C_{k}:=g^{\Delta \cdot r_{k}}$ for $k \in[1, t]$
- prove that $C_{k} \in\langle g\rangle$

F-Check: $P_{j} \neq P_{i}$ checks

$$
g^{\Delta \cdot y_{j}} \stackrel{?}{=} C_{0}^{\Delta^{2}} \cdot \prod_{k=1}^{t}\left(C_{k}\right)^{\left(j^{k}\right)}=g^{\Delta^{2} \cdot \alpha_{i}+\sum_{k=1}^{t} \Delta \cdot r_{k} \cdot j^{k}}
$$

ORD Assumption $\wedge \operatorname{gcd}(\operatorname{ord}(g), \Delta)=1 \wedge$ PoK for $C_{0}=g^{\alpha_{i}} \Longrightarrow$ Integer VSS

Feldman's Verifiable Secret Sharing over \mathbb{Z}

Goal: Shares of α_{i} consistent with each other and $g^{\alpha_{i}}$
Recall: Sharing polynomial $f(X):=\alpha_{i} \cdot \Delta+\sum_{k=1}^{t} r_{k} \cdot X^{k}$ and shares $\left(x_{j}=j, y_{j}=f(j)\right)$
F-Share:

- additionally publish $C_{0}:=g^{\alpha_{i}}$ and $C_{k}:=g^{\Delta \cdot r_{k}}$ for $k \in[1, t]$
- prove that $C_{k} \in\langle g\rangle$

F-Check: $P_{j} \neq P_{i}$ checks

$$
g^{\Delta \cdot y_{j}} \stackrel{?}{=} C_{0}^{\Delta^{2}} \cdot \prod_{k=1}^{t}\left(C_{k}\right)^{\left(j^{k}\right)}=g^{\Delta^{2} \cdot \alpha_{i}+\sum_{k=1}^{t} \Delta \cdot r_{k} \cdot j^{k}}
$$

ORD Assumption $\wedge \operatorname{gcd}(\operatorname{ord}(g), \Delta)=1 \wedge$ PoK for $C_{0}=g^{\alpha_{i}} \Longrightarrow$ Integer VSS

- Issues with Rabin's VSS [Rab98]: Does not use ORD
\Longrightarrow Corrupt dealer knowing ord (g) can prevent reconstruction

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
1.4 prove consistency
2. Define public key pk $:=\prod_{p_{i}} g^{\alpha_{i}}$
3. Have shared secret key \langle sk $\rangle:=\sum_{P_{i}}\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
1.4 prove consistency
2. Disqualify misbehaving parties \rightsquigarrow set of $\geq t+1$ remaining parties \mathcal{Q}
3. Define public key pk $:=\prod_{p_{i} \in \mathcal{Q}} g^{\alpha_{i}}$
4. Have shared secret key \langle sk $\rangle:=\sum_{P_{i} \in \mathcal{Q}}\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
1.4 prove consistency
2. Disqualify misbehaving parties \rightsquigarrow set of $\geq t+1$ remaining parties \mathcal{Q}
3. Define public key pk $:=\prod_{P_{i} \in \mathcal{Q}} g^{\alpha_{i}}$
4. Have shared secret key \langle sk $\rangle:=\sum_{P_{i} \in \mathcal{Q}}\left\langle\alpha_{i}\right\rangle$

Pedersen-style Distributed Key Generation

1. All parties P_{i}
1.1 sample contribution α_{i}
1.2 publish $g^{\alpha_{i}}$
1.3 share $\alpha_{i} \rightarrow\left\langle\alpha_{i}\right\rangle$
1.4 prove consistency
2. Disqualify misbehaving parties \rightsquigarrow set of $\geq t+1$ remaining parties \mathcal{Q}
3. Define public key pk $:=\prod_{p_{i} \in \mathcal{Q}} g^{\alpha_{i}}$
4. Have shared secret key $\langle\mathrm{sk}\rangle:=\sum_{P_{i} \in \mathcal{Q}}\left\langle\alpha_{i}\right\rangle$

Fixing the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:
$\frac{\text { BiasedKeyGen }{ }^{\mathcal{A}}}{\text { 1. }\left(\mathrm{pk}^{*}, \mathrm{sk}^{*}\right) \leftarrow \text { KeyGen }}$

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

```
BiasedKeyGen }\mp@subsup{}{}{\mathcal{A}
    1. (pk*,sk})\leftarrowKeyGe
    2. }\delta\leftarrow\mathcal{A}(\mp@subsup{\textrm{pk}}{}{*}
```


Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:

```
BiasedKeyGen \({ }^{\mathcal{A}}\)
    1. \(\left(\mathrm{pk}^{*}, \mathrm{sk}^{*}\right) \leftarrow\) KeyGen
    2. \(\delta \leftarrow \mathcal{A}\left(\mathrm{pk}^{*}\right)\)
    3. Output sk \(:=s k^{*}+\delta\),
    \(\mathrm{pk}:=g^{\mathrm{sk}}=\mathrm{pk}^{*} \cdot \mathrm{~g}^{\delta}\)
```

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:
IND-CPA by reduction of unbiased encryption:

```
BiasedKeyGen \({ }^{\mathcal{A}}\)
    1. \(\left(\mathrm{pk}^{*}, \mathrm{sk}^{*}\right) \leftarrow\) KeyGen
    2. \(\delta \leftarrow \mathcal{A}\left(\mathrm{pk}^{*}\right)\)
    3. Output sk \(:=s k^{*}+\delta\),
    \(\mathrm{pk}:=g^{\mathrm{sk}}=\mathrm{pk}^{*} \cdot \mathrm{~g}^{\delta}\)
```

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:
IND-CPA by reduction of unbiased encryption:

```
BiasedKeyGen \({ }^{\mathcal{A}}\)
    1. \(\left(\mathrm{pk}^{*}, \mathrm{sk}^{*}\right) \leftarrow\) KeyGen
    2. \(\delta \leftarrow \mathcal{A}\left(\mathrm{pk}^{*}\right)\)
    3. Output sk \(:=s k^{*}+\delta\),
    \(\mathrm{pk}:=g^{\text {sk }}=\mathrm{pk}^{*} \cdot \mathrm{~g}^{\delta}\)
```

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

Fixinh'g Living with the Bias

Gennaro et al. [GJKR07]: Unbiased DKG with two-stage approach + Pedersen VSS

- needs additional rounds and extra setup (but bias is ok for e.g. Schnorr signatures)

Allowing the Adversary to bias the distribution:
IND-CPA by reduction of unbiased encryption:
BiasedKeyGen ${ }^{\mathcal{A}}$

1. $\left(\mathrm{pk}^{*}, \mathrm{sk}^{*}\right) \leftarrow$ KeyGen
2. given encryption under (unbiased) pk^{*}

$$
\mathrm{ct}:=\left(g^{r},\left(\mathrm{pk}^{*}\right)^{r} \cdot f^{m}\right)
$$

2. $\delta \leftarrow \mathcal{A}\left(\mathrm{pk}^{*}\right)$
3. Output sk $:=s k^{*}+\delta$,

$$
\mathrm{pk}:=g^{\mathrm{sk}}=\mathrm{pk}^{*} \cdot g^{\delta}
$$

$$
\begin{aligned}
c t^{\prime}:= & \left(g^{r},\left(\left(\mathrm{pk}^{*}\right)^{r} \cdot f^{m}\right) \cdot\left(g^{r}\right)^{\delta}\right) \\
& =\left(g^{r},(\mathrm{pk})^{r} \cdot f^{m}\right)
\end{aligned}
$$

Similar observations for ElGamal by Courtier et al. [CGGI13] and Stengele et al. [SRMH21].

YOSO

YOSO MPC - You Only Speak Once

YOSO???

- large scale MPC for many parties
- work done by many small committees
- mechanism for passing secrets to future committees without knowing them
- each party sends only one round of messages

YOSO MPC - You Only Speak Once

YOSO???

- large scale MPC for many parties
- work done by many small committees
- mechanism for passing secrets to future committees without knowing them
- each party sends only one round of messages

Why is our work YOSO-friendly?

- transparent setup! - open problem in previous work [Gen+21]
- simple one-round distributed key generation and decryption protocols
- small secret state: only shared sk needs to be passed between the committees

Summary

Summary

Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

Summary

Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

- [CLT22] give a HSM-CL (threshold) variant for $\mathbb{Z}_{2^{k}}$. Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (\rightsquigarrow Cramer-Shoup-style)

Summary

Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

- [CLT22] give a HSM-CL (threshold) variant for $\mathbb{Z}_{2^{k}}$. Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (\rightsquigarrow Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437

Summary

Contributions

- First actively-secure threshold version of the HSM-CL cryptosystem
- UC-secure MPC using the CDN paradigm
- New zero-knowledge protocols for multiplicative relations of encrypted values
- Adaption to the YOSO setting and solution to the open problem of transparent setup

Open problems

- [CLT22] give a HSM-CL (threshold) variant for $\mathbb{Z}_{2^{k}}$. Can we adapt our techniques?
- Threshold-friendly CCA-secure variant of the encryption scheme without a random oracle? (\rightsquigarrow Cramer-Shoup-style)

Full version on ePrint: https://ia.cr/2022/1437

Thank you!

References i

[BCIL22] C. Bouvier, G. Castagnos, L. Imbert, and F. Laguillaumie.
I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups. Cryptology ePrint Archive, Report 2022/1466. https://eprint.iacr.org/2022/1466. 2022.
[CCLST20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. "Bandwidth-Efficient Threshold EC-DSA". In: PKC 2020, Part II. May 2020.
[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. "Multiparty Computation from Threshold Homomorphic Encryption". In: EUROCRYPT 2001. May 2001.
[CGGI13] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. "Distributed EIGamal à la Pedersen: Application to Helios". In:
Workshop on Privacy in the Electronic Society - WPES 2013. Nov. 2013.
[CL15] G. Castagnos and F. Laguillaumie. "Linearly Homomorphic Encryption from DDH". In: CT-RSA 2015. Apr. 2015.
[CL84] H. Cohen and H. W. Lenstra. "Heuristics on class groups of number fields". In: Number Theory Noordwijkerhout 1983. 1984.
[CLT18] G. Castagnos, F. Laguillaumie, and I. Tucker. "Practical Fully Secure Unrestricted Inner Product Functional Encryption Modulo p". In: ASIACRYPT 2018, Part II. Dec. 2018.
[CLT22] G. Castagnos, F. Laguillaumie, and I. Tucker. "Threshold Linearly Homomorphic Encryption on Z/2kZ". In: ASIACRYPT 2022, Part II. Dec. 2022.
[DF92] Y. Desmedt and Y. Frankel. "Shared Generation of Authenticators and Signatures (Extended Abstract)". In: CRYPTO'91. Aug. 1992.

References iif

[FGMY97] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. "Optimal Resilience Proactive Public-Key Cryptosystems". In: 38th FOCS. Oct. 1997.
[Gen+21] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and
S. Yakoubov. "YOSO: You Only Speak Once - Secure MPC with Stateless Ephemeral Roles". In: CRYPTO 2021, Part II. Aug. 2021.
[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. "Secure Distributed Key Generation for Discrete-Log Based Cryptosystems". In: Journal of Cryptology 1 (Jan. 2007).
[Rab98] T. Rabin. "A Simplified Approach to Threshold and Proactive RSA". In: CRYPTO'98. Aug. 1998.
[SRMH21] O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein. "ETHTID: Deployable Threshold Information Disclosure on Ethereum". In: Conference on Blockchain Computing and Applications - BCCA 2021. Nov. 2021.

References iv

Emoji graphics licensed under CC-BY 4.0:
https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other contributors

