Correlation Intractability and SNARGs from Sub-exponential DDH

Arka Rai Choudhuri NTT Research

Sanjam Garg UC Berkeley and NTT Research

Abhishek Jain
Johns Hopkins University
and NTT Research

Zhengzhong Jin

Jiaheng Zhang UC Berkeley

 \mathcal{M} , x

wants to delegate computation to

No PPT \searrow can produce accepting Π if $x \longrightarrow \mathcal{M}$ accept

within T steps

No PPT \searrow can produce accepting x, Π if $x \longrightarrow \mathcal{M}$ accept

within T steps

What kind of computation can we hope to delegate based on standard assumptions?

What kind of computation can we hope to delegate based on standard assumptions?

Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS CRS C, x_1, \dots, x_k C, x_1, \dots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

No PPT $\overline{\mathbb{Z}}$ can produce accepting Π if

 $\exists i^* \in [k], (C, x_{i^*}) \times SAT$

CRS CRS C, x_1, \dots, x_k C, x_1, \dots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

CRS $\leftarrow \ll |w| \cdot k \rightarrow \Pi$

 C, x_1, \dots, x_k Π is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 C, x_1, \cdots, x_k

 $\forall i \in [k], (C, x_i) \in SAT$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

Verifier running time: $k \cdot |x| + |\Pi|$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

Usefulness of BARGs

BARGs

Usefulness of BARGs

Usefulness of BARGs

Construction of BARGs

Construction of BARGs

Construction of BARGs

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for

batch NP where

$$|\Pi| = \operatorname{poly}(\log k, |C|)$$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |a| = polylog(T)$

Recent concurrent work [Kalai-Lombardi-

Vaikuntanathan'23]:

SNARGs for bounded depth circuits assuming sub-exponential hardness of DDH.

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P

where

$$|CRS|, |\Pi|, |a| = polylog(T)$$

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

 $|\Pi| = \operatorname{poly}(\log k, |C|)$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

 $|CRS|, |\Pi|, |\partial| = polylog(T)$

Meta View: Advanced Primitives from DDH

DDH

Meta View: Advanced Primitives from DDH

Meta View: Advanced Primitives from DDH

Tools and Techniques

Fiat-Shamir (FS) Methodology: Recipe for Success

 β is a random string

Fiat-Shamir (FS) Methodology

Fiat-Shamir (FS) Methodology

 $\forall x \notin \mathcal{L}$ $BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

Fiat-Shamir (FS) Methodology

 β is a random string

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{S}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

Correlation Intractability [Canetti-Goldreich-Halevi'98]

 β is a random string

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{Z}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

h is correlation intractable (CI) for $BAD_{x,\alpha}$

Instantiating the FS Transform

Instantiating the FS Transform

Instantiating the FS Transform

Special interactive protocol for batch NP

h is correlation intractable for $\mathrm{BAD}_{x, \alpha}$

see paper for details

Magic Box
Special interactive protocol for batch NP

h is correlation intractable for $\mathrm{BAD}_{x,\alpha}$

SNARGs for Batch NP

What properties does $BAD_{x,\alpha}$ have?

 $BAD_{x,\alpha}$ is product verifiable.

```
\forall x \notin \mathcal{L}
BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}
```



```
\forall x \notin \mathcal{L}
BAD_{x,\alpha}^{(j)} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}
```

$$\mathsf{BAD}_{x,\alpha} = \mathsf{BAD}_{x,\alpha}^{(1)} \times \mathsf{BAD}_{x,\alpha}^{(2)} \times \mathsf{BAD}_{x,\alpha}^{(3)} \times \mathsf{BAD}_{x,\alpha}^{(4)}$$

$$\mathsf{BAD}_{x,\alpha} \text{ is product verifiable.}$$

$$\forall x \notin \mathcal{L}$$

$$BAD_{x,\alpha}^{(j)} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$$

Exponentially many bad challenges even when β sampled from polynomial size challenge space.

What properties does $BAD_{x,\alpha}$ have?

$BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in TC⁰

 $BAD_{x,\alpha}$ properties

1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC⁰

 $BAD_{x,\alpha}$ properties

1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC⁰

$BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in TC⁰

Difficulty [Holmgren-Lombardi-Rothblum'21]: $BAD_{x,\alpha}$ has exponentially many bad challenges.

$BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in TC⁰

 ${\sf TC}^0$ - Constant depth polynomial-size threshold circuits

 $BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in TC⁰

 $BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in TC⁰ poly

 $BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in poly

BAD $_{x,\alpha}^{(1)}$

```
BAD_{x,\alpha}^{(1)}
```

```
\begin{array}{c} \underline{\text{Compute Bad Challenge}} \\ \text{for } \beta \in \text{ChallengeSpace} \\ \mid \quad \text{if } \beta \in \text{BAD}_{x,\alpha}^{(1)} \\ \mid \quad \text{return } \beta \end{array}
```

$$BAD_{x,\alpha} = BAD_{x,\alpha}^{(1)} \times BAD_{x,\alpha}^{(2)} \times \cdots \times BAD_{x,\alpha}^{(d)}$$

$$BAD_{x,\alpha} = BAD_{x,\alpha}^{(1)} \times BAD_{x,\alpha}^{(2)} \times \cdots \times BAD_{x,\alpha}^{(d)}$$

```
\begin{array}{c} \underline{\text{Compute Bad Challenge}} \\ \text{for } i \in [d] \\ \\ | \text{for } \beta^{(i)} \in \text{ChallengeSpace} \\ | \text{if } \beta^{(i)} \in \text{BAD}_{x,\alpha}^{(i)} \\ | \text{store } \beta^{(i)} \\ \\ \text{return } (\beta^{(1)}, \cdots, \beta^{(d)}) \end{array}
```

Reducing to Verifiable Unique Bad Challenge

No parallel repetition

No restriction on number of bad challenges

Reducing to Verifiable Unique Bad Challenge

No parallel repetition

$$= h(x, \alpha)$$

$$= h(x, \alpha, \square)$$

h is correlation intractable for efficiently verifiable unique bad challenge relations.

h is correlation intractable for efficiently verifiable unique bad challenge relations.

h is correlation intractable for efficiently verifiable unique bad challenge relations.

Reducing to Verifiable Unique Bad Challenge

No parallel repetition

No parallel repetition

No parallel repetition

Requirements:

1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.

No parallel repetition

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

Challenge space

sBAD ₁

is bad if

#bad challenges with prefix > #bad challenges/2

sBAD ₁

is bad if

#bad challenges with prefix > #bad challenges/2

- 1. By pigeonhole principle, unique bad 🔃
- 2. ChallengeSpace polynomial size + BAD $_{x,\alpha}^{(1)}$ efficiently verifiable \Rightarrow sBAD $_1$ efficiently verifiable

No parallel repetition

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

No parallel repetition

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

 β Bad challenge by assumption

#bad challenges remaining

7

T= #bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k>T$

β Bad challenge by assumption

#bad challenges remaining

T

< T/2

T= #bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k>T$

#bad challenges remaining < T/2< T/4

T= #bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k>T$

T= #bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k>T$

T= #bad challenges BAD $_{x,\alpha}^{(1)}$ k such that $2^k>T$

contradiction

No parallel repetition

Requirements:

- 1. Each $sBAD_j$ must be efficiently verifiable unique bad challenge relations.
- 2. If a challenge is bad, then there must exist a bad segment.

[C-Jain-Jin'21] Methodology

 $BAD_{x,\alpha}$ properties

- 1 Bad challenges are a product set
- 2 Challenge space is of polynomial size
- 3 Bad challenges are product verifiable in poly

Concluding Remarks

See paper for:

- 1. Extension to parallel repetition.
- 2. Choice of parameters for size of segments, number of repetitions.
- 3. New somewhere extractable hash scheme necessary for "Magic box".

Recap: Our Results

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where $|\Pi| = \text{poly}(\log k, |\mathcal{C}|)$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

$$|CRS|, |\Pi|, |a| = polylog(T)$$

Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

ia.cr/2022/1486