Correlation Intractability and SNARGs from Sub-exponential DDH

Arka Rai Choudhuri
NTT Research

Sanjam Garg UC Berkeley and NTT

Research

Abhishek Jain
Johns Hopkins University
and NTT Research

Jiaheng Zhang UC Berkeley

Succinct Non-Interactive Arguments (SNARGs)

$x \longrightarrow \mathcal{M} \longrightarrow$ accept
within T steps

Succinct Non-Interactive Arguments (SNARGs)

Succinct Non-Interactive Arguments (SNARGs)

$x \longrightarrow \mathcal{M} \longrightarrow$ accept
within T steps

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

П

within T steps

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

Π is publicly verifiable
within T steps

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

Verifier running time: polylog(T)
Π is publicly verifiable
within T steps

Succinct Non-Interactive Arguments (SNARGs)

Succinct Non-Interactive Arguments (SNARGs)

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

Verifier running time: polylog(T)
Π is publicly verifiable

What kind of computation can we hope to delegate based on standard assumptions?

Succinct Non-Interactive Arguments (SNARGs)

Common Reference String (CRS)

Verifier running time: polylog(T)
Π is publicly verifiable

What kind of computation can we hope to delegate based on standard assumptions?

Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-
Wichs'11]

SNARGs for Batch NP (or BARGs)

CRS

8
C, x_{1}, \cdots, x_{k}

$$
\text { SAT }=\{(C, x) \mid \exists \text { w s.t. } C(x, w)=1\}
$$

$$
\forall i \in[k],\left(C, x_{i}\right) \in \operatorname{SAT}
$$

SNARGs for Batch NP (or BARGs)

CRS

Π is publicly verifiable

$$
\begin{aligned}
\text { SAT }= & \{(C, x) \mid \exists w \text { s.t. } C(x, w)=1\} \\
& \forall i \in[k],\left(C, x_{i}\right) \in \text { SAT }
\end{aligned}
$$

SNARGs for Batch NP (or BARGs)

SNARGs for Batch NP (or BARGs)

CRS

Π is publicly verifiable

$$
\begin{aligned}
\text { SAT }= & \{(C, x) \mid \exists w \text { s.t. } C(x, w)=1\} \\
& \forall i \in[k],\left(C, x_{i}\right) \in \text { SAT }
\end{aligned}
$$

SNARGs for Batch NP (or BARGs)

CRS

Π is publicly verifiable

$$
\begin{aligned}
\text { SAT }= & \{(C, x) \mid \exists w \text { s.t. } C(x, w)=1\} \\
& \forall i \in[k],\left(C, x_{i}\right) \in \text { SAT }
\end{aligned}
$$

SNARGs for Batch NP (or BARGs)

Π is publicly verifiable

SAT $=\{(C, x) \mid \exists w$ s.t. $C(x, w)=1\}$
$\forall i \in[k],\left(C, x_{i}\right) \in \operatorname{SAT}$

SNARGs for Batch NP (or BARGs)

Verifier running time: $k \cdot|x|+|\Pi|$
Π is publicly verifiable

$$
\begin{aligned}
\text { SAT }= & \{(C, x) \mid \exists w \text { s.t. } C(x, w)=1\} \\
& \forall i \in[k],\left(C, x_{i}\right) \in \text { SAT }
\end{aligned}
$$

Usefulness of BARGs

BARGs

Usefulness of BARGs

BARGs

Usefulness of BARGs

[Waters-Wu'22]

Construction of BARGs

SNARGs for P

verifiable PIR

Incrementally Verifiable
Computation

BARGs

Construction of BARGs

SNARGs for P

Construction of BARGs

SNARGs for P

Our Results

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

$$
|\Pi|=\operatorname{poly}(\log k,|C|)
$$

Our Results

within T steps

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P
where

$$
|C R S|,|\Pi|,|\stackrel{\otimes}{8}|=\operatorname{polylog}(T)
$$

Our Results

Recent concurrent work [Kalai-Lombardi-
Vaikuntanathan'23]:
SNARGs for bounded depth
circuits assuming sub-exponential
within T steps

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

$$
|C R S|,|\Pi|,|\widehat{\varnothing}|=\operatorname{polylog}(T)
$$

Our Results

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

$$
|\Pi|=\operatorname{poly}(\log k,|C|)
$$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where
$|C R S|,|\Pi|,|\Omega|=\operatorname{polylog}(T)$

Meta View: Advanced Primitives from DDH

DDH

Meta View: Advanced Primitives from DDH

Succinct Secure Computation
[Boyle-Gilboa-Ishai' 16]

Identity Based Encryption
[Döttling-Garg‘17]
DDH
Non-Interactive Zero-Knowledge
[Jain-Jin'21]

Meta View: Advanced Primitives from DDH

Tools and Techniques

Fiat-Shamir (FS) Methodology: Recipe for Success

$\operatorname{Prover}(x)$

β is a random string

Fiat-Shamir (FS) Methodology

β is a random string

Fiat-Shamir (FS) Methodology

$\operatorname{Prover}(x)$
Verifier (x)

β is a random string

```
\forallx\not\in\mathcal{L}
    BAD
```


Fiat-Shamir (FS) Methodology


```
\forallx\not\in\mathcal{L}
    BAD
```

If $x \notin \mathcal{L}$, no PPT can find α such that

$$
h(x, \alpha) \in \operatorname{BAD}_{x, \alpha}
$$

Correlation Intractability [Canetti-Goldreich-Halevi'98]


```
\forallx\not\in\mathcal{L}
    BAD
```

If $x \notin \mathcal{L}$, no PPT can find α such that

$$
h(x, \alpha) \in \mathrm{BAD}_{x, \alpha}
$$

h is correlation intractable (CI) for $\mathrm{BAD}_{x, \alpha}$

Instantiating the FS Transform

$\mathrm{BAD}_{x, \alpha}$

Instantiating the FS Transform

Instantiating the FS Transform

[C-Jain-Jin'21] Methodology

Special interactive protocol for batch NP

h is correlation

 intractable for
$\mathrm{BAD}_{x, \alpha}$

[C-Jain-Jin'21] Methodology

Special interactive protocol for batch NP

[C-Jain-Jin'21] Methodology

Special interactive protocol for batch NP

This work
sub-exp
DDH

[C-Jain-Jin'21] Methodology

Magic Box
Special interactive protocol for batch NP

[C-Jain-Jin'21] Methodology

Magic Box
Special interactive protocol for batch NP

[C-Jain-Jin'21] Methodology

Magic Box
Special interactive protocol for batch NP

Properties of $\mathrm{BAD}_{x, \alpha}$

$\mathrm{BAD}_{x, \alpha}$ is product verifiable.

```
\forallx\not\in\mathcal{L}
    BAD}\mp@subsup{x}{x,\alpha}{}={\beta|\exists\gamma\mathrm{ s.t. Verifier accepts ( }\alpha,\beta,\gamma)
```


Properties of $\mathrm{BAD}_{x, \alpha}$

$\operatorname{BAD}_{x, \alpha}^{(j)}=\{\beta \mid \exists \gamma$ s.t. Verifier accepts $(\alpha, \beta, \gamma)\}$

Properties of $\mathrm{BAD}_{x, \alpha}$

$\mathrm{BAD}_{x, \alpha}$ is product verifiable.

```
\forallx\not\in\mathcal{L}
    BAD}\mp@subsup{x}{,\alpha}{(j)}={\beta|\exists\gamma\mathrm{ s.t. Verifier accepts ( }\alpha,\beta,\gamma)
```

Exponentially many bad challenges
even when β sampled from
polynomial size challenge space.

Properties of $\mathrm{BAD}_{x, \alpha}$

$\mathrm{BAD}_{x, \alpha}$ is product verifiable.

```
\forallx\not\in\mathcal{L}
```

Each $\mathrm{BAD}_{x, \alpha}^{(i)}$ is efficiently verifiable

[C-Jain-Jin'21] Methodology

Magic Box
Special interactive protocol for batch NP

[C-Jain-Jin'21] Methodology

Magic Box
Special interactive protocol for batch NP
h is correlation
intractable for
$\operatorname{BAD}_{x, \alpha}$
$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC^{0}

[C-Jain-Jin'21] Methodology

$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC^{0}

TC ${ }^{0}$ - Constant depth polynomial-size threshold circuits

[C-Jain-Jin'21] Methodology

$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC^{0}
TC^{0} - Constant depth polynomial-size threshold circuits

[C-Jain-Jin'21] Methodology

$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC^{0}

TC ${ }^{0}$ - Constant depth polynomial-size threshold circuits

[C-Jain-Jin'21] Methodology

BAD' }x,
BAD' }x,
computable in
computable in
TC
TC

$\mathrm{BAD}_{x, \alpha}$ properties

Difficulty [Holmgren-Lombardi-Rothblum'21]:
$\mathrm{BAD}_{x, \alpha}$ has exponentially many bad challenges.

[C-Jain-Jin'21] Methodology

$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in TC^{0}

TC ${ }^{0}$ - Constant depth polynomial-size threshold circuits

[C-Jain-Jin'21] Methodology

$\mathrm{BAD}_{x, \alpha}$ properties

1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are
product verifiable in TC^{θ} poly

For this talk

TC^{0} - Constant depth polynomial-size

[C-Jain-Jin'21] Methodology

Easy Case: Verifiable Unique Bad Challenge

$\operatorname{BAD}_{x, \alpha}^{(1)}$

Easy Case: Verifiable Unique Bad Challenge

$\operatorname{BAD}_{x, \alpha}^{(1)}$

Compute Bad Challenge
for $\beta \in$ ChallengeSpace
if $\beta \in \operatorname{BAD}_{x, \alpha}^{(1)}$
return β

ChallengeSpace polynomial size $+\mathrm{BAD}_{x, \alpha}^{(1)}$ efficiently verifiable $\Rightarrow \mathrm{BAD}_{x, \alpha}^{(1)}$ efficiently computable.

Easy Case: Verifiable Unique Bad Challenge

$$
\operatorname{BAD}_{x, \alpha}=\operatorname{BAD}_{x, \alpha}^{(1)} \times \operatorname{BAD}_{x, \alpha}^{(2)} \times \cdots \times \operatorname{BAD}_{x, \alpha}^{(d)}
$$

Easy Case: Verifiable Unique Bad Challenge

$$
\operatorname{BAD}_{x, \alpha}=\operatorname{BAD}_{x, \alpha}^{(1)} \times \operatorname{BAD}_{x, \alpha}^{(2)} \times \cdots \times \operatorname{BAD}_{x, \alpha}^{(d)}
$$

Compute Bad Challenge

```
for \(i \in[d]\)
    for \(\beta^{(i)} \in\) ChallengeSpace
        if \(\beta^{(i)} \in \operatorname{BAD}_{x, \alpha}^{(i)}\)
        store \(\beta^{(i)}\)
    return \(\left(\beta^{(1)}, \cdots, \beta^{(d)}\right)\)
```

poly repetitions + ChallengeSpace polynomial size $+\mathrm{BAD}_{x, \alpha}^{(i)}$ efficiently verifiable $\Rightarrow \mathrm{BAD}{ }_{x, \alpha}$ efficiently computable.

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition$\leftarrow \ell=\log _{2} \mid$ ChallengeSpace $\mid \rightarrow$
\square

$$
\operatorname{BAD}_{x, \alpha}^{(1)}
$$

No restriction on number of bad challenges

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition

Sampling Challenges via Segments

\square

Sampling Challenges via Segments

\square

Sampling Challenges via Segments

\square

Sampling Challenges via Segments

$$
\begin{aligned}
& \square=h(x, \alpha) \\
& \square=h(x, \alpha, \square)
\end{aligned}
$$

h is correlation intractable for efficiently verifiable unique bad challenge relations.

Sampling Challenges via Segments

$$
\begin{aligned}
& \square=h(x, \alpha) \\
& \square=h(x, \alpha, \square) \\
& \square=h(x, \alpha, \square \square \square) \\
& \square \square=\square)
\end{aligned}
$$

h is correlation intractable for efficiently verifiable unique bad challenge relations.

Sampling Challenges via Segments

$$
\begin{aligned}
& \square=h(x, \alpha) \\
& \square=h(x, \alpha, \square) \\
& \square=h(x, \alpha, \square \square \square) \\
& \square=h(x, \alpha, \square \square \square \square) \\
& \left.\square=\frac{\square}{\square}=h\right)
\end{aligned}
$$

h is correlation intractable for efficiently verifiable unique bad challenge relations.

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition

Requirements:

1. Each sBAD_{j} must be efficiently verifiable unique bad challenge relations.

Reducing to Verifiable Unique Bad Challenge No parallel repetition

Requirements:

1. Each sBAD_{j} must be efficiently verifiable unique bad challenge relations.
2. If a challenge is bad, then there must exist a bad segment.

Defining Bad Segments

Defining Bad Segments

sBAD 1

Defining Bad Segments

sBAD 1

Defining Bad Segments

1. By pigeonhole principle, unique bad

2. ChallengeSpace polynomial size $+\mathrm{BAD}_{x, \alpha}^{(1)}$ efficiently verifiable $\Rightarrow s B A D{ }_{1}$ efficiently verifiable

Defining Bad Segments

Defining Bad Segments

Defining Bad Segments

Challenges with prefix 00
Challenges with prefix 01

```
sBAD }
    \square is bad given 0 if
    #bad challenges with prefix 0 0 
    > (#bad challenges with prefix 0 )/2
```


Defining Bad Segments

sBAD $_{2}$

is bad given 0 if
\#bad challenges with prefix 0
$>$ (\#bad challenges with prefix 0)/2

Reducing to Verifiable Unique Bad Challenge No parallel repetition

Requirements:

1. Each sBAD_{j} must be efficiently verifiable unique bad challenge relations.
2. If a challenge is bad, then there must exist a bad segment.

Reducing to Verifiable Unique Bad Challenge

 No parallel repetition

Requirements:
2. If a challenge is bad, then there must exist a bad segment.

Existence of a bad segment

Existence of a bad segment

$T=$ \#bad challenges $\mathrm{BAD}_{x, \alpha}^{(1)}$
k such that $2^{k}>T$

Existence of a bad segment

\#bad challenges remaining

$T=\#$ bad challenges $\mathrm{BAD}_{x, \alpha}^{(1)}$
k such that $2^{k}>T$

If each segment is good

Existence of a bad segment

\#bad challenges remaining

If each segment is good

Existence of a bad segment

$T=$ \#bad challenges $\mathrm{BAD}_{x, \alpha}^{(1)}$
k such that $2^{k}>T$

If each segment is good

Existence of a bad segment

If each segment is good

Reducing to Verifiable Unique Bad Challenge No parallel repetition

Requirements:

1. Each sBAD_{j} must be efficiently verifiable unique bad challenge relations.
2. If a challenge is bad, then there must exist a bad segment.

[C-Jain-Jin'21] Methodology

No repetition
$\mathrm{BAD}_{x, \alpha}$ properties
1 Bad challenges are a product set

2 Challenge space is of polynomial size

3 Bad challenges are product verifiable in poly

Concluding Remarks

See paper for:

1. Extension to parallel repetition.
2. Choice of parameters for size of segments, number of repetitions.
3. New somewhere extractable hash scheme necessary for "Magic box".

Recap: Our Results

Theorem 1

Assuming sub-exponential hardness of DDH, there exists SNARGs for batch NP where

$$
|\Pi|=\operatorname{poly}(\log k,|C|)
$$

Theorem 2

Assuming sub-exponential hardness of DDH, there exists SNARGs for P where

$$
|C R S|,|\Pi|,|\widehat{¿ \mid}|=\operatorname{polylog}(T)
$$

Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com
ia.cr/2022/1486

